
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 4, PP. 1099–1104
Manuscript received October 3, 2024; revised October 2024. doi: 10.24425/ijet.2024.152512

Analyses of malicious software long term activity -
a case study

Krzytof Cabaj, Witold Wysota, Konrad Grochowski, and Piotr Gawkowski

Abstract—The paper describes the approach, instruments, and
their evolution over a prolonged investigation of data collected
by a honeypot system. The data is focused on network activity
of a cybersecurity threat, in particular, attacks and activity
throughout last five years of bots belonging to Smominru botnet.
Conducted analyses include, but are not limited to, IP addresses
used during attacks, day by day activity and evolution of ma-
licious executables distributed over the observation period. The
presented results also contain behavioural analysis of the threat
and attack sources. Moreover, the paper details the systems used
for data acquisition, their modifications along the observations
made and all the tools developed to achieve the results.

Keywords—HoneyPots; Dionaea; malware analysis; cybersecu-
rity; Smominru botnet

I. INTRODUCTION

THIRTY years ago Bill Cheswick described a HoneyPot
system, used to observe an attacker who was compro-

mising computers in Computer Science Research division
of AT&T Bell Laboratories [1]. Still, after all these years,
HoneyPot systems provide valuable information concerning
attackers’ activity. This paper discloses our findings with five
years of observation of worm activity targeted at Microsoft
SQL Server (MSSQL). In this case, a complex infrastructure
used during a massive attack has been discovered. Long
observation span required that the monitoring system had to be
adapted to changes in attackers’ behaviour. These in turn were
probably the result of evolution of the security ecosystem. This
is a good example of how “arms race” between attackers and
security business nowadays looks like.

The paper is structured as follows. Section II describes
HoneyPot systems and defines the scope of research the
paper focuses on. Next, the tools used, developed, or adapted
to transform collected raw data into artefacts are presented
(Section III). These artefacts and statistical data can be further
analysed to trace the behaviour and development of the threat.
The main part of the paper, Section IV, presents the results of
the research, focusing on different aspects of malware activity,
malicious payload and the origin of the attackers. The paper
is summarised in Section V.

K. Cabaj, W. Wysota, K. Grochowski, P. Gawkowski are with Faculty of
Electronics and Information Technology, Warsaw University of Technology,
Warsaw, Poland (e-mail: {krzysztof.cabaj, witold.wysota, konrad.grochowski,
piotr.gawkowski} @pw.edu.pl).

II. HONEYPOT SYSTEMS

HoneyPots are decoy systems that trick malicious actors into
believing they are interacting with a real production-deployed
computer system. When attacking software tries to exploit
vulnerabilities in the system to gain access to the target, its
actions are recorded.

They can be classified based on their purpose and level of
interaction [2]. Starting with low-interaction that are simple
and safe (from the perspective of HoneyPot owner), through
medium-interaction (where emulated software is more com-
plex), up to high-interaction ones that contain real operating
system the attacker can interact with (which allows gathering
more information). It has to be considered that high-interaction
HoneyPots are at the same time more risky (and require more
maintenance effort) than medium- and low-interaction ones.
On the other hand, the latter two types of HoneyPot are less
likely to be deeply exploited by sophisticated malware than the
high-interaction type, because the attacker can figure out that it
is a decoy and stop the operation. This leaves low-interaction
solutions as a good choice for capturing worms that rely on
targeting a large volume of hosts in hope of infecting as many
systems as they can.

There are different HoneyPot implementations available,
both free and commercial ones, that are more or less so-
phisticated and allow easy management and deployment of
instances. Some of them were described in [3]. HoneyPots
usually simulate a range of network services and can be used
to collect data related to different kinds of exploits. Studies
exist that describe analysis of data collected across different
services. An example of such is [4], where almost 1 million
events is analysed across 5 months and correlation between
different events (origin and time-wise) is explored.

In this work, rather than investigating a range of services,
the focus is on long-term analyses of a worm exploiting
a single service — MSSQL running on Windows systems.
Unlike other studies, for example, [5], [6], the research in
this paper is based on a much larger set of data. From Q4
of 2019 until Q3 of 2024 over 2.31 million of attacks were
registered. However, this paper considers only 45 thousand
attack cases gathered in that period. The authors attribute them
to the Smominru Botnet [7].

