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Abstract—Underwater navigation is a research topic current 

undertaken in many areas of underwater research. The article 

presents an analysis resulting from MEMS modelling in the context 

of inertial navigation. The ideal approach was confronted with its 

limitations, but a non-linear approach, close to the real one, was 

also presented. Both models were compared in the context of 

inertial navigation. Random disturbances and their impact on 

linear and nonlinear dynamic systems, and in this context on 

Brownian noise motion, were also analysed. The linear velocity and 

displacement estimates generated by the presented models were 

compared to the ideal responses. The phenomenon of bifurcation 

in the context of inertial measurements is presented. Some of the 

analysis is performed on real data, but for greater clarity, some is 

performed on simulated data to highlight design issues and 

limitations. 
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I. INTRODUCTION 

NERTIAL navigation (INS) works based on Newton’s first 

law, also called the law of inertia. INS is based on the double 

integration of acceleration: 

𝑑(𝑡) = ∬(𝑎(𝑡))𝑑𝑡 (1) 

where:  

d – distance, 

𝑎 – true acceleration from acceleration sensor, 

𝑡 – time. 

The key advantage of inertial navigation is its autonomy, but 

also its passivity [1],[2],[3]. We use real sensors or 

accelerometers for measurements, so deterministic errors must 

be taken into account: errors that can be corrected based on the 

dynamics of the system using a set of calibration tests, and non-

deterministic errors. 

𝑑(𝑡) = ∬(𝑎(𝑡) + 𝑎𝑛(𝑡))𝑑𝑡 (2) 

where: 

𝑎𝑛—acceleration noise. 

The problem in this case is 𝑎𝑛 errors, which come from two 

sources: external and internal factors, such as temperature and 

pressure. They are described using the Allan variance. The 

measurement errors are then integrated, leading to drift over 

time. This means that errors accumulate over time. Some of the 

external errors are eliminated by using a hermetically sealed 

IMU (inertial measurement unit) in a vacuum to minimise the 
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influence of pressure and temperature, and regular calibration is 

applied (including vacuum checking) [4], [5],[6]. 

However, when modelling INS errors, sensor nonlinearity and 

the gravity model must also be taken into account because 

gravity measurement error is an important factor affecting the 

performance of INS systems. 

The implementation of an inertial frame is difficult mainly 

due to the problem of actually using the law of inertia, because 

the measurement of acceleration requires the use of 

gravitational mass (proof mass of the mass-spring-damper 

system) and due to the equivalence principle (general relativity). 

The topic is relatively new, probably novel and is somehow 

connected to [7],[8], which are also relatively new papers that 

deal with the bifurcation problem in MEMS systems, but do not 

deal with this problem in the context of INS systems. The results 

of this paper can be used in the design process of INS systems. 

The first section of the article presents a short description of 

interferences affecting the final measurements. Section 3 

presents of the method of filtering these interferences, while 

Sections 4 and 5 describe problems that arise when using even 

ideal MEMS sensors. The article ends with a summary. 

II. ERRORS IN INERTIAL SYSTEMS 

MEMS accelerometers are very small, typically just a few 

millimetres in size. MEMS are manufactured using 

semiconductor manufacturing processes, so they have very low 

power consumption, making them ideal for battery-powered 

applications. MEMS accelerometers and gyroscopes have many 

advantages and are widely used in various applications [9],[10].  

 

Fig. 1. Accelerometer Allan variance log–log plots of MEMS IMU array 

(green) vs. single MEMS IMU (blue) [11]. 

However, MEMS errors in the form of accelerometer 

systematic error, gyroscope and accelerometer random errors, 
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scale factors, and nonlinearity errors are still difficult to 

overcome [12]. 

Random errors do not result directly from the dynamics of the 

MEMS system. Their estimation depends on knowledge of the 

sensor noise model [13]. Simple Allan variance provides a 

means of identifying and quantifying various noise and error 

terms that exist in the data [11,14], as presented in Fig. 1.  

