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Abstract—Present network monitoring systems need to cope 

with the ever-increasing amount of traffic in modern high-speed 

networks. These systems often perform sophisticated deep packet 

inspection (DPI) for anomaly detection, denial-of-service attacks 

detection and mitigation, intrusion detection and prevention, etc. 

Since DPI is resource-intensive, the monitoring devices are often 

not able to analyze all incoming traffic at link speeds. 

Consequently, sampling is employed to reduce the traffic volume 

and thus limit packet losses caused by resource exhaustion. 

Classical sampling methods select packets based on a fixed limiting 

parameter, regardless of the computational resource utilization of 

the monitoring device. 

This paper proposes a novel sampling approach for network 

traffic security monitoring that is based on an analytical model of 

the monitoring device. The model allows for testing adaptive 

sampling strategies that adjust the instantaneous sampling rate 

according to the input queue occupancy. The queue occupancy is 

used to drive the adaptation as it indicates the current relationship 

between available computational resources and the input traffic 

volume. Consequently, our approach maximizes the DPI ratio 

while simultaneously ensuring that the probability of packet loss 

due to resource exhaustion remains negligible. Analytical and 

simulation results are presented to demonstrate the impact of the 

proposed method on system parameters, along with a comparative 

studies. 

 

Keywords—sampling; DPI; network monitoring; system state 

distribution 

I. INTRODUCTION 

EEP packet inspection (DPI) is a commonly used 

state-of-the-art method employed in a variety of network 

monitoring systems, such as for anomaly detection, denial-of-

service (DoS) attacks detection and mitigation, intrusion 

detection and prevention, quality of service (QoS) monitoring, 

traffic classification, and accounting.  

These systems need to cope with the ever-increasing amount 

of traffic of current high-speed networks. Since DPI is 

resource-intensive, the monitoring devices are often not able to 

analyze the whole incoming traffic at link speeds. 

Consequently, sampling is employed to reduce the traffic 

volume and, thus, limit packet losses caused by resource 

exhaustion. Sampling algorithms, essentially, select packets 

from monitored traffic for further DPI analysis. The rest of the 

traffic is forwarded without inspection. Sampling techniques 

aim to balance scalability and accuracy. 
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The classical sampling methods select the packets based on 

preconfigured static limiting parameter. These methods can be 

classified into count-based and time-based [1],[2]. Count-based 

approaches define numbers/counts of packets which are 

selected. A systematic count-based method selects every 𝑚-th 

packet, probabilistic method selects a packet with given 

probability, while n-out-of-N algorithm selects random set of 

𝑛 packets every 𝑁 incoming packets. Time-based solutions 

define times/intervals when the packets are selected. 

A systematic time-based approach selects packet every 

𝑙 seconds and probabilistic method randomly selects 

inter-selection time. 

Consequently, count-based algorithms yield a DPI rate 

proportional to the incoming rate, whereas time-based 

algorithms provide a uniform DPI rate. Note that all classical 

sampling methods select packets based on a fixed limiting 

parameter, regardless of the computational resource utilization 

of the monitoring device. Assessing the optimal value of the 

limiting parameter might be difficult [3] due to its fixed nature 

[4]. This may lead to temporary situations where: 1) the 

incoming packet volume is relatively low, resulting in 

underutilization of the monitoring device's computational 

resources, causing many packets to unnecessarily bypass DPI 

inspection, or 2) some packets are lost during traffic surges due 

to resource overutilization caused by DPI.  

To maximize the number of analyzed packets, adaptive 

methods have been proposed that adjust the sampling rate 

(limiting parameter) based on the computational resource 

utilization of the monitoring device [3]-[6]. The [4] proposes 

a NetFlow extension that adapts the sampling rate based on 

memory usage in predefined time bins. The authors argue that 

under traffic surges, the NetFlow router's memory and 

processing power may become exhausted, and thus memory 

utilization is used as a feedback signal to adjust the sampling 

rate. At the start of each time bin, the sampling rate is set to the 

maximum value (at which the processor can operate under 

worst-case conditions), and is then adaptively reduced based on 

consumed memory resources. The [7] proposes probabilistic 

sampling method for NetFlow for anomaly detection. The 

sampling rate is adjusted per flow based on its characteristics, 

but it is note dependent on the computational resource 

utilization of the monitoring device. 

The [5] proposes to use a prediction model to adapt the 

sampling rate based on the incoming traffic features and 
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foreseen CPU usage. The traffic features are selected to predict 

the CPU usage and drive the adaptation rate. Earlier, the 

adaptive sampling based on CPU utilization was proposed in [6] 

as one of the two approaches (first based on CPU utilization, 

second on packet interarrival time).  The CPU utilization was 

not directly measured but calculated by dividing the desired 

processing time by the average time since the beginning of the 

trace. 

The [3] proposes to adapt the sampling ratio on base of the 

queue occupancy using the proportional–integral–derivative 

(PID) controller. The sampling ratio is dynamically adjusted to 

keep the queue occupancy in desired region. Thus, that this 

solution does not directly monitor the resource utilization like 

memory or CPU (but uses queue occupancy to guide adaptation 

similarly to our approach). The proposition analyzes the 

beginning of connections and is designed to run on multicore 

commodity hardware. 

Other adaptive sampling approaches try to adjust sampling 

strategy to the traffic characteristics, not considering the 

computational capacity of monitoring device. The [8] proposes 

an adaptive sampling methodology that adjusts the time interval 

between consecutive samples based on aggregated time-serial 

evolution trend. The approach aims to decrease samples and 

reflect more information about network traffic burstiness. 

The [9] adaptively adjust the sampling parameters based on the 

estimated traffic rate. The [10] proposes an adaptive packet 

sampling technique tailored for botnet detection. It exploits 

network characteristics of botnet command and control traffic 

to inspect higher number of packets related to bots. The 

sampling probability is adaptively adjusted to keep a target 

sampling rate without monitoring computational resources. 

The method aims to inspect smaller amount of suspicious traffic 

and thus improve scalability. 

In this paper, we propose a novel sampling approach based 

on an analytical model of the monitoring device. The model 

employs queuing theory of embedded Markov chain. It allows 

for dynamic adaptation of the instantaneous sampling rate in 

according to input queue occupancy. Generally, when the queue 

occupancy is relatively low, the monitoring device has sufficient 

resources to analyze all traffic. When the occupancy grows, 

there is a higher risk of resource exhaustion (resulting in queue 

overflow), thus lower DPI ratio is preferred. Our approach 

bounds the probability of packet loss (due to resource 

exhaustion) while simultaneously maximizing the DPI ratio. 

The following section II presents our adaptive sampling 

approach with explanation of the analytical model of DPI device 

with adaptive sampling. Section III provides simulation results 

to demonstrate the impact of the proposed method on system 

parameters, along with a comparative studies. Finally, 

section IV sums up the paper and describes future works. 

