
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 4, PP. 1049–1056
Manuscript received August 6, 2024; revised October 2024. doi: 10.24425/ijet.2024.152093

Advanced High-Level Synthesis techniques based
on metamodel

Radoslaw Cieszewski, Ryszard Romaniuk, Krzysztof Poźniak, and Maciej Linczuk

Abstract—This paper explores advanced techniques in high-
level synthesis (HLS) utilizing metamodel structures. Metamodels
act as models of hardware models, generating internal hardware
models based on parameter inputs and exploring the solution
space to find optimal configurations. The focus is on enhancing
HLS processes through metamodeling, enabling more efficient
hardware design and optimization. Key contributions include a
novel metamodel framework and a case study demonstrating its
application in complex system designs. The proposed methods
show significant improvements in synthesis efficiency and scala-
bility, making them highly relevant for modern FPGA and ASIC
design workflows.

Keywords—High-Level Synthesis; Metamodel; FPGA; Opti-
mization; Hardware Design; Digital Signal Processing; System
Design

I. INTRODUCTION

H IGH-LEVEL synthesis (HLS) transforms algorithmic
descriptions into hardware implementations, which is a

critical step in the design of FPGAs and ASICs [3]. Traditional
HLS approaches often face challenges related to scalability,
resource utilization, and synthesis time. This paper introduces
an advanced methodology leveraging metamodels to enhance
HLS by providing a structured framework that addresses these
challenges [2]. Metamodels serve as abstract representations
that encapsulate various hardware design models, allowing
the synthesis process to dynamically generate and evaluate
hardware configurations based on specified parameters.

A. Motivation and Objectives

The motivation for this work arises from the need to
improve the efficiency and adaptability of HLS processes. By
integrating metamodels, we aim to unify various optimization
strategies, such as pipelining, parallelism, and loop unrolling,
within a cohesive framework. The objectives of this study are:

• To develop a metamodel-based framework that integrates
multiple HLS optimization techniques.

• To validate the framework through a detailed case study
involving a complex digital signal processing system [1].

• To analyze the performance improvements in terms of
synthesis time, resource utilization, and scalability.

Authors are with Warsaw University of Technology, Poland (e-mail:
{radoslaw.cieszewski, ryszard.romaniuk, krzysztof.pozniak, maciej.linczuk}
@pw.edu.pl).

II. THEORY

A. Mathematical Formulation of the HLS Problem

High-Level Synthesis (HLS) transforms high-level algorith-
mic descriptions into hardware implementations, represented
as Register-Transfer Level (RTL) descriptions. The HLS prob-
lem can be defined as an optimization challenge involving
the mapping of operations from an algorithm onto available
hardware resources while scheduling these operations under
data dependencies to minimize specific cost metrics such as
execution time, energy consumption, or logic resources.

a) Data Dependency Graph: Given a data dependency
graph G = (V,E), where V is the set of operations (nodes),
and E is the set of edges representing data dependencies
between operations, the HLS process involves the following
transformations:

1. Node Assignment: Each operation vi ∈ V is assigned to
a hardware resource r ∈ R, where the execution time of vi on
resource r is denoted by τ(vi, r).

2. Graph Partitioning: The original graph G is partitioned
into k subgraphs G1, G2, . . . , Gk, where Gi = (Vi, Ei), Vi ⊆
V , and Ei ⊆ E. Each subgraph Gi is scheduled to be executed
within a single clock cycle, ensuring the critical path CP(Gi)
of the subgraph does not exceed the clock period Tclk:

CP(Gi) ≤ Tclk, ∀i ∈ {1, . . . , k}

b) Transformation and Summation of Subgraphs: The
transformation of the data dependency graph involves parti-
tioning and modification according to HLS techniques, such
as loop unrolling, pipelining, and memory banking. The trans-
formed graph is expressed as:

G →
k∑

i=1

Gi

The total execution time Ttotal of the algorithm is the sum
of the processing times of all subgraphs:

Ttotal =

k∑
i=1

T (Gi)

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

1050 RADOSLAW CIESZEWSKI, ET AL.

c) Cost Function Optimization: The cost function
C(f, S) is defined as a combination of different metrics,
including resource utilization, execution time, and delays. The
objective is to minimize this function:

Minimize C(f, S) =
∑
a∈A

C(f(a)) + Latency(S)

The optimization constraints include scheduling operations
to satisfy data dependencies without exceeding available hard-
ware resources.

B. Complexity Analysis of the HLS Problem

The HLS problem is classified as NP-hard due to several
factors:

1. Resource-Constrained Scheduling: Scheduling operations
under limited hardware resources is NP-hard because it re-
quires finding an optimal assignment of operations to resources
while minimizing execution time and satisfying all dependen-
cies. The exponential number of possible assignments makes
exhaustive solutions impractical for large data dependency
graphs.