III. TOOLSET

All the raw research data in the analyses given further
were captured by Dionae HoneyPot instance deployed by the

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


1100 K. CABAJ, ET AL.

stream = [
(’in’, b’\x12\x01\x00 ... \x08\x00\x00’),
(’out’, b’\x04\x01\x00 ... \x02\x00\x00’),
...
(’in’, b’ ... declare @a ...;exec(@a);’),
...
(’in’, b’ ... exec(@a);\x27;exec ... ’),
...
]

Fig. 1. HoneyPot raw data extract example (”...” denotes cropped data)

authors. Due to vast amounts of registered data, their manual
analysis was impossible. For this reason, some custom Python
scripts were developed and used for exhaustive analysis of
the gathered raw data. In the following sections the detailed
description of utilised tools is presented.

A. Dionaea HoneyPot

Dionaea HoneyPot is a low-interaction HoneyPot and does
not host real vulnerable software but can simulate different
protocols, including FTP, telnet, Microsoft SMB, MySQL, and
more [5], [6]. One of its features is that after a few failed
attempts it allows to login to password protected services with
any password. For that reason, it is possible to gather pass-
words used during dictionary attacks, as well as to encourage
the attacker to send more commands.

For security reasons, the instance of Dionaea used in this
research is deployed on a rarely used hardware architecture.
Due to this fact, some libraries used by the system had to
be ported to the chosen architecture. Data gathered by the
HoneyPot were stored to the file system and analysed by
custom Python scripts described in the following section.

B. Python Scripts for SQL Attack Analysis

Data collected by the HoneyPot are delivered in form of
streams. Each of them contains all the data exchanged during
a single network connection to the HoneyPot and are stored
in dedicated files. These files are stored in one folder per day,
each in one folder per year-month pair, and finally in one
folder per year. Such grouping enables a convenient inspection
of the gathered data and speeds up some disk operations on a
large data sets. A file name itself encodes the data and origin
(in the form of a remote IP address) of the captured activity, as
well as the port and the name of the service simulated by the
HoneyPot (e.g. mssqld-1433-210.4.123.XYZ-hAsH).

Figure 1 presents an example of the file contents of such
a stream (cropped in some places due to its size). The data
format uses a list of Python binary strings. This provides hu-
man readability, which allows for easy inspection of the data.
Each item in a stream is marked either in or out. The outgoing
data are the HonyPot responses, usually the same execution
confirmation message repeated after each incoming data. The
attack would not continue if no response were produced,
but although necessary, the responses themselves provide no
additional information for the analysis. The incoming data are

the exact bytes sent to the HoneyPot port. They can contain
both MSSQL protocol bytes and SQL commands in the form
of ASCII characters. Not every item in the stream contains an
SQL command, but those that do usually include more than
one (separated by semicolons – see Fig. 1).

The structure of the data was one of the driving forces of the
development of the custom analytic scripts. The second one
was the authors’ understanding of the attack, growing with
each iteration of the tools and observations. The tools were
initially created when binary data encoded as hexadecimal
strings were observed embedded in some SQL commands.
This first version was a simple prototype for filtering of inter-
esting SQL commands, extracting and decoding those strings.
Python was selected as a natural environment for prototyping
data manipulation, especially when all the processing could be
performed offline and execution speed was not a top priority,
rather the ability to quickly add more layers to the analysis.

The extracted data were called blobs and the first analysis
was focused on establishing the relationship between dates,
IP addresses and blobs used. This led to an early observation,
that even a single IP uses multiple different blobs, but most
addresses in the same period used a similar set of blobs.
This suggested, that different blobs might not be separate
payloads, but rather part of a more complex, multi-stage attack.
Scripts were extended to preserve the connection between
blobs obtained from the same stream and their order in the
stream itself. The next assumption was that shorter streams
were not examples of a different kind of attack, but samples
of an attack that for some reason ended prematurely. That
assumption was used to further group the attacks, leading to
discovery of sequences that could be used to tag the various
stages of the attack evolution.

All scripts produce data in a form of human-readable textual
reports (for easy human inspection) and JSON (for convenient
feeding the data into following stages of the analysis). Finally,
the scripts also produce obtained blobs in a binary form, so
they could be used for further analysis.