For instance, the in-run bias stability standard deviation error 

references the minima of the Allan deviation curve, as presented 

in Fig. 1 for the data from an IMU array and for a single IMU in 

static conditions. Using an IMU array is one way to improve 

accelerometer and gyroscope measurements [11]. 

The Allan variance is proportional to the total noise power of 

the sensor output passing through the bandpass filter. This filter 

depends on the sampling rate, so one can study different types 

of random processes by adjusting the correlation time. The 

results for the MEMS gyroscope are similar to the results 

presented in Fig. 1 [11]. 

A. Gyro Bias 

The gyro bias error is the main contributor, though other 

factors, such as accelerometer bias and noise, are also important 

in the error budget. Due to gyroscope measurement errors, there 

are errors in the measurement of the actual (true) plumb line (G), 

as shown in Fig. 2. Even small errors in the tilt IMU 

measurement have serious consequences in the context of 

inertial navigation. Fig. 2 presents the pitch with the bias Δ. 

 

 

Fig. 2. Differences in roll measurements for IMUs 

It is enough that the angle measurement system has an error 

of 0.2 degrees and a linear acceleration error of 0.034 
m

s2. This is 

a lot, because after 10 seconds, the error in determining the 

position will be 1.7 m. A constant bias Δ in accelerometer 

measurements, as presented in Fig. 2, propagates into velocity 

and finally position errors, because the gyro bias is first 

integrated into attitude errors. Distance errors increase 

proportionally to t3 due to gyroscopic errors and proportionally 

to t2 due to errors in accelerometer measurements. When an 

attitude/tilt deviation Δ occurs, it is included in the final sensor 

output, which is then double integrated. This leads to a cubic 

increase in final distance error due to the tilt. This error increases 

proportionally with t3. This is a serious problem, and 

gyroscopic error can be considered the main cause of errors in 

the context of INS measurements. 

B. Gyro Brownian Motion 

Angle measurement error is usually characterised by a 

random angular error that accumulates over time. This is often 

referred to as a random walk, Fig. 3. So, the tilt (pitch, roll) bias 

changes over time. 

 

 

Fig. 3. Brownian motion of Gyro ARX-ARY 

If we take into account the gyro in 2D —the second 

dimension—i.e. angular rate/velocity X (ARX) and angular rate 

Y (ARY), we will get a typical example of Brownian motion 

over time, as presented in Fig. 3. 

B. Other Error Sources 

Other sources of sensor-related errors that contribute to 

inertial measurement errors include scale factor error, sensor 

nonlinearity errors, and associated g-sensitive errors. However, 

there are also two important error sources that are not related to 

sensor imperfections. One of them is an error in the sensor 

installation. Gravity modelling errors is the other one, especially 

for precise INS positioning. There are also errors due to the 

Shuler effect, however these are beyond the scope of this article.  

 

 

Fig. 4. Errors proportional to cubic (blue), quadratic (red) 

These considerations show that accelerometer and gyroscope 

drift lead to an indeterminate increase in INS navigation result 

errors. This can be approximated using polynomials: e.g., 𝑡2 and 

𝑡3, as presented in Fig.4. In summary, gyroscope bias is the most 

important contributor to the INS error budget, while the 

contribution of other error sources is approximately an order of 

magnitude lower. 
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III. KALMAN FILTER APPROACH TO TILT EVALUATION 

As mentioned above, the tilt measurement error is the main 

error factor in INS. One could try to calculate tilt from the 

accelerometer, but it produces measurements with large errors 

caused by the pitch calculation due to the inverse problem (see 

Equation 3). For pitch, it is as follows: 

𝑝𝑚𝑒𝑎𝑠 = 𝑎𝑡𝑎𝑛
𝑎𝑥 + 𝑎𝑥𝑏

√(𝑎𝑦 + 𝑎𝑦𝑏
)

2
+ (𝑎𝑧 + 𝑎𝑧𝑏

)
2

 
(3) 

where: 

ax, axb
—acceleration and bias in the x direction of the IMU 

frame, 

ay + ayb
—acceleration and bias in the y direction of the IMU 

frame, 

az + azb
—acceleration and bias in the z direction of the IMU 

frame. 