2. Graph Partitioning: Partitioning the data dependency
graph into subgraphs that can be executed in one clock cycle
is complex due to the need to optimize critical paths and
resources. This requires analyzing the graph topology and
potential transformations, such as loop unrolling or pipelining,
which alter the graph structure.

3. HLS Transformations: Implementing HLS techniques,
such as pipelining, loop unrolling, and memory banking, adds
complexity to the problem. Each transformation introduces
new constraints and alters the graph topology, impacting the
final schedule and resource assignment.

4. Latency and Resource Management: Key aspects of
HLS optimization involve minimizing delays in critical paths
while managing available hardware resources. Balancing these
aspects optimally is highly complex and requires considering
multiple trade-offs, such as execution speed versus resource
usage.

C. Graph Transformations in HLS

The process of HLS involves several graph transformations
aimed at optimizing execution and resource utilization. Below
are detailed transformations and their corresponding mathe-
matical formulations:

a) Loop Unrolling: Given a loop represented in the data
dependency graph by a subgraph GL, loop unrolling involves
replicating the loop body n times, effectively transforming GL

into G′
L:

G′
L =

n⋃
i=1

GLi

where each GLi
is an instance of the original loop body.

The critical path of the unrolled loop CP(G′
L) can be reduced

if parallel resources are sufficient, leading to:

CP(G′
L) ≤

CP(GL)

n
+ overhead

b) Pipelining: Pipelining introduces concurrency in the
execution of operations by overlapping the execution stages
of different iterations. For a graph GP , the pipelining trans-
formation can be represented as:

GP → Pipeline(GP , S)

where S denotes the pipeline stage. The effective clock
period Tclk in a pipelined execution is given by:

Tclk = max
i

(τ(vi, r) + setup time)

Pipelining can significantly reduce overall execution time
by maximizing the utilization of available resources through
stage concurrency.

c) Memory Banking: Memory banking involves dividing
the memory into multiple independent banks to enable con-
current access, minimizing access conflicts. For a graph GM

with memory accesses, the transformation is:

GM →
b∑

i=1

GMi

where b is the number of memory banks, and each subgraph
GMi represents accesses confined to a specific bank. The
effective memory access time is:

Tmem =
Tsingle access

b

assuming ideal conditions where all accesses are uniformly
distributed across the banks.

D. Advanced Heuristics for HLS Optimization

To address the NP-hard nature of HLS, heuristic methods
are employed to explore the solution space efficiently. A
commonly used heuristic in HLS is based on priority-driven
scheduling and resource allocation. The heuristic algorithm
iteratively adjusts operation priorities and allocates resources
to minimize the overall cost function:

a) Heuristic Algorithm for HLS Optimization: Given a
data dependency graph G = (V,E) and resource set R =
{r1, r2, . . . , rm}, the heuristic algorithm proceeds as follows:

Initialize Schedule S = ∅ each Basic Block Bi in G
Calculate Critical Path in GBi Assign Priorities to Operations
based on Data Dependencies Operations remain unscheduled
Select Operation with highest Priority Resources available
Assign Resources from R Delay Operation until Resources
are available Update Schedule S and Resource Allocation
Schedule S

This heuristic optimizes the schedule by dynamically as-
signing resources to high-priority operations while ensuring
data dependencies are respected and available resources are
not exceeded in each clock cycle.

ADVANCED HIGH-LEVEL SYNTHESIS TECHNIQUES BASED ON METAMODEL 1051

E. Complexity Analysis of the Heuristic Algorithm

The complexity of the heuristic algorithm is driven by the
number of operations n and resources m. The algorithm iter-
atively schedules operations and updates resource allocations,
leading to a time complexity of:

O(n ·m · log(n))

The spatial complexity depends on the size of the data
dependency graph and control flow graph, approximated by:

O(n+ |E|)

where |E| denotes the number of edges representing de-
pendencies. Practical implementation benefits from heuristic
refinements that reduce the number of iterations and improve
convergence speed.

III. METAMODEL FRAMEWORK

The proposed metamodel framework integrates various syn-
thesis techniques, allowing for a more holistic optimization
strategy [11]. It provides a high-level abstraction that captures
the relationships between different synthesis parameters and
design constraints. This framework plays a critical role in
the compilation and optimization of high-level algorithms into
hardware implementations on FPGA platforms. The meta-
model framework consists of the following components:

A. Component Overview

• Parameter Space Definition: Defines the synthesis pa-
rameters relevant to the HLS process, such as loop
bounds, pipeline depths, resource types, and data widths.
The parameter space is mathematically represented as
a multidimensional space P = {p1, p2, . . . , pn}, where
each pi corresponds to a specific parameter that influences
the synthesis outcome.

