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A computer scientist’s perspective on approximation
of IFS invariant sets and measures with the random

iteration algorithm
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Abstract—We study invariant sets and measures generated by
iterated function systems defined on countable discrete spaces
that are uniform grids of a finite dimension. The discrete spaces
of this type can be considered as models of spaces in which
actual numerical computation takes place. In this context, we
investigate the possibility of the application of the random
iteration algorithm to approximate these discrete IFS invariant
sets and measures. The problems concerning a discretization of
hyperbolic IFSs are considered as special cases of this more
general setting.
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I. THE PROBLEM

LET {Rn;w1, . . . , wm}, m ∈ N, be a hyperbolic iterated
function system (IFS) on a metric space (Rn, d), where

d is a metric induced by a norm on Rn, and the mappings
wi are contractions on (Rn, d). One can show that H(Rn),
the family of all compact and nonempty subsets of Rn,
when endowed with the Hausdorff metric h (induced by
d), forms a complete metric space (H(Rn), h). Moreover,
if a contraction w on (Rn, d) is regarded as a set mapping
w : H(Rn) → H(Rn), then w is a contraction operator on
(H(Rn), h) with the contractivity factor not greater than that
of w acting on (Rn, d). This observation forms a basis for
constructing the Hutchison operator W : H(Rn) → H(Rn)
defined by W (E) :=

⋃m
i=1 wi(E). The Hutchinson operator

a contraction on (H(Rn), h) with the contractivity factor not
exceeding the maximum of the contractivity factors of wi.
Finally, putting the contractivity of W and the completeness
of (H(Rn), h) together, by Banach’s fixed-point theorem we
get that W possesses exactly one fixed point A∞ = W (A∞),
and moreover

lim
k→∞

W ◦k(B) = A∞ (I.1)

regardless of B ∈ H(Rn). The fixed point A∞ is called the
attractor of the IFS, and being an element of H(Rn) it is a
nonempty and compact subset of (Rn, d).

An analogous argument, also based on Banach’s fixed-
theorem, is utilized to prove the existence and the uniqueness
of the invariant measure of the hyperbolic IFS with proba-
bilities, {K;w1, . . . , wm; p1, . . . , pm}, where

∑n
i=1 pi = 1,
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pi > 0, and K is a compact subset of (Rn, d). This time the
role of the complete space is taken on by the compact (and
thus complete) metric space (P(K), dw∗), where P(K) is the
family of Borel probability measures on K, and dw∗ is the
Monge-Katorovich metric. The role of the contraction operator
acting on (P(K), dw∗) is played by the Markov operator
T ∗ : P(K) → P(K) defined by T ∗(µ) :=

∑N
i=1 piµ ◦ w−1

i .
In this setting, by the Banach fixed point theorem

lim
k→∞

(T ∗)◦k(µ) = π∞ (I.2)

no matter what µ ∈ P(K), that is, the IFS invariant measure
π∞ ∈ P(K) is the unique attractive fixed point of the Markov
operator. Moreover, one can show that π∞ is supported by the
IFS attractor.

In actual implementations, however, the space upon which
IFS mappings operate is always merely a discrete model of Rn.
From the point of view of computation the most basic model
of the real numbers is a countable discrete space founded on
floating-point arithmetic. Spaces of this kind are the natural
setting within which implementation of the most popular
algorithm for approximating IFS attractors and measures, the
random iteration algorithm [1], generates its sequences of
points.

The problem is that contraction mappings on Rn can lose
their contraction properties when forced to act on a count-
able approximation of the space, even in such simple cases
as contractive similarity transformations [2]. Moreover, this
decline of contractivity caused by discretization is independent
of precision, in the sense that no matter what a discretization
granularity, the probability that a discrete version of an affine
contraction is not a contraction remains unchanged. Therefore,
we cannot get rid of this phenomenon by increasing the density
of discretization. Since for an IFS to be hyperbolic all its
component mappings have to be contractions, the probability
that a discrete version of a hyperbolic affine IFS retains
hyperbolicity decreases exponentially with the number of IFS
mappings. As a consequence, actual implementations of an
affine IFS are hardly ever hyperbolic even if the original IFS
is so. Therefore, at least from the perspective of the standard
hyperbolic IFS theoretical foundations, we cannot count on the
discrete counterparts of the Hutchinson and Markov operators
to be contractions in the discrete space, and thus, in such
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a situation, Banach’s fixed-point theorem is not applicable,
at least directly. In light of these facts, we can go even
further and question the relevancy of outcomes supplied by the
implementations of the algorithms built around the operators,
asking how the outcomes are related, if at all, to the true
attractor sets and measures of the original IFSs which are
hyperbolic in (Rn, d)?