However, Fig. 5 shows distortions (sharp jumps, pitch 

amplitudes), besides linear acceleration. 

 

Fig. 5. Pitch measurement using accelerometer 

Similarly in Fig. 6, the red line is the pitch calculated from 

the accelerometer (red—unstable measurement) and is an 

enlarged fragment of Fig. 5, the blue line is the pitch calculated 

from the gyroscope. Now, the pitch calculated from the 

gyroscope (ARY) is more stable (blue) and it is clearly visible. 

 

 

Fig. 6. Pitch measurement using accelerometer enlarged from Fig. 5 

The gyroscope is insensitive to acceleration 𝑎. Unfortunately, 

the pitch from the gyro is burdened with slowly changing errors 

coming from bias error (blue in the Figs. 7 and 8). 

 

Fig. 7. Real data from gyro, slowly changing errors 

This error is more easily visible in Fig. 8 over a longer period 

and in the presence of measurements using accelerometers. The 

most important feature of Fig. 8 is the gyro bias plot in blue. 

 

 

Fig. 8. Pitch measurement using accelerometer (red) and gyroscope (blue) 

with angle random walk (clearly observed in stationary measurement) 

Angle Random Walk (pitch calculated from gyro) for stationary 

measurement is shown in black in Fig. 9 for the first 80 s, while 

pitch errors calculated from the accelerometer are shown in red, 

as presented in Fig. 8.  

 

 

Fig. 9. Angle Random Walk process records for an Xsens MTi-G-

28A53G35 for static measurements 

 

Fig. 10. Distribution of pitch calculated with accelerometer, in red; 

distribution of ARW (pitch distribution from gyro, after integration), in black 

  



890 J. DEMKOWICZ 

 

The distribution of this data is presented in Fig. 10. The 

distribution of the pitch from the accelerometer is shown in red 

in this figure, while the distribution of the ARW (Angle Random 

Walk, pitch distribution from gyro, after integration) is shown 

in black. From our point of view, the black distribution (ARW) 

is better than the red one because of the smaller standard error, 

which is the main reason why the Kalman filter works, as 

presented in Fig.11.  

 

 

Fig. 11. Kalman fusion/filtering algorithm 

where:  

𝑜𝑢𝑡𝑝𝑢𝑡—estimation vector, 

𝐹—state transition model, 

𝐷—delay,  

𝐻—observation model,  

K—Kalman gain. 

Te whole process is controlled by 𝐏—estimated covariance 

matrix [16],[17]. The overall process is depicted in [17],[18], 

however at this point, it is important to underline that the process 

uses stochastic properties of measurements from the sensors.  

The above problems related to measurement noise can be 

partially solved by using a Kalman filter. The application of the 

Kalman approach works well in static or quasi-static conditions. 

That is, in the absence of external linear acceleration. 

The question is: what about linear accelerations? This is a 

problem of the equivalence principle (G and linear/inertial 

acceleration) [1]. If we had an infinitely precise G and tilt 

measurement, we would be able to define the difference 

between the two. Linear acceleration is a real problem while 

determining tilt. Any MEMS using the Kalman algorithm shows 

nonsense measurements if we give it linear acceleration (it is 

enough to move the MEMS left, right), which is a serious 

drawback of the Kalman filter used in the context of tilt 

evaluation using MEMS, as shown in Fig. 12. In the intervals 

[1200–3000], Kaman’s responses are definitely incorrect, as 

presented in Fig. 12. 