• Constraint Management: Manages design constraints,
including timing, area, and power requirements. Con-
straints are formalized using a set of inequalities C =
{c1, c2, . . . , cm}, where each constraint cj limits the
feasible regions of the parameter space. The constraints
ensure that the synthesis adheres to practical hardware
limitations.

• Optimization Engine: Utilizes the metamodel to explore
the parameter space and identify optimal synthesis con-
figurations. The optimization engine employs heuristic
or metaheuristic algorithms, such as Genetic Algorithms
(GA) or Simulated Annealing (SA), to navigate the
complex landscape of the parameter space, searching
for solutions that minimize or maximize a cost function
C(f, S). The cost function often integrates multiple ob-
jectives such as latency, resource utilization, and power
consumption.

Fig. 1. Metamodel architecture for HLS integration

B. Model of the Compilation Process

Contemporary projects in real-time data processing, such as
plasma diagnostics in tokamaks, require advanced tools for de-
signing embedded systems. A key challenge is to develop tools
and methodologies that enable the efficient implementation of
complex algorithms on FPGA platforms, ensuring required
performance, low latency, and minimal hardware resource
usage.

a) Description of the Compilation Model: The compi-
lation and optimization model of an algorithm, presented in
Figure 2, starts with three key input objects:

1) Main Algorithm Code: The algorithm code is written
in a high-level language like Python, defining the main
operations and data flow.

2) Python Libraries: A set of libraries containing prede-
fined operations, such as matrix operations, which can
be used within the algorithm. These libraries, created
as part of this work, offer optimized functions for
mathematical and signal processing tasks.

3) Configuration File: This file plays a critical role in
the compilation process, allowing the user to precisely
define parameters and constraints of the process. The
configuration file consists of three main sections:

• Optimization Options: Allows specifying opti-
mization techniques such as loop unrolling and
pipelining without modifying the original algorithm
code.

• Constraints: Users define boundary conditions re-
lated to latency, logical area, and power consump-
tion. These constraints guide the optimization pro-

1052 RADOSLAW CIESZEWSKI, ET AL.

cess and allow the generation of different imple-
mentation models.

• System Parameters: This section includes infor-
mation about hardware properties such as execution
delays in functional units and area occupied by
various FPGA blocks, enabling precise simulation
and performance estimation of the system.

b) Compilation Process: Within the compilation block, a
metamodel is used to generate various internal implementation
models based on the specified constraints. The metamodel,
supported by a micro-instruction library [16] and hardware
data, allows analysis and selection of optimal configurations,
which will be described in further sections.

The compilation process output is a description in the form
of parameterized micro-instructions, which are then translated
into Register-Transfer Level (RTL) code, representing the
logical implementation of the algorithm in the FPGA. From
this RTL code, the FPGA vendor’s synthesis and compilation
tools generate a bitstream that is loaded into the FPGA,
enabling its physical realization.

Fig. 2. Compilation and optimization process model for algorithm implemen-
tation on FPGA with bitstream generation

c) Vendor Independence: It is important to note that
using a custom HLS tool allows for full independence from
specific tools provided by FPGA vendors. By generating RTL
code in standard hardware description languages, such as
VHDL, this tool facilitates the portability of projects across
various hardware platforms, which is particularly significant
in long-term research projects, such as tokamak experiments.

C. Metamodel as a Model of Internal Hardware Models

The metamodel is a key element of the compilation and op-
timization process, enabling the efficient transformation of al-

gorithms into optimized implementations for FPGA platforms.
After input data is provided—comprising the main algorithm
in Python (optionally using matrix operation libraries) and the
configuration file—the process begins by generating an Ab-
stract Syntax Tree (AST), which is subsequently transformed
according to specified configuration parameters.

a) Abstract Syntax Tree (AST) Analysis and Transfor-
mation: The AST serves as an intermediary representation
of the algorithm’s structure, encapsulating operations, data
dependencies, and control flow.

b) Metamodel Execution and Evaluation: The meta-
model generates different internal models by exploring com-
binations of the above optimization techniques. Each model
is then evaluated based on a defined set of criteria, such as
execution time, resource utilization, and power consumption,
using a cost function C(M):

C(M) = α · Latency(M) + β · Resource(M) + γ · Power(M)

where α, β, γ are weighting factors reflecting the impor-
tance of each metric. The optimization process aims to mini-
mize this cost function across the space of generated models.