II. MODEL OF DPI SYSTEM WITH ADAPTIVE SAMPLING 

This chapter introduces a queuing model of a DPI monitoring 

device with adaptive sampling. We assume that packet batches 

are recursively taken for service, and for each batch, a sampling 

 

 
1 The main packet processing function requests the packets from network 

interface card in a loop yielding full CPU utilization even where there are no 

incoming packets. 

algorithm determines the number of packets to undergo DPI 

based on the instantaneous queue occupancy. We consider the 

queue occupancy to be sufficient information to drive the 

instantaneous sampling rate. Such information is readily 

available on monitoring devices, regardless of where the actual 

resource bottleneck lies (e.g., CPU speed, memory access 

speed). Moreover, fine-grained measurement of CPU usage is 

a challenging task [5] and may be unreliable in current solutions 

like DPDK [11], where the CPU is typically fully utilized 

regardless of the traffic volume1.  

Our aim is to maximize the DPI ratio, 𝑅𝐷𝑃𝐼, while bounding 

probability of packet loss, 𝑃𝑙𝑜𝑠𝑠, to negligible (acceptable) level. 

The 𝑃𝑙𝑜𝑠𝑠 can be expressed as the mean packet loss ratio 

(the ratio of lost packets to total incoming packets), while the 

𝑅𝐷𝑃𝐼 is the ratio of packets undergoing DPI to all forwarded 

packets. Note that optimization of these factors is contradictory. 

The higher the 𝑅𝐷𝑃𝐼 is, the more time is required to analyze the 

traffic, thus the higher is the probability of packets losses due to 

the queue overflow. Consequently, our method adapts the 

instantaneous sampling rate based on the queue occupancy. 

When the occupancy is low, there are probably sufficient 

resources to DPI all packets. Whereas, when it is relatively high, 

just a fraction of packets should undergo DPI to reduce the risk 

of packet loss.  

Keeping the 𝑃𝑙𝑜𝑠𝑠 at negligible level is more important than 

analyzing the whole traffic. Simultaneously, the higher the 

traffic volume analyzed, the better, especially for security 

applications, as it lowers the risk of missing a malicious packet. 

Therefore, our approach allows for increasing the instantaneous 

sampling rate when there is enough computational capacity to 

process the majority of the current traffic volume with DPI. 

To calculate 𝑃𝑙𝑜𝑠𝑠 and 𝑅𝐷𝑃𝐼 for different adaptive sampling 

strategies (different instantaneous sampling rates as a function 

of buffer occupancy), we propose a model of DPI monitoring 

device with adaptive sampling. Specifically, we analytically 

describe the system state at time instances immediately after 

finishing packet batch service employing embedded Markov 

chains. Our solution enables calculation of the system state 

distribution (queue occupancy distribution), 𝑃𝑙𝑜𝑠𝑠 and 𝑅𝐷𝑃𝐼 for 

different adaptive sampling strategies. The following sections 

provide a detailed description. 

A. Batch service time  

We assume that the DPI monitoring device employs 

burst-oriented optimization techniques to aggregate the cost of 

processing each packet individually. Consequently, we model 

the device as a queuing system with batch service. The incoming 

packets are enqueued individually and serviced in batches of 

preconfigured maximum size 𝐵 (ranging from one to 

𝐾 packets). After finishing a service of a batch of packets, the 

batch is dequeued (removed from the queue and sent), and the 

new one is taken for service [12].  

The DPI monitoring device is assumed to be an inline device 

that forwards all incoming packets from input network interface 

cards (NICs) to output NICs performing DPI on a subset of 

packets (selected by a sampling algorithm). It may be 

a multi-core, multi-NIC device, like DPDK monitoring device 
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described in [13] where each NIC port is assigned to a few CPU 

logical cores, each bounded to a number of RX queues. 

The queue may be selected by hashing the IP addresses and port 

numbers, ensuring no packet reordering occurs [11],[13].  

We assume that the batch service time depends on the number 

of packets in the queue at the start of the service, 𝑙. Passing 

(skipping) a packet requires a fixed processing time 𝑇𝑠𝑘𝑖𝑝 , while 

performing DPI on a packet takes a longer fixed time 𝑇𝐷𝑃𝐼 . 
This assumption allows us to easily model different adaptive 

sampling strategies. For example, when queue occupancy is 

relatively low, the entire packet batch can undergo DPI analysis 

(thus the service time equals the number of packets multiplied 

by 𝑇𝐷𝑃𝐼). Otherwise, only a fraction of packets is selected for 

DPI (the service time equals number of selected packets 

multiplied by 𝑇𝐷𝑃𝐼  plus number of skipped packets multiplied 

by 𝑇𝑠𝑘𝑖𝑝). We assume, that 𝑇𝐷𝑃𝐼  describes the total processing 

time of a packet undergoing DPI, and it is independent of packet 

size. It corresponds to computational complexity of DPI 

analysis and computational power of the monitoring device. 

Similarly, we assume that 𝑇𝑠𝑘𝑖𝑝  describes the time required to 

forward a packet form input NIC to output NIC, and it is also 

independent of packet size. The values of 𝑇𝐷𝑃𝐼  that 𝑇𝑠𝑘𝑖𝑝 can be 

measured on a real device or assumed a priori.  

The adaptive sampling strategy is described with a vector 𝒗 

that specifies the number of packets subjected to DPI based on 

𝑙, 𝑙 ∈ {1, 2, … , 𝐾 − 1} (number of packets present in the queue 

at the start of service). The value of 𝒗(𝑙), ranging from 0 to 

𝑚𝑖𝑛(𝑙, 𝐵), describes the number of packets undergoing DPI. 

The 𝑚𝑖𝑛(𝑙, 𝐵) describes the number of packets taken for service 

(size of the batch), while 𝑚𝑖𝑛(𝑙, 𝐵) − 𝒗(𝑙) describes the number 

of packets skipping DPI, when there are 𝑙 packets enqueued at 

the service start. Consequently, 𝒗 describes the instantaneous 

sampling rate in function of queue occupancy 𝑙. 
 Note that, while each batch for 𝑙 ≥ 𝐵 has a size of 𝐵, the 

values of 𝒗(𝑙) may vary depending on 𝑙. For instance, let us 

consider that 𝐵 = 4, 𝒗(5) = 3 and 𝒗(8) = 1. Then when 𝑙 = 5 

a batch of four packets is taken for processing, with three of 

them undergoing inspection. Whereas, when 𝑙 = 8, again four 

packets are taken to service, but only one is inspected.  

Let 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙) represent the service time of a batch of packets 

taken for processing when there are l packets in the queue at the 

start of the service. Then: 

𝑇𝑏𝑎𝑡𝑐ℎ(𝑙) = 𝒗(𝑙) ∙ 𝑇𝐷𝑃𝐼 + (𝑚𝑖𝑛(𝑙, 𝐵) − 𝒗(𝑙)) ∙ 𝑇𝑠𝑘𝑖𝑝      (1) 

Note, that 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙) does not have to be proportional to 𝑙 and 

may even be non-monotonic.  

