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Abstract—The article explores deep learning models in 

urological diagnostics to measure urinary bladder volume from 

medical images. It addresses the shortcomings of traditional 

methods by introducing advanced imaging techniques for more 

objective and precise analysis. The research employs 

Convolutional Neural Networks (CNNs) and the MONAI platform 

for image segmentation and analysis, using data from The Cancer 

Imaging Archive to focus on urological regions. Findings suggest 

these models enhance diagnostic accuracy but also highlight the 

need for further modifications to tailor them to specific medical 

data, underscoring machine learning's significant role in accurate 

medical assessments for urology. 
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I. INTRODUCTION 

HE fusion of medical imaging technology with 

advancements in artificial intelligence and machine 

learning has unveiled new opportunities in diagnostic and health 

condition monitoring domains. A notable application of these 

innovations is in urology, particularly in assessing the volume 

of the urinary bladder. Accurately knowing the bladder volume 

is crucial for diagnosing various urological conditions, 

including lower urinary tract disorders and other states affecting 

the bladder's capacity to efficiently store and evacuate urine. 

Traditional methods of bladder volume assessment often rely on 

techniques that might be invasive or imprecise, leading to a need 

for manual calculations and interpretations which carry risks of 

errors and subjectivity. Addressing these challenges, our study 

leverages advanced deep learning models to automate and 

enhance the precision of bladder volume measurement. This 

paper employs Convolutional Neural Networks (CNNs) to 

analyze medical images from The Cancer Imaging Archive [26], 

focusing on urinary system CT scans. The primary goal is not 

only to automate the volume measurement process but also to 

enhance its accuracy and repeatability through the application 

of deep learning models trained on extensive datasets. Using the 

Medical Open Network for AI (MONAI) platform, which 

provides tools specially tailored for medical image processing 

and analysis, bladder segmentation was performed. The efficacy 

of the models was evaluated using metrics such as the Dice 

similarity coefficient, allowing for detailed assessment of their 

precision and effectiveness in differentiating anatomical 

structures. It is expected that the findings will contribute to a 

better understanding of machine learning's applicability in 

practical medical diagnostics, offering a tool that could improve 
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patient life quality through faster and more accurate diagnosis 

and monitoring of urological conditions. 

II. OBJECTIVES 

The urinary bladder, a key component of the urinary system, 

has an elastic structure that adapts to varying fluid volumes, 

playing a crucial role in the body's homeostasis. It is located in 

the extra peritoneal space of the pelvis behind the pubic bones 

and expands towards the abdominal cavity as it fills with urine. 

Bladder capacity is measured by analysing its ability to store 

fluids. There is no standard bladder size as it is an expansible 

organ, and its volume depends on various factors, including 

genetic and disease-related ones. Hence, assigning a specific 

average value for an individual without prior medical scan 

analysis is impractical. While the accepted average bladder 

capacity is around 500 ml, this value might be overly 

generalized. Individual differences in bladder capacity can stem 

from factors like gender, age, fluid consumption habits, 

anatomical conditions, and health status. Diseases such as 

diabetes, neurological issues, or urinary system infections can 

also alter its size. According to study [14], the normal bladder 

capacity in adults ranges between 300 to 400 ml. Different 

scenarios may occur in the elderly and children. For example, in 

the elderly, a decrease in bladder elasticity affects its capacity. 

In children aged 2-12 years, maximum bladder capacity can be 

calculated using the formula (1): 

 (age + 2) × 30ml (1) 

Diagnostic images are used to measure the bladder's 

maximum depth, width, and height, which allows calculating an 

individual's bladder capacity. The standard computational 

formula with a correction factor of 0.75 as per [2] is presented 

as follows (2):  

 width ×  height ×  depth ×  correction factor =  volume (2) 

This method, according to research [4], generates a 

measurement error of about 8.57%.  