c) Heuristic Algorithm and Meta-Graph Generation:
Each generated model undergoes a heuristic algorithm, which
transforms the AST into a more complex graph known as a
meta-graph. The meta-graph represents a structure containing
all possible configurations resulting from applying different
optimization parameters. The heuristic algorithm analyzes
each subgraph based on data provided in the configuration
file, including constraints on latency, resource usage, and other
critical hardware parameters.

d) Output and Model Selection: The metamodel out-
puts the most optimal implementation model that meets the
specified design criteria. Additionally, an estimation file is
generated, providing detailed information on the predicted
system performance, resource utilization, and latency.

e) Detailed Metamodel Analysis: The metamodel’s oper-
ation is guided by an internal evaluation loop that continuously
refines the generated models based on feedback from the
heuristic evaluation phase. This loop iterates until convergence
is achieved, resulting in a robust model that satisfies all design
constraints while optimizing performance metrics.

IV. IMPLEMENTATION OF THE HLS COMPILER

A. High-Level Language for Algorithm Description

Modern research and engineering projects conducted at
leading scientific institutions, such as JET (Joint European
Torus), ITER (International Thermonuclear Experimental Re-
actor), CERN (European Organization for Nuclear Research),
Fermilab (Fermi National Accelerator Laboratory), SLAC
(Stanford Linear Accelerator Center), and many other promi-
nent centers, heavily rely on advanced computational tech-
niques [2]–[15]. A critical aspect of these projects is the design
and implementation of complex algorithms, which are subse-
quently translated into hardware architecture, often in the form
of FPGA (Field-Programmable Gate Array) implementations.
In this context, Python has emerged as the de facto standard

ADVANCED HIGH-LEVEL SYNTHESIS TECHNIQUES BASED ON METAMODEL 1053

for describing and implementing algorithms at a high level of
abstraction (HLL - High-Level Language).

a) Python as a High-Level Language in Research En-
vironments: Python, with its simplicity, readability, and a
vast array of scientific and engineering libraries, has gained
widespread popularity in research environments, including
JET, ITER, CERN, Fermilab, SLAC, and numerous univer-
sities and laboratories worldwide. In these settings, Python is
commonly used for modeling, simulation, and data analysis,
making it particularly suitable for describing algorithms that
require FPGA implementation.

One of Python’s greatest strengths is its ability to express
complex algorithms in an intuitive and understandable manner,
enabling scientists and engineers to rapidly prototype and test
solutions. Python also facilitates seamless integration with
other computational tools and programming environments,
further accelerating the software development process. With
the wealth of available libraries such as NumPy, SciPy, Ten-
sorFlow, and PyTorch, Python allows for the execution of a
broad range of tasks, from numerical computations and signal
processing to advanced machine learning algorithms, which
can then be transformed into hardware implementations.

b) Direct Translation of Algorithms to FPGA Implemen-
tations: In environments such as JET, ITER, CERN, and
Fermilab, where algorithms often need to be implemented
in hardware, Python offers a unique capability to directly
translate code into hardware implementations, particularly on
FPGA devices. Tools like PYNQ (Python Productivity for
Zynq) and High-Level Synthesis (HLS) enable the conversion
of Python-written algorithms into HDL (Hardware Description
Language) code, which is subsequently synthesized into a form
suitable for FPGAs.

High-Level Synthesis (HLS) is a process that automates
the conversion of high-level code written in languages like
C, C++, or Python into hardware descriptions in languages
such as VHDL or Verilog. HLS allows for transitioning from
an algorithmic description to a hardware implementation,
significantly shortening the design cycle for digital systems
and facilitating easier modifications and optimizations.

By leveraging Python’s extensive ecosystem of tools sup-
porting HLS, complex computations can be effectively moved
from software to hardware levels. This approach is particu-
larly valuable in applications that demand high performance
and reliability, such as in the control systems of physical
experiments, where FPGAs provide unmatched computational
performance and low latency.

c) Advantages of Python in Algorithm Transformation:
One of the most advanced tools offered by Python is the built-
in ‘ast‘ (Abstract Syntax Tree) module. An Abstract Syntax
Tree (AST) is a data structure that represents the abstract
syntactic structure of source code, allowing for the analysis
and transformation of code in a way that is independent of its
original form.

The AST, or Abstract Syntax Tree, is a hierarchical structure
that represents the code in the form of a tree. Each node in the
tree corresponds to a syntactic element, such as a mathematical
operation, loop, condition, or function call. The AST enables
easier understanding of the program’s structure, allowing for

analysis, transformation, and optimization of the code before
further processing.