B. System state description  

We define the system state 𝑆 as the number of packets in 

queue observed in moments just after finishing a service. Let 𝑃𝑠 
denote the steady-state probability that the system is in state 

𝑠, 𝑠 ∈ {1, 2, … , 𝐾 − 1} in these moments. Note that the system 

has capacity of 𝐾 packets, but the maximum reachable system 

state 𝑆 (and also the maximum possible batch size 𝐵) equals 

𝐾 − 1. This comes from the fact that during service period, there 

is at least one packet in service (still occupying a packet slot in 

the queue), that will be dequeued immediately after the service 

 

 
2 As previously described, the actual maximum batch size taken into service 

(and maximum system state 𝑆) equals 𝐾 − 1. 

period ends, which is the moment when the system state is 

observed. Note that the states 𝑆 = {1, 2, … , 𝐾 − 1} together 

state transition probabilities (between these states) constitute an 

embedded Markov chain.  

Consider that the number of packets being in the system at 

the beginning of a service period, denoted as 𝑙, and  
𝑙 ∈ {1, 2, … , 𝐾 − 1}, equals the system state just after the 

previous service period ends only for states 𝑆 ≥ 1. When the 

system reaches state 𝑆 = 0, the service process stops, and 

another service period will start immediately after the first new 

packet arrival, hence: 

𝑃(𝑙 = 𝑘) = {
𝑃0 + 𝑃1,   𝑓𝑜𝑟 𝑘 = 1
𝑃𝑘 ,             𝑓𝑜𝑟 𝑘 > 1

                    (2) 

In Fig. 1 an example of system state evolution is presented, 

i.e., how the number of packets in the system changes for an 

sample arrival process. The system has 𝐾 = 7 and 𝐵 = 4. 

The 𝑥-axis represents the passage of time, and moments 𝑡1 to 𝑡5 

indicate the end of a batch service, which are the points at which 

the system state is observed, i.e., 𝑡0: 𝑆 = 5, 𝑡1: 𝑆 = 4,  
𝑡2: 𝑆 = 1, 𝑡3: 𝑆 = 0, 𝑡4: 𝑆 = 1, 𝑡5: 𝑆 = 0. It is particularly 

important to note that when the system empties (e.g., at 𝑡3), the 

next observed moment will always be the completion of service 

for the one packet that arrived into the empty system. If packets 

arrive in a full system, they are lost (indicated by the red arrow 

on the Arrival process track). 

 
Fig. 1. An exemplary evolution of system state.  

In the next three subsections we present system state analysis 

for three cases. First in subsection C, we start with simple 

special case when batch size equals the system capacity and all 

enqueued packets are taken into service. Then in subsection D, 

the general case with arbitrary batch size 𝐵 is investigated. 

Finally, in subsection E, we provide analysis for system state as 

seen by arriving packets that is used to calculate the packet loss 

probability 𝑃𝑙𝑜𝑠𝑠 . Moreover, in subsection F we derive equation 

for the packet inspection ratio 𝑅𝐷𝑃𝐼. 

C. System state analysis for special case when 𝐵 = 𝐾 − 1  

Let us start with the simplified analysis of the system state, 

for the special case when 𝐵 = 𝐾 − 1, i.e. maximum batch size 

equals the system capacity2, and all packets from the queue are 

taken into service at once when a new service period begins.  
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The system can reach state 𝑆 = 𝑠, where  

𝑠 ∈ {0, 1, … , 𝐾 − 1}, only if the number of free packet slots in 

the queue, at the beginning of the service is at least 𝑠. In other 

words, at the start of the service, there are 𝑙 packets in the 

system, such that 𝑙 ∈ {1, … , 𝐾 − 𝑠}. During the service of these 

𝑙 packets, a certain number of packets arrives to the system. 

Note that the service time of a batch consisting of 𝑙 packets is 

given by (1) and all 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙) values are constants derived from 

vector 𝒗 and times 𝑇𝐷𝑃𝐼 and 𝑇𝑠𝑘𝑖𝑝 . 

Consequently, the probability 𝑃𝑠 is the total probability, 

taking into account all the possible queue occupancies at service 

start 𝑃(𝑙 = 𝑘). Thus 𝑃𝑠 can be expressed as: 

𝑃𝑠 =∑ 𝑃(𝑙 = 𝑘) ∙ 𝑃𝑡𝑟(𝑠, 𝑘),
𝐾−𝑠

𝑘=1
  for 𝑠 = 0,1, . . , 𝐾 − 1    (3) 

where 𝑃(𝑙 = 𝑘) is given by (2), and 𝑃𝑡𝑟(𝑠, 𝑙) represents the 

probability of transitioning to state s when there were 𝑙 packets 

in the system at the start of service. In fact, to reach state  

𝑆 = 𝑠 < 𝐾 − 𝑙 , exactly 𝑠 packets must arrive within the time of 

𝑇𝑏𝑎𝑡𝑐ℎ(𝑙) (time that depends on 𝑙). Whereas to reach state  
𝑆 = 𝑠 = 𝐾 − 𝑙 at least 𝑠 packets must arrive within 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙). 
Thus 𝑃𝑡𝑟(𝑠, 𝑙) can be expressed as: 

𝑃𝑡𝑟(𝑠, 𝑙) = {
𝑃𝑎𝑟𝑟(𝑠, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)),            for 𝑠 < 𝐾 − 𝑙 

𝑃𝑎𝑟𝑟+(𝑠, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)), for 𝑠 = 𝐾 − 𝑙 
       (4) 

where 𝑃𝑎𝑟𝑟(𝑚, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)) and 𝑃𝑎𝑟𝑟+(𝑚, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)) are the 

probabilities that within the time 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙) exactly 𝑚 and at 

least 𝑚, packets arrive to the system. The 𝑃𝑎𝑟𝑟(𝑚, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)) 
distributions can be obtained from arrival process (Poissonian 

process is assumed), whereas 𝑃𝑎𝑟𝑟+(𝑚, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)) can be 

calculated as: 

𝑃𝑎𝑟𝑟+(𝑚, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)) = 1 −∑ 𝑃𝑎𝑟𝑟(𝑖, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙))
𝑚−1

𝑖=0
    (5) 

By substituting (2), (4) and (5) into (3), a system of equations 

is obtained, where the only unknowns are the values of 𝑃𝑠. One 

of these equations, e.g., for 𝑠 = 𝐾 − 1, can be removed and 

replaced with the normalization condition, 

∑ 𝑃𝑠
𝐾−1

𝑠=0
= 1, 

allowing the system state distribution (the values of 𝑃𝑠 for  

𝑠 ∈ {0, 1, … , 𝐾 − 1} to be calculated. 