Bladders can assume various shapes, adding complexity to 

the use of the formula. Identified bladder shapes include cuboid, 

ellipsoidal, trapezoidal, and elongated ellipsoidal. Different 

correction coefficients apply to these shapes: 0.89, 0.81, 0.66, 

and 0.52, respectively. Based on results [1], the standard 

correction coefficient for irregularly shaped bladders was 

estimated at 0.72. These coefficients have also been tested in 

studies [9], allowing adjustments to calculations to optimize 

values for various test scenarios and bladder shapes. The study 

also found that a coefficient of 0.72 provides the most accurate 

measurement results for many cases. In this work, the authors 

adopted the value of 0.72 as suitable and it will serve as a 
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reference value for further assessments. Using MicroDicom 

software, bladder dimensions can be determined based on study 

results. An example bladder shown in Fig. 1 had dimensions of 

5.71 mm x 3.75 mm x 4.53 mm. Using formula 1, the bladder 

volume was (3):  

5.71mm × 3.75mm × 4.53mm × 0.72 ≈  96.998cm³ ≈  97ml (3) 

 
Fig. 1. Measurement of bladder dimensions 

Accurate measurement of urinary bladder volume is crucial 

in urological diagnostics, monitoring bladder dysfunction, and 

assessing the effectiveness of treatment. Modern technologies 

such as advanced image analysis algorithms enable automatic 

detection and calculation of organ volumes. In radiological 

diagnostics, computed tomography (CT) imaging offers a 

detailed analysis of internal body structures, including the 

urinary bladder. Research authors [17] present the use of 

Convolutional Neural Networks (CNN) for automated kidney 

volume estimation based on low-dose unenhanced CT scans. 

Although the study focuses on kidneys, similar approaches can 

be applied for precise volume measurements of other organs, 

including the bladder. Techniques that allow in-depth image 

data analysis are crucial in precise diagnostics and monitoring 

of pathological states [6], [7], [11], [13]. In the processing, 

specialized tools such as MicroDicom, 3D Slicer, and OsiriX 

lite are used. These tools offer features from simple image 

manipulations to advanced visualizations and segmentations 

essential for accurate diagnostics. The choice of appropriate 

software depends on the specific needs of the user and the type 

of studies being performed [20]-[22]. These tools meet various 

medical needs from simple image manipulations to complex 

analyses and visualizations: MicroDicom is a free application 

for viewing medical images in DICOM or NifTi formats, 

allowing manipulation of photos (zooming, rotating, adjusting 

contrast and brightness) and saving them in various formats 

such as JPEG or PNG  [27]. 3D Slicer is a free program for 

three-dimensional visualization that allows image editing on 

three planes and manual modelling of organs in 3D [28]. OsiriX 

lite offers features for viewing, manipulating, and analysing 

medical images, with an advanced paid version that enables 3D 

reconstructions and data management [29]. These tools support 

doctors in diagnostics, therapy planning, and disease 

monitoring, being useful mainly for medical specialists due to 

complex functionality. In response to the needs of inexperienced 

users, AI-based systems are being developed, enabling 

automatic segmentation and classification of medical images. 