The point is that the Kalman approach is insufficient in the 

presence of linear accelerations, i.e. in dynamic conditions, i.e. 

it is enough to dynamically move the IMU device (left and right, 

up and down) and the tilt readings are completely disturbed. The 

Kalman response is highly distorted (green in Fig. 12). Fig. 12 

shows the IMU in a static position for a maximum of 1.2 s, in 

motion for 1.2–1.4 s, and in a static position after 1.4 s, as seen 

from the accelerometer (red) and gyroscope (blue) readings, 

however the Kalman filter returns to its stable position only after 

3 s. We can therefore say that the Kalman filter implemented in 

the IMU works only in conditions close to static.  

 

Fig. 12. Kalman output in dynamic conditions 

Unfortunately, it turns out that the problem associated with 

this increases significantly in certain circumstances with 

changing external force, its dynamics, and frequency. An 

illustration of this is the following section, which presents the 

use of MEMS in conditions of a rapidly changing external 

forcing force. 

IV. LINEAR PROOF MASS MOTION EQUATION FOR 

ACCELEROMETER SENSOR 

The basic principle of operation of a Micro-Electro-

Mechanical Systems (MEMS) accelerometer is based on the 

physical phenomenon of capacitance. The sensor consists of a 

small mass 𝐦 suspended on springs, which move in response to 

acceleration forces, see Eq. 3. As the mass moves, the distance 

𝐱 between two plates changes, which alters the capacitance 

[19],[20]. This change in capacitance is then converted into a 

voltage signal that can be read by an electronic circuit. 

The proof mass motion equation in an acceleration sensor is 

given by Eq. 4: 
 

𝑚
𝜕2𝑥(𝑡)

𝜕𝑡2 + 𝐷𝑜

𝜕𝑥(𝑡)

𝜕𝑡
+ 𝑘𝑥(𝑡) = 𝐹𝑜  (4) 

where:  
𝑚 - proof mass, 
𝐷𝑜- dumping coefficient, 
K - spring constant, linear stiffness, 
𝐹𝑜 - external forcing force. 

This is a regular differential equation, and its solution is the 

solution to this equation, presented in Eq.5: 
 

𝑥(𝑡) = 𝑐1𝑒
1/2𝑡(−√𝐷𝑜

2−4𝑘𝑚/𝑚−
𝐷𝑜
𝑚

))

+ 𝑐2𝑒
1/2𝑡(√𝐷𝑜

2−4𝑘𝑚/𝑚−
𝐷𝑜
𝑚

))
+

𝐹𝑜

𝑘
 

(5) 

 

For the initial conditions: 𝑥(𝑡0) = 0,
𝜕𝑥(𝑡0)

𝜕𝑡
= 0, and 𝑡0 = 0. 

The output from the accelerometer (ideal solution) is as 

presented in Fig. 13. It is a response to rectangular acceleration 

excitation, i.e. accelerometer readings (red), blue (speed), and 

green (distance). Fig. 14 presents an enlargement from Fig. 13. 
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Fig. 13. Accelerometer response to rectangular excitation (acceleration—

red, speed—blue, displacement—green) 

 

Fig. 14. Previous Fig. 13, enlarged 

The dashed lines in Fig. 14 show the ideal responses, i.e. ideal 

acceleration (red dashed), ideal speed—integral of acceleration 

(blue dashed), distance—integral of velocity (green dashed). 

This is an illustration of the regular differential equation (Eq. 4 

in the article). Even such an ideal approach causes errors, which 

can best be observed based on the calculated 

distance/displacement (Fig. 15). 

 

Fig. 15. Displacement for ideal accelerometer (green—true, dashed green—

ideal) 

It should produce the green dashed line (Fig. 15), however its 

output is as marked with the solid green line (Fig. 15). And 

unfortunately, it cannot get better. After several dozen seconds, 

differences of several metres can be observed (it depends on the 

time constant), as presented in Fig. 15. 