D. System state analysis for general case 𝐵 ≤ 𝐾 − 1 

In the general case, the maximum batch size 𝐵 may be lower 

than 𝐾 − 1, so not all packets present in the system at the 

beginning of a service period are necessarily taken for service. 

Suppose there are 𝑙, 𝑙 ∈ {1, 2, … , 𝐾 − 1}, packets in the system 

when service starts. Then, 𝑚𝑖𝑛(𝑙, 𝐵) packets are taken for 

service.  

If no packets arrive in the system during the service, the 

system will reach state 𝑠𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑙 − 𝐵, 0). However, if 

some packets do arrive, this state may increase by at most 𝐾 − 𝑙 
(the number of free slots in the system at the start of service). 

This means, that for given 𝐵, 𝐾, and 𝑙 the system can reach only 

states 𝑠 that satisfy: 

𝑚𝑎𝑥(𝑙 − 𝐵, 0) ≤ 𝑠 ≤ 𝑚𝑎𝑥(𝑙 − 𝐵, 0) + (𝐾 − 𝑙)      (6) 

Therefore, after some algebra on (6), it can be shown, that 

a particular state 𝑠 may be reached only for specific values of 𝑙:  

{
𝑙 ≤ 𝑚𝑖𝑛(𝑠 + 𝐵, 𝐾 − 1),    𝑓𝑜𝑟 𝑠 ≤ 𝐾 − 𝐵                  
𝑙 ≤ 𝐾 − 𝑠,                            𝑓𝑜𝑟 𝐾 − 𝐵 < 𝑠 < 𝐾 − 1 

     (7) 

Equation (3) and (4) are no longer valid for the general case 

𝐵 ≤ 𝐾. Because of (7), eq. (3) needs to be split into two cases: 

𝑃𝑠 =

{
 
 

 
 ∑ 𝑃(𝑙 = 𝑘) ∙ 𝑃𝑡𝑟(𝑠, 𝑘)

𝑚𝑖𝑛(𝑠+𝐵,𝐾−1)

𝑘=1
, 𝑓𝑜𝑟 𝑠 ≤ 𝐾 − 𝐵

∑ 𝑃(𝑙 = 𝑘) ∙ 𝑃𝑡𝑟(𝑠, 𝑘)
𝐾−𝑠

𝑘=1
, 𝑓𝑜𝑟 𝐾 − 𝐵 < 𝑠 ≤ 𝐾 − 1

  (8) 

If, for a given value of 𝑙, it is possible to transition to state 𝑠, 
this transition will occur if, during the service of the packet 

batch, 𝑚 = 𝑠 −𝑚𝑎𝑥(0, 𝑙 − 𝐵) packets arrive in the system. 

To distinguish between cases when exactly or at least 𝑚 packets 

must arrive, it needs to be determined whether the considered 

state 𝑠 is the highest possible state achievable for the given 𝑙. 
Since the system has 𝐾 slots, there are 𝑙 packets at the start of 

service, and 𝑠 − 𝑚𝑎𝑥(0, 𝑙 −  𝐵) packets arrive, 𝑠 is the highest 

possible state for 𝑙 + 𝑠 −𝑚𝑎𝑥(0, 𝑙 −  𝐵) = 𝐾, i.e., when: 

𝑠 = 𝐾 − 𝑙 + 𝑚𝑎𝑥(0, 𝑙 − 𝐵) 

Thus, the transition probabilities to state 𝑠 for different values 

of 𝑙 can be defined as follows: 

𝑃𝑡𝑟(𝑠, 𝑙) =

{
 
 

 
 𝑃𝑎𝑟𝑟+(𝑠 −𝑚𝑎𝑥(0, 𝑙 − 𝐵), 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)),                          

                        𝑓𝑜𝑟 𝑠 = 𝐾 − 𝑙 + max(0, 𝑙 − 𝐵)

 𝑃𝑎𝑟𝑟(𝑠 − 𝑚𝑎𝑥(0, 𝑙 − 𝐵), 𝑇𝑏𝑎𝑡𝑐ℎ(𝑙)),                            

                                             𝑜𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

(9) 

for cases, when the transition is possible, i.e., 𝑙 and 𝑠 satisfy (7). 

The remaining part of the reasoning is identical to case 

presented in subsection II.C. 

E. System state seen by arriving packets and packet loss 

probability 

For certain applications, it may be useful to obtain the 

distribution of the number of packets in the system as observed 

by the arriving packets, 𝑃𝑠𝑎𝑟𝑟(𝑛), for 𝑛 ∈ {0,1, … , 𝐾}. This 

distribution can be derived from the system state distribution, 

𝑃𝑠, along with the distributions of the arrival probability of 

exactly m packets, 𝑃𝑎𝑟𝑟(𝑚, 𝑡), or at least m packets, 

𝑃𝑎𝑟𝑟+(𝑚, 𝑡), within a given time period 𝑡. Note, that 𝑃𝑠𝑎𝑟𝑟(𝐾) 

equals packet loss probability, 𝑃𝑙𝑜𝑠𝑠 . 
Let 𝐸𝑎𝑟𝑟(𝑛) describe the mean number of packets arriving 

during the service time (or arriving to an empty system) that 

observe 𝑛 packets in the system. It can easily be observed that  

𝐸𝑎𝑟𝑟(0) = 𝑃0. 

When the system is emptied (with probability 𝑃0), always one 

packet arrives in the system, and this packet sees the system in 

state 0. Cases for 𝑛 > 0 concern packets arriving during the 

service of the previous batch of packets. If 𝑚 packets arrive in 

the system, where there are 𝑙 packets at the start of service, the 

first (i.e., always one) of these 𝑚 packets see the system in 

state 𝑙, the second (i.e., always one) in state 𝑙 + 1, and so on.  

If 𝑚 > 𝐾 − 𝑙, then all subsequent packets, starting from the one 

indexed 𝐾 − 𝑙 + 1, see the system in state 𝐾 – these packets are 

lost. Thus, the cases for 𝑛 < 𝐾 and 𝑛 = 𝐾 need to be considered 

separately.  
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For example, an arriving packet can observe 𝑛 = 2 < 𝐾 

packets in the system if 𝑙 = 2 and it is the first of 𝑚 ≥ 1 packets 

entering the system during the service, or if 𝑙 = 1 and it is the 

second of 𝑚 ≥ 2 incoming packets. Therefore: 

𝐸𝑎𝑟𝑟(2) = 𝑃(𝑙 = 1) ∙ 𝑃𝑎𝑟𝑟+(2, 𝑇𝑏𝑎𝑡𝑐ℎ(1)) +                          

+𝑃(𝑙 = 2) ∙ 𝑃𝑎𝑟𝑟+(1, 𝑇𝑏𝑎𝑡𝑐ℎ(2))          

In general, for 1 ≤ 𝑛 ≤ 𝐾 − 1, to observe state n, for given 𝑙, 
at least 𝑚 = 𝑛 − 𝑙 + 1 packets must arrive. Hence, 𝐸𝑎𝑟𝑟(𝑛) can 

be expressed as: 

𝐸𝑎𝑟𝑟(𝑛) = ∑𝑃(𝑙 = 𝑘) ∙ 𝑃𝑎𝑟𝑟+(𝑛 − 𝑘 + 1, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑘))

𝑛

𝑘=1

  (10) 

For the case of 𝑛 = 𝐾, it must be noted that from an arriving 

set of m packets, all packets with an index greater than 𝐾 − 𝑙 
will observe the system in state 𝐾. Unlike the cases for 𝑛 < 𝐾, 

more than one packet from the set may observe this state. 