Image segmentation is a crucial step in preparing for 

computer-assisted surgeries, allowing precise planning of the 

procedure based on a three-dimensional model of the organ to 

be operated on [5], [10]. Such a 3D model, created through the 

segmentation process from a set of medical images, enables 

precise identification of areas that are the subject of surgical 

intervention. The segmentation process, which involves 

dividing the image into individual areas based on the similarity 

of neighboring pixels, is extremely important not only for 

feature extraction and measurements but also for improving the 

visibility of images during diagnostics [12], [15], [16], [19], 

[23]-[25]. In studies [8], [9], segmentation based on deep 

learning was applied using a convolutional neural network 

(CNN) optimized to operate on a system-on-chip (SoC). This 

network is adapted to work on devices with limited computing 

resources, using a multi-task architecture for simultaneous 

classification and segmentation of the image, which allows for 

effective differentiation of areas of interest from the background 

and for determining the volume of the bladder based on 

segmented images. Predefined similarity criteria based on pixel 

properties allow for efficient separation of individual 

anatomical elements, which is crucial in the process of disease 

detection and in Computer-Aided Diagnosis (CAD). CAD 

systems support doctors in interpreting radiological images, 

facilitating early detection of anomalies. They use image 

processing algorithms and techniques to improve the quality of 

scans, significantly contributing to the effectiveness of 

diagnostics. The analysis of principal components and the use 

of the Dice similarity measure, which is an indicator of the fit of 

segmentation to the actual area of interest, allows for the 

assessment of the precision of the segmentation process. The 

Dice measure, ranging between 0 and 1 where 1 indicates 

perfect matching, is fundamental for assessing the accuracy of 

organ or tissue segmentation, and values closer to 0 indicate 

poor fitting. This has a direct impact on the accuracy of the 

diagnosis and the effectiveness of treatment planning. In the 

case of the urinary system, precise segmentation is essential for 

assessing the condition of the kidneys and the urinary bladder. 

These techniques, using advanced image processing algorithms, 

allow for precise differentiation of individual anatomical 

structures, opening up new possibilities in diagnostic and 

interventional medicine. 

Currently, many technologies allow for the visualization of 

individual parts of human anatomy that do not require the user 

to have specialized medical knowledge. A general 

understanding of programming languages and the principles of 

operation of models based on neural networks is sufficient. One 

such innovative solution is a set of models developed by the 

Medical Open Network for Artificial Intelligence (MONAI). It 

is an open-source framework based on PyTorch, designed 

specifically for deep learning in the field of medical imaging. 

By utilizing X-ray images, it enables accurate segmentation and 

identification of selected organs. MONAI focuses on creating 

advanced, comprehensive training processes tailored to the 

needs of medical imaging, offering tools and components 

optimized for this specific field. The main goal of MONAI is to 

accelerate research and collaboration in the field of medical 

imaging by providing domain-optimized implementations of 

deep learning algorithms and specialized tools tailored to the 

unique requirements of medical imaging tasks. The platform has 

been developed in collaboration with multiple institutions and 
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aims to accelerate research and facilitate clinical collaboration 

in the field of medical imaging. The main goal of MONAI is to 

stimulate innovation through the development of software that 

supports the advancement of digital medicine. As part of 

MONAI Model ZOO, a collection of medical imaging models 

has been made available in the MONAI Bundle format. This 

collection offers a range of deep learning models designed for 

medical image segmentation. Model ZOO in the context of 

MONAI refers to a set of ready-to-use, pre-trained artificial 

intelligence models that can be used in various applications in 

medical imaging. These models are continuously refined, and 

tools for abdominal organ segmentation are being developed to 

meet the requirements of increasingly complex and extensive 

projects. Thanks to the involvement of the MONAI community, 

numerous models focused on specific anatomical structures are 

being developed. In the study, the "Wholebody CT 

segmentation" model was used, which contains pre-trained 

models for three-dimensional segmentation of 104 human body 

organs using the SegResNet network. This network operates on 

the principle of encoder-decoder with deep supervision and is 

intended for semantic segmentation. Using this model requires 

downloading data and integrating it into a single NifTi file, with 

labels for each of the anatomical classes, ranging from soft 

tissues through the brain, organs, to bone structures. The model 

predicts the presence of 105 output channels, where the zero 

channel indicates the background, and the remaining 104 

categories correspond to different foreground classes. The 

segmentation process of 104 tissue types is defined as multi-

label segmentation, which requires a significant amount of GPU 

memory for correct calculation of indicators between the 

predicted mask and actual data. The requirements for hardware 

resources depend on the sizes of the input CT scan volume. The 

model was trained using a dataset used to create another deep 

learning model, TotalSegmentator, which automatically 

segments major anatomical structures in computed tomography 

scan images. The dataset utilizes 1,204 studies of various 

anatomical parts, including 27 organs, 59 types of bones, 10 

types of muscles, and 8 vessels. Images were randomly drawn 

from routine clinical examinations, taking into account various 

age groups, tomographs, patient positions, and body parts. Two 

types of models are available, high and low resolution. The 

high-resolution model was trained on images where the pixel 

distance is 1.5 mm, while in the low-resolution model, the pixel 

spacing is 3 mm. The high-resolution model is characterized by 

greater accuracy, which, however, is associated with a greater 

demand for CPU resources and memory RAM needed to 

perform segmentation – over 26 GB compared to over 2 GB in 

the case of the low-resolution model. If the computer used to 

train the model has less RAM than required, the training process 

may significantly extend. 