V. NONLINEAR PROOF MASS MOTION EQUATION FOR 

ACCELEROMETER SENSOR 

Unfortunately, there is another issue. Fig. 16 is analogous to 

Figs. 13, 14, but for the Duffing equation, i.e. an equation with 

only one non-linear element: 

𝑚
𝜕2𝑥(𝑡)

𝜕𝑡2 + 𝐷𝑜

𝜕𝑥(𝑡)

𝜕𝑡
+ 𝑘𝑥(𝑡) + 𝜀𝑥3(𝑡) = 𝐹𝑜  (6) 

where:  
𝑚 - proof mass, 
𝐷𝑜 - dumping coefficient, 

𝑘 - spring constant, linear stiffness, 

𝜀 - nonlinearity controls the amount of non-linearity in the 

restoring force, nonlinear stiffness parameter, 
𝐹𝑜 - external force, 
ε, - epsilon is nonlinearity and controls the amount of non-
linearity in the restoring force. 
 

 

Fig. 16. Response of Duffing Eq. 3 on rectangular acceleration excitation 

If epsilon, 𝛆 = 0, the Duffing equation describes a damped 

and driven simple harmonic oscillator. However, if dumping 

Do=0.1, stiffness k=1, nonlinearity ε =0.3, and periodic external 

forcing force Fo of f = 1.5 Hz, this leads to the phenomenon of 

bifurcation, as shown in the phase space diagram in Fig.17. 

 

 

Fig. 17. Phase space diagram of Duffing equation 

We get chaos and a strange attractor, as presented in Fig. 17, 

if the driving force is applied to the system. The Poincaré plots 

or Poincaré section is then a complicated curve (see Fig. 18).  
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Fig. 18. Poincaré section as a complicated curve (strange attractor) 

This diagram shows a strange attractor (Fig. 18). It is a 

limiting set of points to which the trajectory tends (after an 

initial unsteady period) during each period of the external 

driving force. The structure is not completely random. The black 

rectangle has been enlarged in Fig. 19 and the repeating 

structures presented in Fig. 18 can be observed in Fig. 19. 

Zooming in on the black box area in Fig. 18 reveals the same 

features that were present on a smaller scale in Fig. 19. It is a 

fractal. 

 

 

Fig. 19. Fig. 18, enlarged fragment 

A characteristic feature of a fractal is the presence of the same 

features in different parts of the figure and at different scales.  

 

 

Fig. 20. Accelerometer response to rectangular excitation—bifurcation 

(acceleration—red, speed—blue, displacement—green), analogous to Fig.13 

In Fig. 20, it is the distance (green) calculated for this particular 

case of the Duffing equation (slightly nonlinear equation), 

whose error becomes huge after a few seconds. 

Similarly to Fig. 13, the distance measurement in this case 

has a very large error (Fig. 20), which shows how important the 

dynamics (amplitude range) and frequency of the forcing force 

are for the operation of the IMU and, consequently, the 

appropriate design of the system for the operating conditions. It 

should be noted that the frequency at which the bifurcation 

phenomenon occurs is only 1.5 Hz, but even without this 

phenomenon, when using linear subsystems, the measured and 

theoretical distances differ significantly, and this depends on the 

conditions in which the device operates. 

 

CONCLUSION 

Measuring displacement or distance using inertial sensors is 

not only subject to errors related to external disturbances from 

the environment, such as temperature, pressure, etc. Even if we 

used ideal sensors, we would have to take into account errors 

resulting from the high frequency of excitation. Of course, non-

linear sensor models worsen these situations and, in some cases, 

may lead to the bifurcation phenomenon, which significantly 

worsens and disturbs the measurement of the distance travelled. 

The article presents problems resulting from the use of MEMS 

sensors in an ideal situation and when nonlinearity is taken into 

account. Nonlinearity problems occur in dynamic conditions 

and are easy to observe using IMUs using Kalman filters. When 

inertial models are used, the quality of sensor operation depends 

on the excitation frequency and nonlinearity. The same applies 

to the consideration of non-linear phenomena. In the latter case, 

however, the measurement deteriorates significantly, due to 

bifurcation. This should be taken into account when designing 

acceleration sensors used in dynamic conditions.  
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