The AST is particularly useful in code transformation
processes because operations on the syntax tree are more
natural and safer than direct manipulation of the source code
text. This facilitates the introduction of advanced optimizations
and transformations that might be difficult to achieve using
standard methods.

d) Implementing HLS Techniques Using AST: Operations
on the AST open up extensive possibilities for implementing
advanced High-Level Synthesis methods. By manipulating the
AST, it is possible to implement key HLS techniques such as:

• Pipelining: The AST enables automatic identification and
transformation of code sections that can be processed in a
pipelined fashion. Pipelining is crucial in FPGA architec-
tures as it allows for a significant increase in performance
by concurrently processing multiple computation stages.

• Loop Unrolling: The AST allows for loop unrolling,
which involves replacing iterative constructs with their
unrolled versions. This increases the parallelism of oper-
ations and reduces the number of clock cycles required
to execute loops.

• Partial Loop Unrolling: In cases where full loop un-
rolling is not feasible or efficient, the AST allows for
partial loop unrolling, balancing between parallelism and
hardware resource usage.

• Memory Banking: Through AST analysis, effective
memory banking can be achieved by splitting mem-
ory access into multiple independent banks to increase
throughput and minimize access conflicts.

• Data Flow Optimization: AST operations facilitate the
optimization of data flow between different algorithm
elements, which is critical for minimizing delays and
maximizing computational efficiency.

• Memory Operations: The AST enables advanced control
over memory access, including operations such as read-
ing, writing, and more complex techniques like memory
banking and parallel access optimization, tailored to the
specific requirements of the project. By manipulating the
AST, it is possible to optimize memory access to maxi-
mize bandwidth and minimize conflicts during concurrent
operations.

• Latency Management: The AST allows for optimization
of data paths to minimize critical delays that could impact
the performance of the entire system. This optimization
is crucial in systems where response time is critical, such
as real-time control systems.

• Computation Parallelization: AST operations enable
the identification of code segments that can be executed in
parallel, which is essential in FPGA optimization projects
where parallelization is a key factor in performance
enhancement.
e) Early Error Detection Through Emulation: Another

significant advantage of Python in the context of designing
algorithms for FPGAs is the ability to emulate and test
transformations at the AST level before synthesis. Emulation
allows for the verification of the correctness of the transformed
algorithm, minimizing the risk of errors at later design stages.

1054 RADOSLAW CIESZEWSKI, ET AL.

Emulating code generated based on the AST enables quick
and effective testing of various algorithm variants, which is
extremely useful in the context of design space exploration.
This allows designers to experiment with different optimiza-
tions and transformations, helping to find the most efficient
solution for a given FPGA architecture.

f) Compiler Implementation in Python: The HLS com-
piler implemented in Python leverages the AST for parsing
and transforming algorithmic code. The implementation is
designed with modularity and extensibility in mind, allowing
for the integration of various optimization techniques. Key
components of the compiler include:

1) Parser: Converts high-level Python code into an AST,
serving as the foundation for further analysis and trans-
formation.

2) Transformer: Applies a series of transformations to the
AST based on specified optimization parameters, such
as loop unrolling, pipelining, and memory management
strategies.

3) Optimizer: Implements heuristic algorithms to explore
the optimization space, adjusting the transformations to
meet design constraints like timing, area, and power.

4) Code Generator: Translates the optimized AST into
HDL code (VHDL microinstructions [16]), which can
be synthesized into an FPGA bitstream using vendor-
specific tools.

5) Verification and Emulation Module: Provides facil-
ities for simulating the transformed code to validate
functionality and performance metrics before hardware
synthesis.

V. IMPLEMENTATION AND VERIFICATION OF FIR FILTER

Digital filters are essential components in signal process-
ing, enabling noise reduction, signal smoothing, and various
other operations. Among the different types of digital filters,
finite impulse response (FIR) filters are popular due to their
stability and ease of implementation. This section presents
the implementation details of an FIR filter using a high-level
synthesis (HLS) compiler based on a metamodel framework,
which allows for efficient exploration and optimization of
design parameters. The implementation includes the mathe-
matical definition of the FIR filter and an analysis of resource
utilization, demonstrating how the metamodel-driven approach
optimizes the filter’s performance and resource efficiency on
FPGA platforms.

A. Mathematical Definition of FIR Filter

An FIR filter of order n is a digital filter whose impulse
response h[n] is limited to a finite number of samples. For an
input signal x[n] and filter coefficients h[k], the filter output
y[n] can be expressed using the following difference equation:

y[n] =

n∑
k=0

h[k] · x[n− k]

Where:
• x[n] is the input signal,

• h[k] are the filter coefficients (impulse response),
• y[n] is the output signal,
• n is the filter order.