During the conducted research, the training process of the 

model was carried out using two hardware configurations. The 

first was a computer equipped with 16 GB of RAM and a quad-

core processor with a clock speed of 3.4 GHz. The second 

computer had 8 GB of RAM and a processor with a clock speed 

of 4 GHz. Tests were conducted on a series of 152 image slices, 

which allowed for an examination of the time required to train 

the model depending on the available hardware resources. On 

the more advanced computer, the training time was 41 minutes, 

and the first results were obtained after just 3 minutes, while on 

the computer with less RAM, the process lasted 1 hour and 12 

minutes, with the first results obtained after 7 minutes. In order 

to optimize time and resources, it was decided to focus research 

on the low-resolution model, using the high-resolution model 

only for comparative purposes. 

For research purposes, X-ray images from The Cancer 

Imaging Archive [26], which were taken after the year 2000 and 

characterized by good resolution and quality, were selected, 

which was key for further analysis. 117 series of computed 

tomography images were selected to represent urological areas 

such as the bladder, pelvis, kidneys, prostate, and lower 

abdomen. Additionally, due to the need for high-quality data, 

studies performed after the year 2000 characterized by good 

resolution and image quality were chosen. The selected series 

contained between 70 to 300 images with clearly visible bladder 

structures. 

As part of the conducted research, a set of advanced 

programming technologies and data processing tools were used, 

which enabled the development of a system for managing and 

analysing medical images. The technological basis of the project 

was the Python programming language in version 3.11.7, 

chosen for its versatility, extensive library supporting work with 

medical images, and a well-developed ecosystem of tools 

dedicated to machine learning. Work on the  system was 

conducted in the Visual Studio Code programming 

environment, which offers support for various programming 

languages, including Python, providing a convenient and 

efficient environment for creating complex applications. 

In the project, specialized libraries and tools supporting data 

processing and analysis as well as the design and training of 

machine learning models were used. Key technologies include: 

NumPy, PyTorch, PyDicom, Matplotlib, MONAI, Rt_utils, 

SciPy, IPython, and IPyWidgets. These tools enabled effective 

processing, analysis, and visualization of medical data, 

significantly expanding the possibilities for diagnostics, 

monitoring, and therapy of diseases, leveraging the latest 

achievements in the field of artificial intelligence and machine 

learning. 

III. METHODS 

The resolution of individual images varied depending on the 

visualization technique used, ranging from 512x512 to 

1024x1024 pixels. Such diversity allowed for a wide spectrum 

of analysis in terms of image quality and detail in the context of 

the segmentation model's capabilities. To achieve optimal 

visualization and analysis of data, a series of transformations on 

selected computed tomography images was necessary. 

Examples of images from series 152 (Fig. 2) are photos with 

dimensions of 512x512 pixels, which corresponds to a size of 

318 mm by 318 mm. Examples are shown based on images 110 

and 120 in Fig. 2. 
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Fig. 2. Example images numbered 110 and 120 from series 152 of images 

In Fig. 3, images from a series with dimensions of 512x512 

pixels in a vertical projection with dimensions of 318 mm by 

380 mm are presented. In this series, the size of a single section 

was 25 mm. 

 
Fig. 3. Presentation of sections constructed based on computed tomography 

images 

The use of the Hounsfield scale, a standard tool in CT image 

analysis, allows for accurate differentiation between different 

types of tissues based on their density. However, the challenge 

remained to adjust the contrast of images to ensure the visibility 

of anatomical details without losing significant information. 