IV. RESULTS

The first attempt of an attack directed at MSSQL was
recorded by HoneyPot system on 3 April 2017. This activity
was observed with relatively high intensity for almost two
years. Suddenly, it almost completely stopped around the
middle of February 2019. During this period, more than 36,000
attacks were observed. The sudden drop of activity was rather
a global trend1. However, on 7 October 2019 a new wave
of attacks began. Figure 2 presents the activity during the
analysed five years of worm activity.

The recorded and analysed 43,544 attacks are not distributed
equally in time. From Q4 2019 until around Q2 2022 a slow
decrease in worm activity was observed (from more than
100 to around 25 attacks per day). Then, for more than two
years, the observed activity was less than 10 attacks a day.
The interesting rise in activity, to around 15 attacks per day,
could be observed in June and July 2024. However, after these
two months, the average activity has decreased to the earlier

1see live data gathered by https://dshield.org/port.html?port=1433

https://dshield.org/port.html?port=1433


ANALYSES OF MALICIOUS SOFTWARE LONG TERM ACTIVITY - A CASE STUDY 1101

frequency of less than 10 attacks per day. In the following
sections we present the most valuable results from conducted
analysis of gathered data.

A. Execs and Potatoes

Each observed attack instance begins with guessing a weak
password for the Database Management System (DBMS) op-
erated by MSSQL. Afterwards, a sequence of various SQL in-
structions are sent by the attacker to the database management
system which in effect downloads a malicious executable and
finally infects the machine. During analysis of SQL queries,
two interesting code fragments were identified. Due to the
usage of characteristic keywords they were nicknamed execs
and potatoes (examples are presented in the Fig. 3 and 4,
respectively).

In-depth analysis of execs code reveals that encoded string
contains JavaScript program, which, when executed, would
download next stage malicious executables. Twenty seven
unique parts of such code were detected in the analysed period
of time. The analysis of JavaScript code reveals an attempt to
access wpd.txt, kill.html, test.html, and v.sct files, which are
associated with Smominru botnet [8].

What is worth mentioning, the executables were observed to
appear in unique sequences, which could be used to distinguish
various versions of the botnet. During the conducted research,
fourteen unique sequences have been discovered (see Table I).
The table presents also the number of detected sequences
(Full column), the number of partial sequences – which ended
before the full sequence is received by the HoneyPot (Part col-
umn), and the total number of attempts (Total column). As can
be seen in the table, some sequences appear very commonly,
while some are rather rare. This shows the evolution of the
threat – the attackers make multiple iterations of modifying
the code and evaluating whether the change has increased the
infection rate.

TABLE I
DETECTED exec SEQUENCES

ID Sequence Full Part Total

E1 1, 2, 2, 3, 4, 5, 6, 7, 8 121 397 518

E2 9, 10, 10, 9, 11, 4, 5, 6, 8 978 20 998

E3 1, 2, 2, 3, 4, 5, 6, 12, 8 15071 26 15097

E4 13, 14, 14, 15, 4, 5, 6, 16, 8 30 0 30

E5 17, 18, 18, 17, 11, 4, 5, 6, 8 10 0 10

E6 19, 20, 20, 21, 22, 23, 5, 24, 6, 25, 8 6 0 6

E7 1, 2, 2, 3, 4, 5, 6, 26, 8 2528 2 2530

E8 1, 2, 2, 3, 4, 5, 6, 27, 8 95 0 95

E9 1, 2, 2, 3, 27, 8 19138 46 19184

E10 2, 2, 3, 27, 8 18 8 26

E11 27, 8 85 6 91

E12 2, 3, 27, 8 7 0 7

E13 8 4575 0 4575

E14 3, 27, 8 9 5 14

Figure 5 presents execs sequence evolution, where the most
prominent attacker sequences (i.e. E3, E7, E9, and E13) are

clearly visible. Comparing this plot with the overall activity of
the worm (Fig. 2) one can notice an important difference: after
the rise of activity observed in June and July 2024, the execs
has completely disappeared in analysed data. Careful analysis
of data, shows that this element of infection was abandoned by
attackers around 20 July. This event can be possibly explained
by potatoes evolution analysis described below.