The above problems direct us to the central subject of this
paper, which concerns discrete IFSs that are not merely deriva-
tives of hyperbolic IFSs but they are self-standing mathemat-
ical objects defined on a grid space from the very beginning.
The main question around which this paper is organized is
about the place of such self-standing discrete IFSs within
the framework of the theory of iterated function systems. We
treat the issues concerning discretization of hyperbolic IFSs
as special instances of this general problem.

II. MINIMAL ABSORBING SETS

In this section we develop a theory of minimal absorbing
sets for maps acting in a discrete space. In some respects a
minimal absorbing set of a map in the discrete space can be
viewed as the counterpart of fixed points of contractions in
Rn. However we will define and analyse minimal absorbing
sets in isolation from contractive maps in Rn, as freestanding
structures that can arise from the dynamics of a single map in
a discrete space. Then we will show that discretization of a
contraction in Rn leads to a map in a discrete space that can
be regarded as a special case of the more general construction
we will have considered earlier. We take advantage of the
concept of minimal absorbing set throughout this paper, and
such a generalization allows us to study, in Sec. III, discrete
iteration function systems on their own, with the ones that
arise from discretization of hyperbolic IFSs as a special case.

Hereafter, we will assume that the metric d on Rn is induced
by a norm, that is, d(x, y) := ∥x− y∥.

The following definition introduces the fundamental struc-
ture of this paper—a discrete counterpart of Rn:

Definition II.1. Let Gn(δ) be the regular tiling of Rn by
disjoint, half-open n-dimensional cubes of side δ > 0, which
are defined by

Cδ(m1, . . . ,mn) :=
[
(m1 − 1

2 )δ, (m1 +
1
2 )δ

)
× . . .

×
[
(mn − 1

2 )δ, (mn + 1
2 )δ

)
,

(II.1)

for m1, . . . ,mn ∈ Z, and thus

Gn(δ) :=
{
Cδ(m1, . . . ,mn) : m1, . . . ,mn ∈ Z

}
.

We will call Gn(δ) the δ-grid in Rn. We define the δ-
discretization of Rn, and denote it by Dn(δ), as the set of
the centers of the cubes in Gn(δ), that is,

Dn(δ) :=
{
δ[m1, . . . ,mn] : m1, . . . ,mn ∈ Z

}
.

Moreover, for the sake of brevity, we will write θ to denote
diamd(Cδ)/2, half of the diameter of a δ-cube with respect
to the metric d.

The discretization space Dn(δ) is a formal model of the
actual space upon which the concrete implementations of al-

gorithms really act, and from which they yield their results. For
example, if we regard squares Cδ(m1,m2) as pixels of size δ,
then D2(δ) can be identified with an image space. However,
when it comes to floating-point arithmetic, the issue is more
complicated. Due to a fixed number of significant digits1 in
the floating point number representation, the representable
numbers are not evenly spaced and the distance between
consecutive numbers grows with scale2. In the context of the
δ-grid model, this means that to represent the natural setting
for floating point arithmetic we would have to use a grid
with δ a monotonically increasing function of real numbers.
Nevertheless, to keep things as simple as possible, in such a
case we can assume constant δ set to a certain tiny number
that roughly reflects the error carried by the floating point
approximation in a bounded interval [−a, a]. For example, we
can follow the approach used in numerical analysis and accept
δ to be equal to the machine accuracy, which is the smallest
(in magnitude) floating point number which, when added to
the floating point 1.0, produces a floating point result different
from 1.0 (see e.g. [3]).

In the sequel, for convenience, we will often treat Dn(δ) as
a subset of Rn, that is, without defining any explicit mapping
of points from Dn(δ) to Rn; in other words, we assume that
any point of Dn(δ) is by definition a point of Rn. The converse
is in general not true and is the subject of the next definition
which establishes a relationship between points and mappings
on Rn and the ones of Dn(δ).

Definition II.2. We define the δ-roundoff of a point x ∈ Rn as
the result of the operation .̃ : Rn → Dn(δ) such that x̃ = δm,
where m ∈ Zn such that x ∈ Cδ(m). Using the operator, the
δ-roundoff of a mapping w : Rn → Rn is defined to be the
mapping w̃ : Dn(δ) → Dn(δ) such that w̃(x̃) = w̃(x̃).