The transformation of images to the "face-on" position utilized 

a rotation of 180 degrees around the newly defined Z-axis. This 

transformation aims to simulate a direct look at the examined 

body area, which is particularly important in the context of 

medical analysis where the orientation and position of 

anatomical structures play a key role. Assuming that the 

thickness of a single section is 25 mm, a technique was applied 

in which a series of images is viewed in reverse order. This way 

of presenting a series of images allows for more intuitive 

tracking of anatomical changes in cross-sections. Additionally, 

in the process of data analysis and presentation, tools for 

interactive viewing of sections were applied, as shown in Fig. 4. 

 
Fig. 4. Presentation of interactive section viewing 

 Thanks to this functionality, the user can carefully examine 

areas of interest, zoom in on them, and compare different 

sections. Interactive image viewing not only facilitates the 

detection of potential pathologies but also allows for a better 

understanding of complex anatomical structures. 

An attempt was also made to optimize the contrast scale. 

Given the significant differences in X-ray absorption by air and 

bone tissue, represented respectively by values of -1000 and 

≥1000 on the Hounsfield scale, adjusting the contrast scale 

became key. The goal was to achieve a level of contrast that 

would provide both sufficient differentiation between different 

types of tissues and the ability to clearly distinguish areas of 

similar density. Experiments with contrast adjustment aimed to 

find a balance that would not lead to excessive increase or 

decrease in differences, which could affect the difficulty of 

interpreting images. The application of advanced techniques for 

processing and analysing computed tomography images enables 

not only effective visualization of anatomical structures but also 

the introduction of methods for interactive data viewing. As a 

result, it is possible to better understand the dynamics of 

changes occurring in the examined urological areas, which is 

crucial in the diagnostic and therapeutic context. 

IV. RESULTS 

In the conducted research, this process was applied to process 

a series of X-ray images, resulting in two types of results, as 

presented in Fig. 5. 

 
Fig. 5. Display of segmentation results next to the original image 

The first result is the input image, which presents the state 

before segmentation. It allows for a general assessment of the 

condition of the examined area, but does not enable precise 

identification of structures within the urinary system without 

additional analysis. The second result, which is the effect of the 

segmentation process, presents the image after processing, 

where key organs of the urinary system are clearly marked. In 

the analysed example, structures such as the left and right 

kidney and the urinary bladder were identified and marked. 

Thanks to this method, it is possible to precisely isolate and 

visualize elements, which significantly facilitates further 

diagnostics and treatment planning. Further progress in the 

analysis of segmentation results allows for the use of the 

resulting mask generated by the segmentation model. The mask 

applied to the original image obtained from computed 

tomography allows for a visual assessment of the model's 

performance on individual image frames. This is crucial for 

assessing the precision and effectiveness of the applied model 

in the process of isolating specific anatomical areas, in this case, 

structures of the urinary system. This approach offers not only 

the possibility to verify which areas have been correctly 

identified and isolated by the model but also allows for noticing 

and analysing any imperfections or errors in segmentation. As a 

result, it is possible to make a more accurate assessment of the 

extent to which the model is reliable and whether it can be 

effectively used in practical medical diagnostics. 

In Fig. 6, the result of segmentation on relevant sections 

performed by computed tomography is presented. The model 

mostly correctly segments organs, but does not mark their full 

shape. The model operates "conservatively," avoiding 
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unnecessary marking outside the area. This is important when, 

with the help of the performed segmentation, the program will 

create an approximate model of the patient's bladder.  

 

Fig. 6. Segmentation results superimposed on a computed tomography 

image 

The study of bladder volume based on three-dimensional 

images is a key element in medical diagnostics, allowing for 

precise determination of its condition and function. In this 

process, advanced mathematical techniques such as analytic 

geometry and vector calculations were used, enabling accurate 

reconstruction and analysis of the 3D model. These techniques 

allowed for precise positioning of points relative to triangles 

defining the model surface, which was key for further 

calculations. After completing the image segmentation process, 

an analysis of the bladder volume was conducted. The result of 

the segmentation yielded a mask composed of voxels, i.e., three-

dimensional cuboids, the sizes of which are specified in the 

study parameters. In this study, the height of one voxel was 25 

mm, while its base is a square with a side length of 0.74 mm. 

These data enable the creation of a three-dimensional model 

compiled from individual sections (Fig. 7). 