B. Resource Utilization and Performance

The implementation of the FIR filter, which had 5 coef-
ficients corresponding to a 4th-order filter, was synthesized
using a metamodel-based approach on an FPGA platform.
Table I shows the resource utilization and performance metrics
of the synthesized filter.

TABLE I
RESOURCE UTILIZATION AND PERFORMANCE OF FIR FILTER ON FPGA

Parameter Value
Core Frequency [MHz] 89.73
Algorithm Clock Cycles 6
Execution Time [µs] 0.0669
Adaptive Logic Modules (ALMs) 55
Logic Array Blocks (LABs) 10
ALUTs 74
Registers 88
DSP Blocks 8
M10K Memory Blocks 0

The metamodel approach allows the filter to achieve opti-
mized performance and resource efficiency, showing improve-
ments over traditional synthesis techniques by enabling the
exploration of different configuration parameters to find the
optimal hardware model.

VI. FUTURE DIRECTIONS AND ENHANCEMENTS

The flexibility and extensibility of the metamodel frame-
work offer several avenues for future research and develop-
ment:

• Incorporation of Additional Heuristic Methods: Future
work will explore the integration of various heuristic
optimization methods, including evolutionary algorithms.
These algorithms can provide a robust mechanism for
exploring large and complex design spaces, potentially
leading to more efficient and innovative hardware config-
urations.

• Parameter-Dependent Metamodel Testing: A key area
of future research will involve extensive testing of the
metamodel under various parameter configurations. This
includes studying the effects of different optimization
settings, hardware constraints, and algorithmic variations
on the performance and resource utilization of synthe-
sized designs, enabling a more refined and adaptable
metamodel framework.

• Enhanced Verification and Validation Processes: To
improve the reliability and robustness of the synthesized
hardware, future enhancements will focus on incorpo-
rating advanced verification and validation techniques.
This includes formal verification methods and the use
of hardware-in-the-loop (HIL) testing to ensure that
the generated designs meet stringent performance and
correctness criteria under a wide range of operational
scenarios.

ADVANCED HIGH-LEVEL SYNTHESIS TECHNIQUES BASED ON METAMODEL 1055

These advancements will further enhance the metamodel’s
capability to provide efficient, scalable, and adaptable solu-
tions for modern embedded system design challenges.

VII. CONCLUSION

This paper demonstrates the successful implementation of
a metamodel-based high-level synthesis (HLS) framework,
focusing on the design and optimization of digital signal
processing components such as the FIR filter. The meta-
model approach allows for a structured exploration of the
design space, enabling the automatic generation of optimized
hardware configurations tailored to specific requirements [2].
The implementation of an FIR filter using this framework
highlights the benefits of this approach, including improved
resource utilization, reduced execution time, and enhanced
adaptability to varying performance constraints [3].

The FIR filter implementation showcases the practical ben-
efits of the metamodel framework in real-world applications.
By leveraging a high-level language like Python and its
capabilities, such as the Abstract Syntax Tree (AST), complex
algorithms can be described in a clear and concise manner,
facilitating rapid prototyping and seamless integration with
FPGA synthesis tools [9]. The results obtained from the FIR
filter implementation confirm that the metamodel approach not
only meets performance targets but also optimizes the use of
FPGA resources, such as adaptive logic modules (ALMs), DSP
blocks, and registers, thereby demonstrating the framework’s
potential for wider applications in embedded systems [4].

Resource utilization metrics from the FIR filter, including
a core frequency of 89.73 MHz and minimal execution time
of 0.0669 microseconds, reflect the efficacy of the metamodel
approach in achieving high performance with efficient use of
hardware resources. The ability to configure parameters such
as loop unrolling and pipelining directly from the metamodel
provides a significant advantage over traditional synthesis
methods, allowing designers to achieve specific performance
goals without extensive manual optimization [5].

Looking forward, the integration of machine learning tech-
niques into the metamodel framework presents an exciting
opportunity to further enhance design automation. Machine
learning models can predict optimal configurations based on
historical data, thus accelerating the design space exploration
and reducing the time needed to achieve optimal solutions. Ad-
ditionally, the potential for dynamic reconfiguration introduces
a level of flexibility that can adapt to changing operational
conditions in real-time, making the framework suitable for
applications with fluctuating requirements.

Expanding the metamodel framework to support more com-
plex systems, including multi-FPGA configurations, offers
another promising direction. This would enable the framework
to handle larger and more intricate designs, where synchro-
nization across multiple hardware components is crucial. The
scalability of the framework is key to its applicability in
advanced embedded systems and could position it as a pivotal
tool in the design of next-generation digital and analog mixed-
signal systems.