As a result, the distribution 𝑃𝑎𝑟𝑟+(𝑚, 𝑡) cannot be applied 

directly. Instead, for each size of arriving packets set, the 

probability of set being this size should be multiplied by  
𝑙 + 𝑚 − 𝐾, i.e. the number of packets that, for that set size, 

observe the system in state 𝐾: 

      𝐸𝑎𝑟𝑟(𝐾) = ∑𝑃(𝑙 = 𝑘) ∙

𝐾−1

𝑘=1

 

∙ ( ∑ (𝑘 + 𝑚 − 𝐾) ∙ 𝑃𝑎𝑟𝑟(𝑚, 𝑇𝑏𝑎𝑡𝑐ℎ(𝑘))

∞

𝑚=𝐾−𝑘+1

) 

 

Now, having all 𝐸𝑎𝑟𝑟(𝑛) it is possible to determine mean 

number of packets arriving to the system during the service time 

(or arriving to an empty system), 𝐸𝑠𝑢𝑚𝑎𝑟𝑟
, and  𝑃𝑠𝑎𝑟𝑟(𝑛): 

𝐸𝑠𝑢𝑚𝑎𝑟𝑟
=∑𝐸𝑎𝑟𝑟(𝑖)

𝐾

𝑖=0

, 

𝑃𝑠𝑎𝑟𝑟(𝑛) =
𝐸𝑎𝑟𝑟(𝑛)

𝐸𝑠𝑢𝑚𝑎𝑟𝑟

, 𝑓𝑜𝑟 𝑛 = 0,… , 𝐾               (11) 

while 𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑠𝑎𝑟𝑟(𝐾). 

It is worth noting that the parameter 𝐵 does not appear in the 

above relations. It is irrelevant which portion of packets is 

currently being serviced, as they still occupy slots in the system. 

However, the value of 𝐵 affects the batch service times, 

𝑇𝑏𝑎𝑡𝑐ℎ(𝑙), which are treated as known constants assumed from 

the system definition. 

F. Packet inspection ratio 

The last parameter to be determined is the packet inspection 

ratio, 𝑅𝐷𝑃𝐼, which indicates the portion of packets arriving in the 

system that will be inspected. 𝑅𝐷𝑃𝐼 can be calculated using two 

variables that describe the system over one service cycle: by 

dividing the expected number of packets subjected to inspection 

by the average number of packets entering the system (𝐸𝑠𝑢𝑚𝑎𝑟𝑟
). 

This calculation method accounts for packets that reached 

a fully occupied system and were lost, as they are not subject to 

inspection. The number of packets inspected when there are 

𝑙 packets in the system at the start of service is defined by 

presumed vector 𝒗, hence: 

𝑅𝐷𝑃𝐼 =
∑ 𝑃(𝑙 = 𝑘) ∙𝐾−1
𝑙=𝑘 𝒗(𝑘)

𝐸𝑠𝑢𝑚𝑎𝑟𝑟

                       (12) 

In particular, if the values in vector 𝒗 satisfy  

𝑣(𝑙) = 𝑚𝑖𝑛(𝑙, 𝐵) for each 𝑙 ∈ {0,1,… , 𝐾 − 1}, it implies that 

all packets present in the system are inspected, and  

𝑅𝐷𝑃𝐼 = 1 − 𝑃𝑙𝑜𝑠𝑠. 

G. Model validation 

To verify the accuracy of the model, a discrete event 

simulator was implemented in MATLAB. The software was 

also used for equations solving and numerical calculations.  

Let us present results for an exemplary system with 

parameters 𝐾 = 6, 𝐵 = 4, 𝒗 = [1, 2, 3, 4, 4], 𝑇𝑠𝑘𝑖𝑝 = 1,  

𝑇𝐷𝑃𝐼 = 3, fed by Poissonian input stream with 𝜆 = 0.5.  

We compare the analytical and simulation values. The 

simulation results were obtained from five independent 

simulation runs, each with different random generator seed. In 

each run, the system's performance was evaluated for one 

million packets. Subsequently, 95% confidence intervals were 

calculated. The results confirm the accuracy of the analytical 

methods used to determine the distribution of the system state at 

service completion, 𝑆 (Table I), the state distributions observed 

by incoming packets, 𝑆𝑎𝑟𝑟  (Table II), as well as the 𝑃𝑙𝑜𝑠𝑠 and 

𝑅𝐷𝑃𝐼 values. Note that the vector 𝒗 indicates that all served 

packets were inspected, so in this case 𝑅𝐷𝑃𝐼 should  

equal 1 − 𝑃𝑙𝑜𝑠𝑠. 
TABLE I  

STATE DISTRIBUTION 

𝑆 0 1 2 3 4 5 
𝑃 . 0587 . 1236 . 2549 . 4609 . 0985 . 0034 
𝑆𝑖𝑚. 
95% 

. 0590 

. 0011 
. 1239 
. 0019 

. 2548 

. 0004 
. 4605 
. 0025 

. 0984 

. 0005 
. 0034 
. 0001 

 
TABLE II  

DISTRIBUTION OF STATES SEEN BY ARRIVING PACKETS  

𝑆𝑎𝑟𝑟 0 1 2 3 4 5 6 
𝑃 . 0155 . 0375 . 0854 . 1837 . 1824 . 1519 . 3437 
𝑆𝑖𝑚. 
95% 

. 0156 

. 0004 
. 0376 
. 0007 

. 0854 

. 0005 
. 1837 
. 0002 

. 1823 

. 0003 
. 1517 
. 0003 

. 3437 

. 0009 
 

o 𝑃𝑙𝑜𝑠𝑠: 0.3437 vs 0.3435 ± 0.0012 

o 𝑅𝐷𝑃𝐼: 0.6563 vs 0.6565 ± 0.0012 
 

All subsequent results presented in the article were checked 

for consistency with simulation results. 