In words, given a point in Rn, the operator .̃ finds a δ-cube
within which the point resides and returns the cube’s center.
Obviously, it is only a conceptual model of actual rounding
that goes in real computation environment, in which there are
no such things as real numbers to be rounded. The actual
process operates all the time only on some representations of
ideal reals and the representations are accurate at most for a
finite subset of rational numbers. Moreover, as to rounding a
mapping w, our model is very optimistic because it assumes
that the result of a computed and rounded value of w is
within 0.5δ of the exact result (w.r.t. the maximum metric
d∞), regardless of the class of the mapping itself. This is the
best possible accuracy of computation in a given δ-grid setup.
However, in floating point computation (IEEE 754 standard)
such precision3 is guaranteed only for elementary arithmetic
operations (addition, subtraction, multiplication, division, and
square root). Since mappings are typically composed of more

1Typically the 23-bit and 52-bit mantissa for single- and double-precision,
which translates to about 7 and 16 decimal digits.

2More strictly, the numbers are evenly spaced in the intervals [2j , 2j+1],
possibly excluding one or both endpoints, and at the endpoints the interval
between adjacent numbers doubles [4].

3Here, we identify the value of δ with the ULP (acronym for unit in
the last place), which is a measure of accuracy of floating point arithmetic,
defined usually (but not always) as the gap between the two floating-point
numbers nearest the number to be rounded [4], [5].
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than one elementary operation, the error accumulates. Never-
theless, if a mapping consists of a finite number of elementary
operations (such as affine mappings, for instance), then the
error of rounding is bounded above by a constant, so our model
of rounding remains valid up to a multiple of δ by a constant.

It is also worth noting that the operator .̃ is a surjection and
in fact any mapping on Dn(δ) represents uncountable many
mappings on Rn. For now on, if, in a given context, we do
not take advantage of some specific properties of the mapping
w : Rn → Rn when discussing its δ-roundoff, for brevity we
will often refer to w̃ as a mapping on Dn(δ).

The next definition introduces the concept of an absorbing
set—the set that has the ability to attract the orbits {w̃◦i(x̃)}i
and then trap them forever.

Definition II.3. Let w̃ : Dn(δ) → Dn(δ), and let C be a
nonempty subset of Dn(δ) such that w̃(C) ⊂ C. We will say
that a set Λ ⊂ C is an absorbing set for w̃ in C if

∀x̃ ∈ C, ∃N ∈ N,∀i ≥ N, w̃◦i(x̃) ∈ Λ.

In the sequel, if Λ is an absorbing set for w̃ in Dn(δ),
we will just write that Λ is an absorbing set for w̃, that is,
without pointing out Dn(δ) as a superset of Λ. Similarly, if it is
obvious from the context which mapping w̃ is in question, for
brevity we will often omit explicit indication of the mapping
and write that Λ is an absorbing set in a set.

It is easy to prove4 the properties of absorbing sets listed
in the following theorem:

Theorem II.1. For w̃ : Dn(δ) → Dn(δ) and any nonempty set
C ⊃ w̃(C) the following statements hold: (a) Every absorbing
set is nonempty (by definition). (b) Since C is nonempty, then
by definition C is an absorbing set in C, so there is always
at least one absorbing set in C. (c) If {Λi}1≤i≤K is a finite
family of K absorbing sets in C, then also

⋂K
i=1 Λi is an

absorbing set in C. (d) If Λ is an absorbing set in C, then
also w̃(Λ) is an absorbing set in C. (e) For any absorbing set
Λ in C, there exists B ⊂ Λ such that w̃(B) ⊂ B and B is an
absorbing set in C. (f) If Λ is an absorbing set in C, and C
is an absorbing set in D, then Λ is also an absorbing set in
D.

In search of the minimal absorbing set, in the theorem below
we look at the result of the intersection of all absorbing sets
in a given set.

Theorem II.2. Let {Λα}α∈I be the (possibly uncountable)
family of all absorbing sets for w̃ in C ⊂ Dn(δ). Then M :=⋂

α∈I Λα is the set of all periodic points of w̃ in C, and thus
M = w̃(M).

Remark II.1. Note that although M arises from the inter-
section of absorbing sets, it does not follow that M is an
absorbing set itself. In general, when C ⊃ w̃(C) is unbounded
(and hence the family of the absorbing sets in C may be
uncountable), there is no guarantee that the intersection is
nonempty, and even if it is not, M does not have to attract
points lying outside. As an example of the latter case consider

4All proofs of the theorems and lemmas presented in the paper can be
found in [12]

a δ-roundoff of the mapping w(x) = λx, λ > 1, with
C = Dn(δ). There are infinitely many (unbounded) absorbing
sets, each includes 0, and M = {0}, because 0 is the only
periodic point of w̃. However, M does not have the attractive
property of an absorbing set required by Def. II.3.