The broader implications of this work highlight the advan-
tages of using Python as the primary language for high-level

synthesis in cutting-edge research environments such as JET,
ITER, CERN, and many others. Python’s readability, extensive
library ecosystem, and ability to interface with synthesis tools
make it an ideal choice for describing algorithms that need to
be implemented on FPGA platforms [10]. The use of Python
allows for the direct translation of high-level code into hard-
ware implementations, thereby streamlining the development
cycle and enabling early-stage optimization and verification
through emulation.

Moreover, the implementation of advanced algorithm trans-
formation techniques using AST manipulation positions
Python as a powerful tool in the domain of digital system
design. The early detection of errors and the ability to test and
optimize algorithms before hardware synthesis significantly
enhance the reliability and performance of the final designs.
This capability is particularly valuable in research settings
where rapid prototyping and iterative development are crucial.

In conclusion, the metamodel-based HLS framework pre-
sented in this paper provides a comprehensive solution for the
efficient design of FPGA-based systems. By combining the
strengths of high-level algorithm description in Python with
the advanced capabilities of metamodel-driven optimization,
the framework achieves a high degree of flexibility, scalability,
and performance. Future work will continue to refine this
approach, exploring new avenues for integration with emerging
technologies and expanding its applicability to a wider range
of complex digital systems. The continuous evolution of the
metamodel framework promises to drive further advancements
in the field of high-level synthesis, offering a robust platform
for the next generation of embedded system design.

REFERENCES

[1] A. E. Shumack, A. Byszuk, R. Cieszewski, G. H. Kasprowicz, K.
Poźniak, A. Wojeński, and W. Zabołotny, ”X-ray Crystal Spectrom-
eter Upgrade for ITER-like Wall Experiments at JET,” Review of
Scientific Instruments, vol. 85, no. 11, pp. 11E425-1–11E425-3, 2014.
https://doi.org/10.1063/1.4891182

[2] R. Cieszewski, K. Poźniak, and R. Romaniuk, ”Synteza
wysokiego poziomu dla układów FPGA z wykorzystaniem
metody partycjonowania grafów,” Przeglad Telekomunikacyjny -
Wiadomości Telekomunikacyjne, vol. LXXXVII, no. 4, pp. 80–85,
2018. https://doi.org/10.15199/59.2018.4.1

[3] R. Cieszewski and K. Poźniak, ”Synteza Wysokiego Poziomu
z wykorzystaniem jezyka Python,” Elektronika - konstrukcje,
technologie, zastosowania, vol. 58, no. 8, pp. 31–35, 2017.
https://doi.org/10.15199/13.2017.8.7

[4] R. Cieszewski, R. Romaniuk, and K. Poźniak, ”Multi-level compiler
concept for high-level synthesis,” in Proc. of SPIE: Photonics Applica-
tions in Astronomy, Communications, Industry, and High Energy Physics
Experiments 2022, eds. R. Romaniuk, A. Smolarz, and W. Wójcik, vol.
12476, pp. 1–7, 2022. https://doi.org/10.1117/12.2659459

[5] R. Cieszewski, K. Poźniak, and M. G. Linczuk, ”Widely parameteri-
zable high-level synthesis,” in Proc. of SPIE: Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics
Experiments 2018, eds. R. Romaniuk and M. G. Linczuk, vol. 10808,
pp. 108084D-1–108084D-7, 2018. https://doi.org/10.1117/12.2502153

[6] A. Byszuk, K. Poźniak, W. Zabołotny, G. H. Kasprowicz, A. Wojeński,
R. Cieszewski, B. Juszczyk, P. Kolasiński, and P. Zienkiewicz, ”Fast
Data Transmission in Dynamic Data Acquisition System for Plasma
Diagnostics,” in Proc. of SPIE: Photonics Applications in Astron-
omy, Communications, Industry, and High-Energy Physics Experi-
ments, ed. R. Romaniuk, vol. 9290, pp. 92902O-1–92902O-6, 2014.
https://doi.org/10.1117/12.2076089

https://doi.org/10.1063/1.4891182
https://doi.org/10.15199/59.2018.4.1
https://doi.org/10.15199/13.2017.8.7
https://doi.org/10.1117/12.2659459
https://doi.org/10.1117/12.2502153
https://doi.org/10.1117/12.2076089

1056 RADOSLAW CIESZEWSKI, ET AL.

[7] R. Cieszewski, ”Accelerating Artificial Intelligence with Reconfigurable
Computing,” in Proc. of SPIE: Photonics Applications in Astron-
omy, Communications, Industry, and High-Energy Physics Experiments
2012, ed. R. Romaniuk, vol. 8454, pp. 84541L-1–84541L-8, 2012.
https://doi.org/10.1117/12.2000098