III. RESULTS 

A. System evaluation 

In this chapter, the system parameters will be presented based 

on the selected vectors 𝒗. In the first case, a system with 

parameters 𝐾 = 12, 𝐵 = 4, 𝑇𝑠𝑘𝑖𝑝 = 1, and 𝑇𝐷𝑃𝐼 = 5 for  

𝜆 = 0.5 is analyzed using five exemplary vectors 𝒗: 

a) No packet inspection. 

b) Inspect one packet when there is one packet in the 

system. 

c) Inspect at most two packets when there are at most two 

packets in the system. 

d) Inspect at most two packets when there are at most two 

packets in the system. If there are more than two packets 

in the system, inspect one from a batch. 
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e) Inspect all packets from the batch if there are more than 

five packets in the system.  

The system state distributions, 𝑃𝑠, and the system state 

distributions seen by arriving packets, 𝑃𝑠𝑎𝑟𝑟 , are presented in 

Fig. 2 and Fig. 3, while 𝑃𝑙𝑜𝑠𝑠  and 𝑅𝐷𝑃𝐼 are shown in Table III. 

Case b) shows that the most conservative method of selecting 

packets for inspection can result in a very high 𝑅𝐷𝑃𝐼 parameter 

with practically no packet loss. Cases c) and d) demonstrate the 

possibility of increasing the 𝑅𝐷𝑃𝐼 parameter at the cost of 

introducing packet loss, which seems acceptable for case c), but 

not for case d). In cases a) and e), the distributions 𝑃𝑠 and 𝑃𝑠𝑎𝑟𝑟 

are very similar. In the overwhelming majority of instances, the 

system remains in one of the lower states (𝑠 < 6). For case e), 

inspection is defined when the system is in a state above 6. 

Inspecting the entire batch of packets in these higher states very 

often leads to packet loss. As a result, the 𝑅𝐷𝑃𝐼 value is very low 

relative to the introduced 𝑃𝑙𝑜𝑠𝑠. 

 
Fig. 2. Impact of vector 𝒗 on the system state distribution. 

  

Fig. 3. Impact of vector 𝒗 on the system state distribution seen by arriving 

packets. 

TABLE III 

IMPACT OF VECTOR V ON PLOSS AND RDPI 

𝒗 𝑃𝑙𝑜𝑠𝑠 𝑅𝐷𝑃𝐼 
[0 0 0 0 0 0 0 0 0 0 0] < 0.0001      0 
[1 0 0 0 0 0 0 0 0 0 0] 0.0001 0.2955 
[1 2 0 0 0 0 0 0 0 0 0] 0.0011 0.3418 
[1 2 1 1 1 1 1 1 1 1 1] 0.0172 0.3717 
[0 0 0 0 0 4 4 4 4 4 4] 0.0094 0.0114 

 

In order to present the system behavior for a capacity close to 

real conditions, simulation studies were conducted for 𝐾 = 128 

and 𝐵 = 32. Analytical solutions for such a large value of 𝐾 are 

not feasible within a reasonable time frame. However, the 

consistency of analytical and simulation results obtained for 

𝐾 ≤ 12 validates the accuracy of the simulator. Each simulation 

run involved the observation of ten million packets, repeated 

five times. The differences in the results of individual runs are 

negligibly small for the assumed expected accuracy.  

The system was evaluated for 𝜆 = 0.96, and the vector 𝒗 was 

presumed as:  

a) 𝒗 = [1: 8, 119x0], meaning that as long as there are no 

more than eight packets in the system at the start of 

service, all of them undergo inspection, and if there are 

more than eight packets, none are inspected; and  

b) 𝒗 = [1: 12, 32x12, 83x0], meaning that as long as there 

are no more than twelve packets in the system at the start 

of service, all of them undergo inspection; when the 

number of packets is between 13 and 44, only 12 are 

inspected, and when there are more than 44 packets in 

the system, none are inspected.  

In Fig. 4, Fig. 5, and Fig. 6 the impact of vector 𝒗 on the 

system state and on the system state seen by arriving packets, 

compared to the case with no inspection, is shown. One can see 

that the values of 𝑃𝑆 for 𝑠 > 96 are negligible small. Especially 

for the vector 𝒗 = [1: 12, 32x12, 83x0], an outstanding value 

can be observed for 𝑠 = 96, followed by a drop to nearly zero. 

This results from the fact that, in an overloaded system, when 

all slots become occupied, 32 packets leave the system at the 

end of the service, changing the number of packets in the system 

from 128 to 96 – then, the system state is observed. States above 

96 are achievable, for example, if there were 20 packets in the 

system at the start of service, and 108 packets arrived during 

their service. As a result, there would be 108 packets at the end 

of the service. However, assuming a Poisson arrival process, the 

probability of such an event is negligible (though theoretically 

possible).  

Values of 𝑃𝑙𝑜𝑠𝑠 and 𝑅𝐷𝑃𝐼 are shown in Table IV. There is 

almost no difference between 𝑅𝐷𝑃𝐼 for the two non-zero 𝒗 

vectors, while 𝑃𝑙𝑜𝑠𝑠 becomes non-negligible for the second case. 

 

 

 
Fig. 4. Impact of vector 𝒗 on the system state distribution. 
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Fig. 5. Impact of vector 𝒗 on the system state distribution (close-up). 

 
Fig. 6. Impact of vector 𝒗 on the system state distribution seen by arriving 

packets. 

TABLE IV 
IMPACT OF VECTOR V ON PLOSS AND RDPI 

𝒗 𝑃𝑙𝑜𝑠𝑠 𝑅𝐷𝑃𝐼 
[127𝑥0] < 0.0001      0 

[1: 8, 119𝑥0] < 0.0001      0.020 
[1: 12, 32𝑥12, 83𝑥0] 0.001 0.021 

   

B. Comparison of sampling methods 

In this section, the results obtained from the proposed 

adaptive sampling method are compared with those from the 

system where packet sampling is done in random manner 

(i.e. each packet is taken to the inspection with certain set 

probability, 𝑃𝐷𝑃𝐼). Note, that results for this random sampling 

method were obtained from simulations, however the 

confidence intervals were negligible small thus are not 

presented. 

Let us focus on an exemplary system with parameters  

𝐾 = 6, 𝐵 = 4, 𝑇𝑠𝑘𝑖𝑝 = 1, 𝑇𝐷𝑃𝐼 = 3, fed by Poissonian input 

stream with parameter 𝜆 ∈ {0.2, 0.3, 0.4, 0.6, 0.8, 1}. For this 

system, different vectors 𝒗 (the first method) and different 𝑃𝐷𝑃𝐼  
values (the second method) were used. Consequently 𝑅𝐷𝑃𝐼 and 

𝑃𝑙𝑜𝑠𝑠 are presented as functions of 𝜆 in Fig. 7 and Fig. 8.  