 

Fig. 7. Model generated based on segmentation 

For accurate reconstruction of the model, triangulation 

techniques were used, which allowed for aggregating the 

volume occupied by the model. The presentation of the model 

after triangulation is shown in Fig. 8. 

Based on the constructed bladder model, it was possible to 

accurately determine its volume. Using previously applied 

analytic geometry and vector calculations, an analysis of the 

position of points relative to triangles defining the model surface 

was conducted. This allowed for the aggregation of the volume 

occupied by the model, enabling a precise assessment of its 

dimensions. 

 

 
Fig. 8. Presentation of the model after triangulation 

The volume of a single cell was calculated as the product of 

the dimensions of the cells in each dimension (4): 

 𝑉𝑐𝑒𝑙𝑙 = 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧  (4) 

where 𝑑𝑥, 𝑑𝑦 , 𝑑𝑧  st represent the dimensions of the cell along 

the x,y, z axes. 

Subsequently, using vector calculations, the position of each 

point relative to the triangles 𝑣0⃗⃗⃗⃗ , 𝑣1⃗⃗ ⃗⃗ , 𝑣2⃗⃗⃗⃗  (5) was defined: 

 𝑣0⃗⃗⃗⃗ =  𝑝2⃗⃗⃗⃗  − 𝑝0⃗⃗⃗⃗    

 𝑣1⃗⃗⃗⃗ =  𝑝1⃗⃗⃗⃗  − 𝑝0⃗⃗⃗⃗    (5) 

 𝑣2⃗⃗⃗⃗ =  𝑃⃗ − 𝑝0⃗⃗⃗⃗    

where 𝑃⃗  represents the vector point (x, y, z), and 𝑝0⃗⃗⃗⃗  , 𝑝1⃗⃗⃗⃗  , 𝑝2⃗⃗⃗⃗   
are the vectors of the triangle vertices. 

In the next step, the vector product (6) and scalar product (7) 

were calculated to verify whether the vector 𝑃⃗  lies on the same 

side of the triangle. 

 𝑣0⃗⃗⃗⃗ ×  𝑣1⃗⃗ ⃗⃗    (6) 

 (𝑣0⃗⃗⃗⃗ ×  𝑣1⃗⃗⃗⃗ ) ∙  𝑣2⃗⃗⃗⃗  (7) 

Calculations were repeated for each pair of vectors forming 

the edges of the triangle to ensure that the point is located inside 

all three half-planes defined by the triangle. The condition for 

placing the point inside the triangle was met when all scalar 

products took positive values. 

In this study, the volume of the bladder amounted to 18,231 

cm³. This result is smaller than the volume calculated manually 

by the authors, which amounted to 22,231.9 cm³. The difference 

in measurements was therefore 4,000.9 cm³. 

In order to thoroughly examine the effectiveness and precision 

of the image segmentation program, tests were conducted on 

selected data sets from computed tomography scans. The tests 

aimed to assess the algorithm's ability to precisely segment 

anatomical structures under various conditions. 

 

 Set #2:  

• Patient ID: TCGA-4Z-AA7Y 

• Age of the subject: 60 years 
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• Distance between sections: 1.25 mm.  

• Dimensions of a single scan in the series: 512 x 512 

pixels 

• Number of sections in the series: 423 

In Fig. 9, sections and segmentations for set #2 performed by 

the lower-resolution model are presented: 

 
Fig. 9. Sections and segmentations for the second set, model of lower 

resolution 

 In the segmentation results, inaccuracy was noticeable, 

indicating that part of the bladder was not included. This could 

result from a very small distance between sections of 1.25 mm. 

Using a model trained on data with a slightly larger distance 

between sections, i.e., 1.5 mm, the segmentation results, as 

shown in Fig. 10, were significantly better. 

 

,  

Fig. 10. Sections and segmentation for the second set, high-resolution model 

The bladder volume for the patient from set #2 of data was 

371.40 cm³ for the low-resolution model and 930.59 cm³ for the 

high-resolution model. The difference resulted from training 

sets adjusted to different quality images. In this case, matching 

under a specific type of study increased the result of the 

examined organ by 559.19 cm³. To confront the results, the size 

of the bladder was manually calculated using the previously 

given formula (Fig. 11).  