Similar analysis was applied to potato type of SQL code
fragments. Analysis of the CREATE ASSEMBLY SQL com-
mand shows that it creates CLR2 based executable. Nineteen
unique executables of this type were detected during the
analysed period. Once again, they were observed in unique
sequences. Table II presents detected potato sequences and
their cardinality.

TABLE II
DETECTED potatoes SEQUENCES

ID Sequence Full Part Total

P1 1 18527 0 18527

P2 2 6510 0 6510

P3 3, 4 12666 29 12695

P4 5, 6, 7 219 1 220

P5 5, 8, 6, 9 4234 80 4314

P6 10, 11, 12 129 3 132

P7 13, 14, 15 5 1 6

P8 13, 14, 16 215 0 215

P9 17, 18, 19 8 0 8

The evolution of potatoes has been presented in Fig. 6. The
shape of the plot is similar to the one presented in Fig. 5. The
plots are very similar and the only difference in behaviour can
be noticed after the rise of activity in June and July 2024. In
contrast to the activity of execs (which ceased completely after
20 July), potatoes appear in few variants (see P6-P8 sequences
in Fig. 6). This is consistent with the observed changes in
botnet’s behaviour: decreasing number of different execs yields
an increase in the number of potato types. The next section
provides more details on the contents of potato payloads.

B. CLR executables analysis

The SQL command sample from Fig. 4, containing the
potato type of encoded data, is the reason for the keyword
used in this paper – it is derived from the assembly name
used by the attackers themselves. The code sample suggests
that potatoes are binary executables in a format compatible
with CLR, to be injected into an MSSQL instance. This was
verified and deemed true by inspecting header of the decoded
files.

Table III provides basic information on the obtained CLR
executables (the potatoes used in the attacks). The identifier
used in the table matches the number in the sequence definition
(e.g. sequence P3 contained executables of ID 3 and 4). This
also explains why the last column – the date of the first obser-
vation of the given executable – contains groups of the same

2Common Language Runtime — Microsoft’s execution platform for .NET
languages’ family (C#, F#, VB.NET)



1102 K. CABAJ, ET AL.

Fig. 2. Observed worm activity between 2019Q4 and 2024Q3

declare @a varchar(8000);set @a=0x44
45434C41524520406A733120696E743B4558
45432073705F4F4143726561746520275363
72697074436F6E74726F6C272 ... ;exec(@a);

Fig. 3. Malicious SQL code containing exec keyword

CREATE ASSEMBLY [SweetPotatoClr20]
AUTHORIZATION [dbo] FROM x4D5A90000
300000004000000FFFF0000B80000000000
. . .
0000000 WITH PERMISSION_SET = UNSAFE;

Fig. 4. Malicious SQL code containing potato keyword

dates: all executables from the same sequence were observed
together. The hash column contains MD5 checksum of the
binary, which can be used to identify it in online resources like
VirusTotal3, without the need to propagate malicious software.
All obtained samples were compared with VirusTotal database
of known threats, which provides a comprehensive amount
of information. Two interesting metrics were included in the
table: the number of security vendors that flagged the sample
as malicious (over total vendors queried) and the date of
the first submission to the database. Marked entries denote
samples first uploaded to VirusTotal as a result of this analysis.
It is worth noticing, that 13 out of 19 samples (68%) were first
analysed during this research and those seem more difficult
to properly flag as malicious by security software. Dates for
remaining entries can be treated as indicative data suggesting
that the attacks described in this paper were observed by others
in similar time frames.

The name and initial behavioural analysis provided by
VirusTotal suggests, that the malicious codes might be variants
of SweetPotato Windows privilege escalation tool, developed
by penetration testers and described in [9]. Yet, the first
recorded use of a potato in the observed attacks was recorded
in October 2019 – six months before publication of the tool
code in the GitHub repository in April 2020 (or three years

3https://www.virustotal.com

if taking into the account VirusTotal submission date). This
observation requires further research. Apart from the analysis
of the payloads used during the attack, the research also
focused on the origins of the attacks. The results of this
analysis are described in the following section.