Now observe that for any nonempty set B ⊂ Dn(δ) such
that B ⊃ w̃(B), an orbit {w̃◦i(x̃)} of x̃ ∈ B does not have to
visit all points in B. This observation suggests that in general
B can be divided into disjoint subsets that are domains for
some orbits in B and which are omitted by the remaining
orbits in B—the ones that stay in the boundaries of the other
subsets of the division. To this end, we define a relation orb∼
on B, which given a couple of points in B checks if the orbits
of the couple coincide at a certain point:

x̃
orb∼ ỹ := {(x̃, ỹ) ∈ B2 : ∃j, k ∈ N s.t. w̃◦j(x̃) = w̃◦k(ỹ) }.

It is easy to see that the relation is an equivalence relation
and thus uniquely decomposes B into the union of disjoint
nonempty subsets, B =

⋃
i Bi with Bi being the equivalence

classes of the relation. By definition, each Bi is composed of
orbits in B that meet at a certain point and then, naturally,
coincide from that point on. Furthermore, since Dn(δ) is
countable and Bi are disjoint, the decomposition consists of a
countable number of sets Bi. Moreover, if B is additionally an
absorbing set in a set C, then the decomposition of B extends
to C, resulting in a countable partition of C into the sets of
the form {x̃ ∈ C : ∃i ∈ N s.t. w̃◦i(x̃) ∈ Bi}.

We summarize the above observations in the form of the
following definition concerning the minimum of absorbing
sets, their components and basins of attraction:

Definition II.4. If the unique set M ⊂ C defined in Theo-
rem II.2 meets the conditions of an absorbing set in C we
will refer to it as the minimal absorbing set for w̃ in C and
denote it by M[w̃, C]. If M is the minimal absorbing set
for w̃ in the whole space Dn(δ), we will say that M is just
the minimal absorbing set for w̃ and denote it by M[w̃]. The
disjoint, nonempty sets of the unique, countable decomposition
of M[w̃, C] with respect to the relation orb∼ will be called
the set’s components and denoted by Mi[w̃, C], i = 1, . . . .
Finally, the basin of attraction of a component Mi[w̃, C] is
defined by

B[Mi[w̃, C]] := {x̃ ∈ C : ∃i ∈ N s.t. w̃◦i(x̃) ∈ Mi[w̃, C]}.

Clearly, periodic points x̃ and ỹ are in the coincidence orbit
relation, x̃ orb∼ ỹ, if and only if they share the same periodic
orbit. Since, by Theorem II.2, the minimum set M[w̃, C]
consists of periodic points, we immediately get the following:

Corollary II.3. Each component Mi[w̃, C] of the minimal
absorbing set is equal to one of the periodic orbits for w̃ in
C. Hence, the cardinality of every component is finite and

w̃(Mi[w̃, C]) = Mi[w̃, C].

As shown in Remark II.1, an intersection of absorbing sets
does not always yield an absorbing set. The following theorem
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gives a sufficient condition for the existence of the minimal
absorbing set:

Theorem II.4. If the set C ⊂ Dn(δ) is bounded and C ⊃
w̃(C), then the minimal absorbing set M[w̃, C] exists.

The next theorem shows that the inheritance of absorbing
sets by extensions of the original domain, asserted in Theorem
II.1 (f), also holds for minimum of absorbing sets with
preserving the property of minimality.

Theorem II.5. If M is the minimal absorbing set for w̃ in
C, and C is an absorbing set for w̃ in D, then M is also the
minimal absorbing set for w̃ in D, that is,

M[w̃, C] = M[w̃,D].

Now we will take a closer look at the existence of minimal
absorbing sets for δ-roundoffs of contractions. We begin with
the following single-map-orbit shadowing lemma, which is a
special case of Lemma III.14 in Sec. III:

Lemma II.6. Let w̃ : Dn(δ) → Dn(δ) be the δ-roundoff of
a contraction w : Rn → Rn with respect to the metric d. Let
{w̃◦i(x̃)}∞i=1 and {w◦i(x̃)}∞i=1 be orbits of an arbitrary point
x̃ ∈ Dn(δ). Then

d(w̃◦i(x̃), w◦i(x̃)) ≤ θ(1− λ)−1, ∀i ∈ N, (II.2)

where λ ∈ [0, 1) is the contractivity factor of w.

The upper bound of the form θ(1 − λ)−1 is symptomatic
of δ-discretization, and we will encounter it many times in
this paper. On the basis of Eq. (II.2) we see that the orbit
{w̃◦i(x̃))} is shadowed by the orbit {w◦i(x̃)}, so we expect
that, in the limit, the fixed point xf = w(xf ) will be imitated
by a bounded orbit in Dn(δ).