  
 

Fig. 11. Measurement of bladder sizes for set #2 

According to calculations, the bladder volume for this patient is 

equal (8): 

 8412mm×1167mm×1154mm ×0.72=815.66cm³   (8) 

Compared to calculations performed based on the created three-

dimensional model, the difference amounted to 115.09 cm³, 

giving an area larger by about 14%. 

Set #3: 

• Patient ID: TCGA-ZF-AA5P 

• Age of the subject: not available 

• Distance between sections: 1.25 mm.  

• Dimensions of a single scan in the series: 512 x 512 

pixels 

• Number of sections in the series: 235 

Using a high-resolution model in the case of set #3 allowed for 

correct segmentation of urinary system organs. The bladder is 

clearly visible along with the kidneys (Fig. 12). According to 

the calculations obtained, the model volume amounted to 

705.41 cm³. 

   
Fig. 12. Measurement of bladder sizes for the third set 

Set #4: 

• Patient ID: Pediatric-CT-SEG-00DCF4D6 

• Age of the subject: 10 years 

• Distance between sections: 2 mm.  

• Dimensions of a single scan in the series: 512 x 512 

pixels 

• Number of sections in the series: 207 

Fig. 13 presents segmentations for set #4 performed by the 

model of low and high resolution 

  
Fig. 13. Sections and segmentations for set #4, model of low resolution (on 

the left) and model of high resolution (on the right) 

 The bladder volume estimated using the low-resolution 

model amounted to 33,808 cm³, and for the high-resolution 

model, only 9,084 cm³, indicating significant issues related to 

the too large distance between sections, i.e., 2mm. This gap is 

0.5 mm larger than that used in the training data. The structure 

formed by segmentation of the second model has missing outer 

shell elements. The shape of the obtained bladder is irregular 

and has a small volume. The organ was not segmented correctly, 

which reduced the final result of the calculations. The bladder 

volume for set #4, calculated based on Fig. 14, amounts to 

23,728 cm³. It is 1,008 cm³ smaller and 14,644 cm³ larger than 

the results of the models. 

 
Fig. 14. Measurement of bladder sizes for the fourth set 
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In the tables below, a comparison of own calculations and 

computational results of models on available medical datasets is 

presented. 
TABLE I 

RESULTS OF BLADDER VOLUME STUDY FOR IMAGES WITH DIMENSIONS OF 512 

X 512 PIXELS 

Calculated bladder volume 

Test set 512x512px 

(distance between 

sections) 

Model of 

low 

resolution 

[cm³] 

Model of high 

resolution [cm³] 

Own 

calculations 

[cm³] 

Set #5 (2 mm) 715,88 788,50 654,20 

Set #6 (1,25 mm) 
no 

segmentation 
73,90 129,43 

Set #7 (2,5 mm) 317,73 472,74 503,59 

 
TABLE II 

RESULTS OF CALCULATED BLADDER VOLUME FOR IMAGES WITH DIMENSIONS 

OF 1024 X 1024 PIXELS 

Calculated bladder volume 

Test set 

1024x1024px 

(distance between 

sections) 

Model of 

low 

resolution 

[cm³] 

Model of high 

resolution [cm³] 

Own 

calculations 

[cm³] 

Set #8 (2 mm) 886,99 3112,43 345,00 

 

During the analysis of the results, own methods should be 

considered, taking into account the lack of experience in 

analysing medical results. The calculations that have been made 

are highly approximate and may not reflect the results that could 

be obtained by a specialist in this field. However, based on the 

obtained results, it can be assumed that the model, appropriately 

adjusted to the input data, fulfills its segmentation task of 

urinary system organs. 

During the research, challenges related to the diversity and 

quality of data, such as the heterogeneity of image resolution 

and differences in distances between sections, were 

encountered. The use of models with different resolutions 

allowed for the optimization of the segmentation and analysis 

process, adequately adjusting tools to the specificity of the data. 