TABLE III
OBTAINED CLR EXECUTABLES

ID Hash Virus Total First
ObservedFlags Submitted

1 2f1aecbdb7ffcb0016de8ab734c0de44 51/73 2017-05-15 2019-10-07

2 130d2b07a1c4cde8f0804df9fa9622d4 55/75 2021-03-06 2020-07-26

*3 7c253e9c5d1b5f562866b92d64499552 32/72 2024-10-07 2020-12-07

*4 908481721f2f150589337023f44f0393 32/72 2024-10-07 2020-12-07

5 b41633dc589b37d7894240f5c48ef332 53/72 2022-05-19 2022-05-25

6 77c9692543c3c370ae46f72718a11d4e 52/73 2022-04-29 2022-05-25

*7 224c244f6cab736846a3e1c199d670d5 17/71 2024-10-07 2022-05-25

8 32b4d14563d320a0912a94a54877aa54 46/72 2022-07-25 2022-06-01

*9 d6d437b32437ad26ea8fb7660d546f01 19/72 2024-10-07 2022-06-01

10 c08a4df2c1a925b79a875ed4b90fe09f 5/73 2024-08-15 2024-07-20

*11 539ebc99c7cdff52d338672dcbb11ad8 10/72 2024-10-07 2024-07-20

*12 3cd878f8d0f638bd6eebc834ffd1f43d 8/72 2024-10-07 2024-07-20

*13 9c30af755203a50ad4c800a298469928 17/72 2024-10-07 2024-08-20

*14 9a911eeff01d9910e9745a2ee388048b 11/72 2024-10-07 2024-08-20

15 62b531a9a2d935c0ee9129bb64603bca 33/73 2024-09-08 2024-08-20

*16 c246bb43e26df88e2a112fdc39e14e43 23/72 2024-10-07 2024-08-21

*17 adc9db5f9f0a7e329fbb6ed134b45ce9 17/72 2024-10-07 2024-09-29

*18 d7ee11c8c6bcc8ea6bd17636e6b3bba6 12/72 2024-10-07 2024-09-29

*19 13b8d0dd0b249bd2de9a8e0c757c5ef4 17/72 2024-10-07 2024-09-29

C. Attackers IP addresses analysis

Having recorded so many network attacks, their geographic
origins were analysed. First, occurrences of given IP net-
work addresses were counted for all attacks. Then, a simple
Python script to assemble a database of mappings between
IP addresses and geographical information obtained via IP-
WHOIS.IO4 was developed. That data were then further

4https://ipwhois.io/, API: http://ipwho.is

https://www.virustotal.com
https://ipwhois.io/
http://ipwho.is


ANALYSES OF MALICIOUS SOFTWARE LONG TERM ACTIVITY - A CASE STUDY 1103

Fig. 5. Detected exec sequences from 2019Q4 to 2024Q3

Fig. 6. Detected potatoes sequences from 2019Q4 to 2024Q3

processed by more Python code to obtain network information
about a particular offender and its country of origin.

Fig. 7. Count of IP addresses conducting a given number of attacks

The majority of hosts performed only a few attacks each.
In the analysed dataset, only 16 attackers are responsible for
making 30 or more attacks each, contributing to the total of

659 incidents, which makes only 1.49% of all attacks. Ten
of those attackers were within networks attributed to ASNs5

for networks located in China. A histogram of the number of
attacks performed per IP is presented in Fig. 7. It is clearly
visible that most hosts have conducted an attack only once
or twice within those 5 years. It is unclear whether those
addresses that are the source of attacks more frequently are
really the same attackers or rather public IPs of private network
gateways. That could be a field of further research.

GeoIP analysis of the data shows that most of the attacks
originated in China (slightly over 50%, not including Hong
Kong) with the United States of America, Brazil, and Russia
trailing far behind. The distribution of incidents across coun-
tries of origin is presented in Table IV (top 10) as well as in
Fig. 8 (all). Since China is the leading area of the source of
attacks, a more fine-grained information on that is shown in
Fig. 9. Most incidents come from the Beijing area (20% of
all incidents from China) as well as other developed regions
of China on the south-east coast. It is worth noting that these
results are consistent with the attack sources of Smominru
botnet stated in [8].