As expected, results for both methods are the same for two 

boundary cases: when all or none packets are taken to the 

inspection (all / 𝒗 = [1, 2, 3, 4, 4] / 𝑃𝐷𝑃𝐼 = 1 and  

none / 𝒗 = [0, 0, 0, 0, 0] / 𝑃𝐷𝑃𝐼 = 0; solid lines with circle 

markers). The proposed dynamic sampling method was also 

evaluated for two additional vectors, 𝒗 = [1, 1, 1, 1, 1] and  
𝒗 = [1, 2, 2, 2, 2] (lines with square markers). For each of these 

vectors, the 𝑃𝐷𝑃𝐼  parameter used in the random sampling 

method was selected to achieve the same packet inspection ratio 

𝑅𝐷𝑃𝐼 for 𝜆 = 1. For the first vector, this value corresponded to 

𝑃𝐷𝑃𝐼 = 0.37, and for the second, 𝑃𝐷𝑃𝐼 = 0.68 (lines with 

diamond markers). 

Comparing the packet loss level graphs (Fig. 8), one can see 

that the values for the corresponding cases are very similar over 

the entire range of the 𝜆 parameter. In the case of random 

sampling, each served (i.e. not lost) packet is inspected with 

a probability of 𝑃𝐷𝑃𝐼 . Therefore, in the absence of losses, the 

𝑅𝐷𝑃𝐼 parameter would equal 𝑃𝐷𝑃𝐼. The decrease in the 𝑅𝐷𝑃𝐼  
value as the load increases is due to a growing proportion of 

packets being lost. 

On the other hand, in the case of dynamic sampling, for the 

selected vectors 𝒗, when the system load decreases, the 

proportion of packets subjected to analysis increases 

significantly. This is because, when only a small number of 

packets are taken to service, a large portion of them is analyzed 

(specifically, one out of one). For instance, for the vector  

𝒗 =  [1 1 1 1 1], only 1 packet from a batch is always inspected 

(with a maximum batch size of 𝐵 = 4). However, under low 

load conditions, such as 𝜆 = 0.2, the batches typically consist of 

just one packet, so the 𝑅𝐷𝑃𝐼 is relatively high in this cases. 

 

 
Fig. 7. Comparison of sampling methods: 𝑅𝐷𝑃𝐼. 

 
Fig. 8. Comparison of sampling methods: 𝑃𝑙𝑜𝑠𝑠. 
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 Fig. 9. Comparison of sampling methods: 𝑃𝑙𝑜𝑠𝑠 and 𝑅𝐷𝑃𝐼. 

Same as in previous chapter, in order to present the system 

behavior in terms of the 𝑅𝐷𝑃𝐼 and 𝑃𝑙𝑜𝑠𝑠 parameters for a capacity 

close to real conditions, simulation studies were conducted for 

𝐾 = 128 and 𝐵 = 32 (each simulation run involved ten million 

packets, repeated five times). In the simulation, packet arrival 

followed a Poisson process, and the maximum allowable system 

load was assumed as 𝜆 = 0.96. At this load level, without 

packet inspection, the 𝑃𝑙𝑜𝑠𝑠 parameter is below 0.0001. Then, 

a vector 𝒗 = [1: 12, 32x12, 83x0] (see chapter III.A) was 

selected so that for the maximum allowable load of 𝜆 = 0.96, it 

did not exceed the arbitrarily set packet loss probability,  

𝑃𝑙𝑜𝑠𝑠 = 0.001, while 𝑅𝐷𝑃𝐼 is maximized. It must be noted, that 

many different vectors 𝒗 satisfy this condition. This 

phenomenon will be addressed in future works. 

Figure 9 shows the 𝑅𝐷𝑃𝐼 parameter for selected vector 𝒗 as 

a function of system load, 𝜆 (blue line, 𝑅𝐷𝑃𝐼: vector 𝒗). For all 

values of 𝜆 ≤ 0.9, the packet loss level, 𝑃𝑙𝑜𝑠𝑠, remains below 

0.0001. Similar to what was observed in Fig. 7, there is 

a significant increase in the 𝑅𝐷𝑃𝐼 parameter as the load 

decreases - the lower the system state, the larger the proportion 

of packets that are inspected. It is worth noting that the 𝑅𝐷𝑃𝐼 
values for certain 𝜆 values, such as 𝜆 / 𝑅𝐷𝑃𝐼: 0.8 / 0.125, 0.6 / 

0.333, 0.5 / 0.5, 0.4 / 0.75, suggest the existence of some 

property of the system that is not yet fully understood.  

In the figure, to comparison, the results for the sampling 

method with a fixed probability of 𝑃𝐷𝑃𝐼 = 0.214 are presented 

(𝑅𝐷𝑃𝐼: sampling, 𝑃 = 0.214). This value of 𝑃𝐷𝑃𝐼  corresponds to 

the 𝑅𝐷𝑃𝐼 value for a system load of 𝜆 = 0.7, which was assumed 

as the typical system load. Same as observed in Fig. 7 and Fig. 8, 

one can see that 𝑅𝐷𝑃𝐼 for this random sampling method cannot 

exceed 𝑃𝐷𝑃𝐼  when the load is lower than 𝜆 = 0.7. However, the 

lack of adaptation at higher loads results in a higher 𝑅𝐷𝑃𝐼 than 

in the proposed method, but this comes at the cost of introducing 

very large, unacceptable losses. 

 

CONCLUSIONS AND FUTURE WORKS 

This paper presents a general queuing model of the DPI 

monitoring device with adaptive sampling. The proposed 

approach dynamically adjusts the sampling rate according to 

system queue occupancy, striving to maximize the percentage 

of packets undergoing inspection while keeping the probability 

of packet loss negligibly small. By employing an analytical 

model of the monitoring device, the method allows for the 

calculation of key system parameters, such as system state 

distribution, packet loss probability, and the DPI ratio, under 

different traffic conditions. The results demonstrate that 

the adaptive method significantly improves system performance 

compared to classical sampling methods. This work offers 

insights into optimizing network monitoring efficiency, 

especially in high-traffic environments. 

In our future works we plan to investigate and adjust our 

model to a DPDK-based network monitoring device. 

Specifically, we will adapt the model to reflect the network 

packet processing chain on multicore commodity hardware 

(a standard “COTS: Commercial Off-The-Shelf” Linux x86 

server) with a DPDK-supported NICs running DPDK 

application that performs DPI for network security (e.g. as 

described in [13]). We also plan to assess the performance of 

our adaptive solution based on measurements on DPDK-based 

COTS server. 