Theorem II.7. Let w̃ : Dn(δ) → Dn(δ) be the δ-roundoff of
a contraction w : Rn → Rn with respect to the metric d. Let
xf ∈ Rn be the fixed point of w, and λ ∈ [0, 1) be the map’s
contractivity factor. Let Λ(xf , r) := B(xf , r)∩Dn(δ), where
B(xf , r) is the closed ball in (Rn, d), centred at xf and with
radius r. Then Λ(xf , r0) with r0 = θ(1− λ)−1, that is,

Λ(xf , r0) = {ỹ ∈ Dn(δ) : d(ỹ, xf ) ≤ θ(1− λ)−1}, (II.3)

is an absorbing set for w̃. Moreover, w̃ maps Λ(xf , r0) into
itself,

w̃(Λ(xf , r0)) ⊂ Λ(xf , r0). (II.4)

Corollary II.8. If w̃ : Dn(δ) → Dn(δ) is the roundoff of a
contraction w : Rn → Rn, then the minimal absorbing set
M[w̃] exists. Morover, M[w̃] is finite and its cardinality is
bounded from above by the cardinality of Λ(xf , r0).

III. DISCRETE ITERATED FUNCTION SYSTEM

In this section we will study invariant sets and measures that
arise from iterated function systems acting on a discrete space
Dn(δ). We will define a discrete IFS in a place-dependent
probability version, that is, the probabilities assigned to IFS
mappings are real-valued functions rather than constant num-
bers.

Definition III.1. Let S be a subset of Dn(δ) endowed with
a metric d. Let {w̃i}Ni=1 be a finite set of maps w̃i : S →
S. In addition, associate with each map w̃i a function pi :
S → (0, 1] of place-dependent, positive probability weights
such that

∑N
i=1 pi(x̃) = 1 for every x̃ ∈ S. We will refer

to the set {S; w̃1, . . . , w̃N ; p1, . . . , pN} as a discrete iterated
function system with place-dependent probabilities (DIFS for
short).

Hereafter, unless otherwise stated, when speaking about
a DIFS we will mean a discrete iteration function system
with place-dependent probabilities, whereas an IFS will always
appear in the constant probabilities and, moreover, hyperbolic
version in this paper. Also note that in the definition above we
do not impose any metric properties on the DIFS mappings,
in particular we do not require them to be contractions. For
now, they are just mappings on a subset S of a discrete space
Dn(δ), and the only metric properties they own are those that
follow from the properties of S itself, namely, the mappings
are continuous (with respect to any metric, since S is discrete)
and if S was additionally bounded, they would be Lipschitz.

The random iteration algorithm (RIA) in the version for
a discrete IFS with place-dependent probabilities works as
follows: Choose a point x̃0 ∈ S and generate a random
orbit {x̃k = X̃k(x̃0)}∞k=0 by recursively setting X̃k(x̃0) :=
w̃Ik(X̃k−1(x̃0)), where X̃0(x̃0) = x̃0 and each mapping index
Ik is drawn from the probability distribution on {1, . . . , N},
specified by the values of the N probability weight functions
at the ”place” x̃k−1 = X̃k−1(x̃0), that is, the distribution
is [p1(x̃k−1), . . . , pN (x̃k−1)]. In a special case when the
probability functions pi are constant over S, and hence the
random variables Ik are i.i.d. with a distribution independent
of place, the DIFS with place-dependent probabilities reduces
to a discrete IFS with constant probabilities.

On the basis of above, RIA can be considered in terms
of a collection of random variables {X̃k : k ≥ 0} that
forms a stochastic process on a countable set S, where X̃0

is distributed with a point mass distribution concentrated at
x̃0 (i.e., the Dirac measure δx̃0

). By the recursive definition
of the random variables X̃k we get that, for any k ≥ 0, X̃k

depends only on X̃k−1, that is, for any x̃, ỹ ∈ C and k ≥ 0,

Pr(X̃k = ỹ | X̃k−1 = x̃, . . . , X̃1, X̃0)

= Pr(X̃k = ỹ | X̃k−1 = x̃),

and further that

Pr(X̃k = ỹ | X̃k−1 = x̃) =

N∑
i=1

pi(x̃) 1{ỹ}(w̃i(x̃)), (III.1)

where 1A(.) denotes the indicator function of a set A.
Therefore, the stochastic process is a (time-homogeneous)
Markov chain with the transition matrix P whose entries
(P )x̃ỹ = Pr(X̃k = ỹ | X̃k−1 = x̃) are specified by Eq. (III.1).