5Autonomous System Number; Autonomous Systems are large networks
with a single routing policy



1104 K. CABAJ, ET AL.

TABLE IV
COUNTRY OF ORIGIN (TOP 10)

Country Number of attacks Percentage

China 22061 50.66
USA 2382 5.47
Brazil 1399 3.21
Russia 1321 3.03
India 1081 2.48
Hong Kong 1067 2.45
Mexico 1020 2.34
Korea 943 2.17
Taiwan 891 2.05
Indonesia 746 1.71

Fig. 8. Countries of origin by attack count

Fig. 9. Sources of attacks originating in China

V. CONCLUSIONS

The recorded five years of Smominru botnet activity is
a huge set of data to dive into and explore. It can be analysed
in many ways to discover different malware aspects and
properties. Captured raw data includes the attack vector (in
this case, the set of passwords used to get into the system).
One can also get detailed scenarios of commands the malware
sends to MSSQL for further system exploiting.

An interesting observation is the evolution of executables
the malware tries to run on the affected system. Moreover,
these executables are injected in some sequence that can be
used for identification of subsequent botnet versions. It is sad
that even after plenty of time many antivirus systems still do
not recognise them as malicious.

Each registered attack unveils more information about the
worm itself. This allows for multilayered analysis of the
threats – starting from technical nuances of the exploits, up to
geographical distribution of the infected machines. Examples
of such various analyses are presented in this paper. Yet they
do not exhaust the research possibilities offered by the already
gathered data.

Further research can be focused on dynamic analysis of
gathered executables to explore their evolution (e.g. system
resource usage, communication patterns, file system opera-
tions). However, it is worth noting that even static low-cost
data sources like HoneyPots require dynamic approach to data
analysis. Continuous analysis of the malware using HoneyPots
is indisputably beneficial but still challenging task.

REFERENCES

[1] B. Cheswick, “An evening with berferd in which a cracker is lured,
endured, and studied,” in In Proc. Winter USENIX Conference, 1992,
pp. 163–174.

[2] I. Mokube and M. Adams, “Honeypots: concepts, approaches, and
challenges,” in Proceedings of the 45th Annual ACM Southeast
Conference, ser. ACMSE ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 321–326. [Online]. Available:
https://doi.org/10.1145/1233341.1233399

[3] W. Ahmad, M. A. Raza, S. Nawaz, and F. Waqas, “Detection and analysis
of active attacks using honeypot,” International Journal of Computer
Applications, vol. 184, no. 50, pp. 27–31, Mar 2023. [Online]. Available:
https://ijcaonline.org/archives/volume184/number50/32645-2023922624/

[4] E. Vasilomanolakis, S. Karuppayah, P. Kikiras, and M. Mühlhäuser,
“A honeypot-driven cyber incident monitor: lessons learned and steps
ahead,” in Proceedings of the 8th International Conference on Security
of Information and Networks, ser. SIN ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 158–164. [Online].
Available: https://doi.org/10.1145/2799979.2799999

[5] V. Sethia and A. Jeyasekar, “Malware capturing and analysis using dion-
aea honeypot,” in 2019 International Carnahan Conference on Security
Technology (ICCST), 2019, pp. 1–4.

[6] K. Saikawa and V. Klyuev, “Detection and classification of malicious
access using a dionaea honeypot,” in 2019 10th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), vol. 2, 2019, pp. 844–
848.

[7] C. Cimpanu, “Smominru botnet infected over 500,000 windows ma-
chines,” Bleeping Computer, vol. 1, 2018.

[8] “The massive propagation of the smominru botnet,” https://www.akamai.
com/blog/security/the-massive-propagation-of-the-smominru-botnet, ac-
cessed: 2024-10-10.

[9] C. Coburn, “Sweetpotato – service to system,” Apr 2020.
[Online]. Available: https://www.pentestpartners.com/security-blog/
sweetpotato-service-to-system/

https://doi.org/10.1145/1233341.1233399
https://ijcaonline.org/archives/volume184/number50/32645-2023922624/
https://doi.org/10.1145/2799979.2799999
https://www.akamai.com/blog/security/the-massive-propagation-of-the-smominru-botnet
https://www.akamai.com/blog/security/the-massive-propagation-of-the-smominru-botnet
https://www.pentestpartners.com/security-blog/sweetpotato-service-to-system/
https://www.pentestpartners.com/security-blog/sweetpotato-service-to-system/

	Introduction
	HoneyPot systems
	Toolset
	Dionaea HoneyPot
	Python Scripts for SQL Attack Analysis

	Results
	Execs and Potatoes
	CLR executables analysis
	Attackers IP addresses analysis

	Conclusions
	References