It was also key to adjust the Hounsfield scale and image contrast 

to ensure the best readability and accuracy of the results. For 

research purposes, a set of eight series of urological 

examinations was singled out, covering patients aged from 10 

to 60 years, both women and men. The collected data had 

different pixel distance parameters, affecting the overall 

resolution of the resulting image, with a range from 1.25 to 4 

millimetres of distance between sections and a resolution from 

512x512 pixels to 1024x1024 pixels. 

DICOM format metadata from the saved computed 

tomography scans allowed for the display and processing of 

images created during the radiological procedure. These images 

were then segmented, allowing for the isolation of major organs 

of the urinary system. The applied models successfully 

segmented the study images. The three-dimensional bladder 

model created based on them was used to calculate its volume. 

The obtained results were compared with the results calculated 

based on existing images using 3D Slicer software. The 

difference between the best calculation for a given section and 

own calculations averaged approximately 923 cm³, which is a 

satisfactory result. 

Models of different resolutions showed varied effectiveness in 

segmenting the urinary bladder, which was also evident in the 

analysis of volume. The high-resolution model for set #8 (size 

1024x1024 pixels, distance between sections 2 mm) estimated 

the volume at 311,243 cm³, which significantly deviated from 

own calculations of 34,500 cm³. One of the main challenges was 

the heterogeneity and quality of data, which affected the 

effectiveness of the models. Some images were characterized by 

an irregular bladder shape and small volume, making precise 

segmentation difficult. Additionally, differences in distances 

between sections relative to the training data of the models could 

affect the results. For example, in the case of set #4 with a 

distance between sections of 2 mm, the high-resolution model 

recorded a significantly smaller volume (9,084 cm³) compared 

to the low-resolution model (33,808 cm³), suggesting that the 

model may not have been optimally adjusted to the analysed 

data. The research findings underline the potential of deep 

learning models for segmenting medical images, although they 

also indicate the need for further adjustment of models to the 

specifics of medical data. Effective segmentation and precise 

analysis of bladder volume can significantly support urological 

diagnostics, enabling better monitoring and planning of 

treatment. 

CONCLUSION 

This article presents the application of deep learning models 

for analysing the volume of the urinary bladder in medical 

images. The conducted studies showed that modern medical 

imaging technologies and advanced image analysis algorithms 

can significantly contribute to progress in urological 

diagnostics. Automatic segmentation of organs from DICOM 

images using machine learning algorithms opens up new 

possibilities in diagnostics, enabling quick and accurate analysis 

without the need for deep specialist knowledge. As a result, 

medicine becomes more accessible and effective, which is 

crucial in the rapid recognition and monitoring of many 

diseases. 

The analysis of bladder volume conducted using deep learning 

models revealed differences between model calculations and 

manual volume calculations. Despite these differences, the 

segmentation models showed promising results in identifying 

key organs of the urinary system. However, in some cases, the 

models operated in a "conservative" manner, avoiding 

unnecessary marking outside the area of interest, which resulted 

in imperfections in fully replicating the shapes of organs. The 

use of deep learning models in medical image analysis offers 

new perspectives in precise urological diagnostics. Thanks to 

automatic organ segmentation, quick and accurate analysis is 

possible without the need for deep specialist knowledge, making 

medicine more accessible and effective. Nonetheless, the 

research results underscore the need for further development 

and adjustment of models to the specific requirements of 

medical data to increase their accuracy and clinical utility. 

Future research should focus on developing more flexible 

models capable of adapting to the diversity of medical data and 
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on experiments with a larger amount of data. Moreover, it will 

be important to seek new methods and technologies that will 

better cope with challenges related to the diversity and quality 

of medical images. In summary, the use of deep learning models 

for analysing the volume of the urinary bladder in medical 

images represents an important step towards improving 

urological diagnostics. Further development of these 

technologies may bring significant benefits to medicine, 

offering tools that support doctors in accurate diagnostics, 

treatment planning, and monitoring disease progress. 
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