In the following definition and theorem we gather some
basic facts and notions pertaining to Markov chains that we
will use further on (for more rigorous treatment see e.g. [10],
[11]).
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Definition III.2. Let {X̃k} be a Markov chain on a countable
set S, called the state space of the chain, and a transition
matrix P .
(a) A state ỹ is said to be accessible from a state x̃ if there
is a non-zero probability of reaching ỹ in a finite number of
steps when starting from x̃:

∃k ∈ N, Pr(X̃k = ỹ | X̃0 = x̃) = (P k)x̃ỹ > 0.

If x̃ and ỹ are accessible from each other, then they are said
to communicate.
(b) A Markov chain is called irreducible if any couple of its
states communicate.
(c) A maximum subset C of S such that any two states in C
communicate forms a communication class. A subset C is a
closed class if the only states which are accessible from the
states in C are those in C (i.e., if the chain starts in C, then it
will stay in C with probability 1). Therefore, the Markov chain
on any of its closed communication classes can be viewed as
irreducible.
(d) A state x̃ is recurrent if, with probability 1, the chain
starting in x̃ returns to x̃ in a finite number of steps. A
recurrent state is positive recurrent if the expected number of
steps to return is finite. A state that is not recurrent is called
transient.

Theorem III.1. The state space S of a Markov chain uniquely
decomposes into a countable union of disjoint subsets:

S = T ∪ A1 ∪ A2 . . .

where T is the set of all transient states, and Ak are closed
communication classes of the recurrent states. Moreover, if S
is finite, then the union

A =
⋃

k≤|S|

Ak (III.2)

is nonempty and consists of positive recurrent states. In
addition, A is reached by the Markov chain in a finite number
of steps with probability one and independently of the initial
state.

Since all states in each set Ak are either recurrent or
positive recurrent, the classes are called recurrent communi-
cation classes and positive recurrent communication classes,
respectively. Similarly, a chain on a recurrent communication
class and, respectively, positive recurrent communication class
is called an irreducible recurrent chain and an irreducible
positive recurrent chain, respectively.

The next theorem provides the view of closed and com-
munication classes subjected to the action of the Hutchinson
operator W̃ (.) :=

⋃N
i=1 w̃i(.) associated with a DIFS:

Theorem III.2. Let {S; w̃1, . . . , w̃N ; p1, . . . , pN} be a DIFS,
and let {X̃k} be the associated Markov chain.
(a) C is a closed class of {X̃k} if and only if

⋃N
i=1 w̃i(C) ⊂ C.

(b) If C is a communication class of {X̃k}, then⋃N
i=1 w̃i(C) ⊃ C.

Theorem III.1 plays a similar role for DIFS as Banach’s
fixed point theorem for hyperbolic IFSs. In its first part it states

that the presence of a recurrent state in a Markov chain implies
that the chain possesses at least one set A, which in light
of Theorem III.2 is an invariant set of the DIFS Hutchinson
operator. The second part provides a sufficient condition for
the existence of a recurrent state, and thus also the set A, and
moreover it asserts that the set attracts orbits of the chain, in
the sense that, with probability one, an orbit eventually visits
and stays in A, regardless of the orbit’s intial point. Clearly,
the properties of A: the (forward) invariance under the DIFS
Hutchison operator and the almost sure orbit attraction (if
present) very much resemble the behavior of a hyperbolic IFS
attractor. The key difference is that, in general, A decomposes
into a countable collection of disjoint subsets Ak, each of
which is a fixed point of the DIFS Hutchinson operator and
may act as an attractor within its own basin of attraction. This
is a different situation from the one of a hyperbolic IFS in that,
by Banach’s fixed point theorem, the latter always possesses
a single attractor being a unique fixed point of the associated
Hutchison operator.

Remark III.1. We have already had a glimpse of recurrent
communication classes of Markov chains in Sec. II. Indeed,
the components of a minimum absorbing set can be treated
as recurrent communication classes of a trivial Markov chain
that is generated by a single map (and hence the probability
assigned to the map is 1) in a discrete space or its subset.
Thereby, we have an example of a DIFS that consists of
a single map and can possesses multiple attractors, even
though—as we have seen in Sec. II—the map is a δ-roundoff of
a contraction and, thus, the DIFS itself is a discretized version
of a hyperbolic IFS.

At this point, a natural question arises about upper bounds
for the number of such invariant sets that a DIFS may possess.