[8] R. Cieszewski, R. Romaniuk, K. Poźniak, and M. G. Linczuk, ”Algo-
rithmic synthesis using Python compiler,” in Proc. of SPIE: Photonics
Applications in Astronomy, Communications, Industry, and High-Energy
Physics Experiments, ed. R. Romaniuk, vol. 9662, pp. 96623J-1–96623J-
8, 2015. https://doi.org/10.1117/12.2205609

[9] R. Cieszewski, K. Poźniak, and R. Romaniuk, ”Python Cased High-
Level Synthesis Compiler,” in Proc. of SPIE: Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics
Experiments, ed. R. Romaniuk, vol. 9290, pp. 92903A-1–92903A-8,
2014. https://doi.org/10.1117/12.2075988

[10] R. Cieszewski, M. G. Linczuk, K. Poźniak, and R. Romaniuk, ”Re-
view of Parallel Computing Methods and Tools for FPGA Tech-
nology,” in Proc. of SPIE: Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments
2013, ed. R. Romaniuk, vol. 8903, pp. 890321-1–890321-13, 2013.
https://doi.org/10.1117/12.2035385

[11] R. Cieszewski and M. G. Linczuk, ”RPython high-level synthe-
sis,” in Proc. of SPIE: Photonics Applications in Astronomy, Com-
munications, Industry, and High-Energy Physics Experiments 2016,
ed. R. Romaniuk, vol. 10031, pp. 100314O-1–100314O-6, 2016.
https://doi.org/10.1117/12.2249143

[12] R. Cieszewski and M. G. Linczuk, ”Universal DSP module interface,”
in Proc. of SPIE: Photonics Applications in Astronomy, Communica-
tions, Industry, and High-Energy Physics Experiments 2010, eds. R.
Romaniuk and K. Kulpa, vol. 7745, pp. 7745-1T1–7745-1T1-6, 2010.
https://doi.org/10.1117/12.869580

[13] T. Janicki, R. Cieszewski, G. H. Kasprowicz, and K. Poźniak, ”FPGA
Mezzanine Card DSP Module,” in Proc. of SPIE: Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics
Experiments 2011, ed. R. Romaniuk, vol. 8008, pp. 80080K-1–80080K-
7, 2011. https://doi.org/10.1117/12.905660

[14] M. G. Linczuk, S. Korolczuk, and R. Cieszewski, ”Using Singular Value
Decomposition for Neutron-Gamma Discrimination,” in Proc. of SPIE:
Photonics Applications in Astronomy, Communications, Industry, and
High-Energy Physics Experiments, ed. R. Romaniuk, vol. 9662, pp.
96622G-1–96622G-9, 2015. https://doi.org/10.1117/12.2204901

[15] K. Poźniak, A. Byszuk, R. Cieszewski, G. H. Kasprowicz, and
W. Zabołotny, ”FPGA Based Charge Fast Histogramming for GEM
Detector,” in Proc. of SPIE: Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments
2013, ed. R. Romaniuk, vol. 8903, pp. 89032F-1–89032F-6, 2013.
https://doi.org/10.1117/12.2037047

[16] K. Poźniak, ”VHDL-based universal programmable process for FPGA,”
in Proceedings Volume 12476, Photonics Applications in Astronomy,
Communications, Industry, and High Energy Physics Experiments 2022,
vol. 12476, 124760X, 2022. https://doi.org/10.1117/12.2659617 Event:
Photonics Applications in Astronomy, Communications, Industry, and
High Energy Physics Experiments 2022, 2022, Lublin, Poland.

https://doi.org/10.1117/12.2000098
https://doi.org/10.1117/12.2205609
https://doi.org/10.1117/12.2075988
https://doi.org/10.1117/12.2035385
https://doi.org/10.1117/12.2249143
https://doi.org/10.1117/12.869580
https://doi.org/10.1117/12.905660
https://doi.org/10.1117/12.2204901
https://doi.org/10.1117/12.2037047
https://doi.org/10.1117/12.2659617

	Introduction
	Motivation and Objectives

	Theory
	Mathematical Formulation of the HLS Problem
	Complexity Analysis of the HLS Problem
	Graph Transformations in HLS
	Advanced Heuristics for HLS Optimization
	Complexity Analysis of the Heuristic Algorithm

	Metamodel Framework
	Component Overview
	Model of the Compilation Process
	Metamodel as a Model of Internal Hardware Models

	Implementation of the HLS Compiler
	High-Level Language for Algorithm Description

	Implementation and Verification of FIR Filter
	Mathematical Definition of FIR Filter
	Resource Utilization and Performance

	Future Directions and Enhancements
	Conclusion
	References