There is also a phenomenon, mentioned in Chapter III.B, 

whereby many vectors 𝒗 result in the same maximum 

achievable 𝑅𝐷𝑃𝐼 (assuming negligible packet loss). For 

example, for a system with 𝐾 = 128, 𝐵 = 32, 𝑇𝑠𝑘𝑖𝑝 = 1, 

𝑇𝐷𝑃𝐼 = 3, and a load of 𝜆 = 0.6, the maximum achievable 𝑅𝐷𝑃𝐼  
is 0.333. This value can be achieved e.g. when the vector 𝒗 is in 

the form [127𝑥 𝑚𝑖𝑛(𝑙, 𝑁)] (i.e., as long as there are no more 

than 𝑁 packets in the system, all packets are inspected, and if 

there are more than 𝑁, only 𝑁 are inspected), for any 𝑁 ∈
{3, 4, … ,9} (for 𝑁 < 3, 𝑅𝐷𝑃𝐼 < 0.333; for 𝑁 > 9, 𝑅𝐷𝑃𝐼 >
0.333, but packet losses occur). In Fig. 10, the first 60 values of 

system state distribution obtained for three vectors 𝒗, for 𝑁 =
 {3, 6, 9}, are shown. Shifting the distribution mass toward 

higher states is undesirable, for example, in terms of delays, and 

if it does not increase the 𝑅𝐷𝑃𝐼 parameter, it should be avoided. 

We plan to describe the phenomenon, derive maximum 

achievable 𝑅𝐷𝑃𝐼 (with negligible packet loss) for a given system, 

and develop a multi-criteria method for selecting vector 𝒗, 

which will differentiate vectors 𝒗 that are identical in terms of 

the 𝑃𝑙𝑜𝑠𝑠 and 𝑅𝐷𝑃𝐼 parameters, for example, based on their 

impact on packet waiting times. 

 

 

 
Fig. 10. Comparison of vectors 𝒗 providing the same 𝑅𝐷𝑃𝐼 and no packet 

loss. 



ADAPTIVE SAMPLING METHOD FOR NETWORK TRAFFIC SECURITY MONITORING BASED ON QUEUING THEORY 951 

 

 

REFERENCES 

[1] N. Duffield, “Sampling for Passive Internet Measurement: A Review,” 
Statististical Science vol. 19, no. 3, pp. 472-498, 2004. 
https://doi.org/10.1214/088342304000000206  

[2] G. Roudière and P. Owezarski, “Evaluating the Impact of Traffic 

Sampling on AATAC’s DDoS Detection,” in Proceedings of the 2018 

Workshop on Traffic Measurements for Cybersecurity (WTMC ‘18). 
Association for Computing Machinery, New York, USA, pp. 27–32, 2018. 
https://doi.org/10.1145/3229598.3229605  

[3] L. Braun, C. Diekmann, N. Kammenhuber and G. Carle, “Adaptive 

load-aware sampling for network monitoring on multicore commodity 

hardware,” 2013 IFIP Networking Conference, New York, USA, pp. 1-9, 
2013. https://doi.org/10.48550/arXiv.1604.02322  

[4] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better 
NetFlow,” in Proceedings of the 2004 conference on Applications, 

technologies, architectures, and protocols for computer communications 

(SIGCOMM '04), Association for Computing Machinery, New York, 

USA, pp. 245–256, 2004. https://doi.org/10.1145/1015467.1015495 

[5] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, D. Amores-López,  
and J. Solé-Pareta, “Load shedding in network monitoring 

applications,” in Proceedings of the USENIX Annual Technical 

Conference, ATC’07, Berkeley, USA, pp. 1-14, 2007. 
https://dl.acm.org/doi/10.5555/1364385.1364390 

[6] J. Drobisz and K. J. Christensen, “Adaptive sampling methods to 
determine network traffic statistics including the Hurst parameter,” in 

Proceedings of 23rd Annual Conference on Local  

Computer Networks. LCN'98, Lowell, USA, pp. 238-247, 1998. 
https://doi.org/10.1109/LCN.1998.727664  

[7] Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan and K. Singh,  
“A probabilistic sampling method for efficient flow-based analysis,” 

Journal of Communications and Networks, vol. 18, no. 5, pp. 818-825, 
2016. https://doi.org/10.1109/JCN.2016.000110  

[8] B. Zeng, D. Zhang, W. Li, M. Zhang and Q. Hong, “An Adaptive 

Sampling Methodology for Internet Traffic Data Measurement,” 2009 

International Conference on Communication Software and Networks, 

Chengdu, China, pp. 215-218, 2009. 
https://doi.org/10.1109/ICCSN.2009.135  

[9] Wenhong Ma, J. Yan and Changcheng Huang, “Adaptive sampling 
methods for network performance metrics measurement and evaluation in 

MPLS-based IP networks,” in Proceedings of CCECE 2003 - Canadian 

Conference on Electrical and Computer Engineering, Toward a Caring and 
Humane Technology, vol. 2, Montreal, Canada, pp. 1005-1008, 2003. 
https://doi.org/10.1109/CCECE.2003.1226065  

[10] J. Zhang, X. Luo, R. Perdisci, G.i Gu, W. Lee, and N. Feamster, “Boosting 

the scalability of botnet detection using adaptive traffic sampling”, in 
Proceedings of the 6th ACM Symposium on Information, Computer and 

Communications Security (ASIACCS '11). Association for Computing 

Machinery, New York, USA, pp. 124–134, 2011. 
https://doi.org/10.1145/1966913.1966930  

[11] M. Jin, C. Wang, P. Li and Z. Han, “Survey of Load Balancing Method 
Based on DPDK,” 2018 IEEE 4th International Conference on Big Data 

Security on Cloud (BigDataSecurity), IEEE International Conference on 

High Performance and Smart Computing, (HPSC) and IEEE International 
Conference on Intelligent Data and Security (IDS), pp. 222-224, 2018. 
https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00054  

[12] N. T. Bailey, “On queueing processes with bulk service,” Journal of the 

Royal Statistical Society: Series B (Methodological), vol. 16, no. 1, 
pp. 80-87, 1954. https://doi.org/10.1111/j.2517-6161.1954.tb00149.x  

[13] P. Wiśniewski, M. Sosnowski, W. Burakowski, “On Implementation of 

Efficient Inline DDoS Detector Based on AATAC Algorithm,” 
International Journal of Electronics and Telecommunications, vol. 68, 
no. 4, pp. 889-898, 2022. https://doi.org/10.24425/ijet.2022.143899  

 

https://doi.org/10.1214/088342304000000206
https://doi.org/10.1145/3229598.3229605
https://doi.org/10.48550/arXiv.1604.02322
https://doi.org/10.1145/1015467.1015495
https://dl.acm.org/doi/10.5555/1364385.1364390
https://doi.org/10.1109/LCN.1998.727664
https://doi.org/10.1109/JCN.2016.000110
https://doi.org/10.1109/ICCSN.2009.135
https://doi.org/10.1109/CCECE.2003.1226065
https://doi.org/10.1145/1966913.1966930
https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00054
https://doi.org/10.1111/j.2517-6161.1954.tb00149.x
https://doi.org/10.24425/ijet.2022.143899