Theorem III.3. Let {S; w̃1, . . . , w̃N ; p1, . . . , pN} be a DIFS.
Let I ⊂ {1, . . . , N} be the subset of the indices of the DIFS
maps for which minimal absorbing sets exist. Suppose that I
is nonempty and define MF := {M[w̃i, S]}i∈I . Let AF :=
{Ak} be the family of the recurrent communication classes of
the associated Markov chain. Then the following statements
hold:
(a) The number of the sets in AF is not greater than the
number of components of any set in MF , that is,

|AF | ≤ min
i∈I

M#[w̃i, S],

where the subscript ’#’ stands for the number of components
of a minimal absorbing set.
(b) If for some i, j ∈ I ,

M[w̃i, S] ⊂ B[Mk[w̃j , S]]

for a certain k ∈ {1, . . . ,M#[w̃j , S]}, then

|AF | ≤ 1.

A. On the existence of multiple attractors of a discretized
hyperbolic IFS in practice

In [12] we showed that discretization of a hyperbolic IFS
may lead to losing the contractive property characterizing the
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original and we also gave numerical evidence that from the
statistical point of view, at least in the case of affine contrac-
tions on (R2, dE), such a situation can be considered typical
and is not cured by increasing the precision of computation
(expressed by the reciprocal of δ). As a consequence, even
though we know that because of the fixed-point theorem the
original hyperbolic IFS has an attractor and that this attractor is
unique, we cannot use the theorem to show that the same facts
hold for a discretized version of the IFS. Moreover, Theorem
III.1 postulates, quite the opposite to Banach’s theorem, that
a discretized version of the hyperbolic IFS may possess more
than one invariant set that attracts orbits generated by RIA, and
Theorem III.3 (a) provides an upper bound for the number of
the invariant sets in terms of the number of components of the
minimal absorbing sets, which—as we know from Corollary
II.8—δ-roundoffs of contractions always possess. On the other
hand, the second part of Theorem III.3 gives a sufficient
condition for a DIFS attractor (if it exists, and we show in
the sequel that it is true) to be unique: At least one of the
minimal absorbing sets should be totally included in a basin
of attraction of one of the remaining minimal absorbing sets.
Therefore conversely, a necessary condition for the DIFS to
have more than one attractor is: Each minimal absorbing set
has to be intersected with at least two basins of attraction of
every other minimal absorbing set. Let us have a look at the
possibility of the occurrence of such an event in practice.

Theorem II.7 gives us an upper bound on the diameter of a
minimal absorbing set for a contraction and if we treat the
value of diamd(Cδ) as a unit of length, it is clearly seen
that the upper bound for the size of the minimal absorbing
set depends only on the contractivity factor of the original
contraction and remains constant when the precision of com-
putation is changed. In this setting, altering the precision
of computation affects only the unit of length in the way
that the larger precision (or equivalently, the smaller δ), the
smaller the unit of length. In effect, increasing the precision
makes the extents of the minimal absorbing sets get smaller
relative to the distances between the sets. At the same time,
the basins of attractions spread radially from the minimal
absorbing sets and their homogeneous regions get larger and
larger as the distance from the minimal absorbing set increases
(cf. the figures in the previous sections). Consequently, the
higher precision of computation, the higher probability that
the minimal absorbing set sits entirely in one of the basins of
attraction of another minimal absorbing set. For resolutions of
computation used in practice such as those offered by floating
point arithmetic the minimal absorbing sets are usually so tiny
relative to homogeneous regions of the basins of attraction
that the configuration in which each of the sets is intersected
by more than one basin of attraction of every other set is
very special, not to say highly improbable. Therefore, even
though a DIFS version of a hyperbolic IFS is usually not
hyperbolic regardless of precision of computation in use but if
the precision is reasonably high, then the DIFS not only has an
attractor (we show it later on) but also this attractor is typically
unique. Therefore the uniqueness of the DIFS attractor is
not a result yielded by Banach’s fixed point theorem (as it
is sometimes suggested more or less explicitly in literature),

but merely a typical resultant of the geometry of minimal
absorbing sets and their basins of attraction when ”embedded”
in a suitable resolution of computation.

B. Invariant measure and stationary distribution

Now we consider the behavior of an orbit generated by RIA
within a recurrent communication class. Suppose that a DIFS
possesses at least one recurrent communication class Ak and
assume that the associated Markov chain arrived in the set at a
certain step while wandering through S or it just started in one
of the points of the set. Because Ak is a closed communication
class the orbit will never leave the set and the Markov chain on
Ak is irreducible (Def. III.2 (c)). In the context of the problem
of approximating the geometry of Ak it is crucial whether the
orbit visits all points of the set during the evolution of the
chain. It is not hard to show (see e.g. [13], p. 391) that if the
chain is irreducible recurrent than for any state x̃ ∈ Ak,

Pr(∃i ∈ N : X̃i = x̃) = 1 (III.3)

regardless of the initial state X̃0 = x̃0 ∈ Ak. In other words,
starting from any arbitrary state in Ak, the orbit is certain to
pass through every other state in Ak.

Moreover, the orbits of the Markov chain on a recurrent
communication class possess some average statistical proper-
ties reflected in an invariant measure supported by the set.
Writing P for the transition matrix of the chain restricted to
a recurrent communication class Ak (an irreducible recurrent
chain), an invariant measure π can be represented by a row
vector [π] = [(π)x̃]x̃∈Ak

of the values (π)x̃ = π{x̃}, which
satisfies the equation [π] = [π]P . It can be shown (see
[10], [13], also [14] for the treatment from the standpoint of
Perron-Frobenius theory) that such a vector for a recurrent
communication class always exists, its entries are positive
and finite, and equal to the expected number of visits the
chain makes to states x̃ while returning to a state ỹ ∈ Ak.
Because of the relationship between the values of π and a
given baseline state ỹ, there can be, in general, more than
one invariant measure for a recurrent communication class,
however the measures are equal up to multiplication by a
constant. Another thing is that the value of the invariant
measures on a infinite recurrent communication set can be
infinite. But if an invariant measure π is finite, then after
normalization becomes a probability measure referred to as
a stationary distribution. It is known from from the Markov
chain theory that the normalization of an invariant measure
on a recurrent communication class is possible if and only if
the class is positive recurrent. (As asserted in the second part
of Theorem III.1, this positive recurrence condition is always
satisfied for finite closed communication classes.) The values
of the stationary distribution entries (π)x̃ are reciprocals of
the expected number of steps to return, they are finite and
characterize each positive recurrent state x̃ (Def. III.2 (d)).
From this follows that a stationary distribution of a Markov
chain restricted to a positive recurrent communication class
must be unique. Clearly, if for a certain i ≥ 0, the distribution
of X̃i of a chain {X̃k : k ≥ 0} is a stationary distribution π,
then the distributions of the random variables that follow in
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{X̃k : k ≥ i} do not change, they are identical and equal to
π—the process is said to be in a steady (or equilibrium) state.

C. To be attractive (or at least ergodic)

It is known (see [8], Theorem 2.1; also [6], [7]) that if
an IFS is hyperbolic on (Rn, d) or even only contractive on
average (with some additional constraints on place dependent
pi’s such as Dini’s continuity) the stationary distribution is
unique and attractive in the sense that regardless of the initial
distribution of X0, the distributions µk of the random variables
in the associated chain {Xk : k ≥ 0} converges weakly to the
stationary distribution π∞, that is, E[f(Xk)] → E[f(X)] =∫
Rn f(x)dπ∞ for any bounded continuous function f : Rn →
R, where X is the limiting (in distribution) random variable
distributed as π∞. As a consequence, no matter what an initial
distribution, the Markov process generated by RIA heads, with
probability 1, for the steady state expressed by the attractive
distribution π∞, that is the IFS invariant measure. This fact
forms the basis for Elton’s ergodic theorem (see [9], Corollary
1), which states that for any x ∈ Rn and f defined above, the
space average E[f(X)] is equal with probability 1 to the time
average of {f(Xk) : X0 = x, k ≥ 0}, that is,

lim
m→∞

1

m

m−1∑
k=0

f(Xk) =

∫
Rn

f(x)dπ∞ a.s. (III.4)

In other words, empirical probability measures µm =
1
m

∑m−1
k=0 δxk

of almost every orbit of the chain {Xk} con-
verge weakly to π∞.

In effect, given a bounded continuous function f : Rn → R,
one can determine the right-hand side integral in the equation
above by plugging an orbit generated by RIA into the left-
hand side of the equation, and we are guaranteed that the
result will be correct with probability one. In particular, given
a Borel subset A, one can approximate the value of π∞(A)
by µm(A) for a certain large m (under an additional technical
requirement of the zero π∞-measure of A’s boundary), which
technically is equivalent to counting and then normalizing the
number of points that pop into A in a finite-time realization (m
steps) of the algorithm. Such an approach leads to a popular
method for visualizing the IFS invariant measure on a discrete
grid of pixels. Below we investigate the possible effects of
the application of RIA in its variant for visualizing invariant
measures when the algorithm is applied in the context of a
DIFS without any metric properties imposed on the mappings.

As pointed out in Sec. III-B, a stationary distribution of
an irreducible Markov chain is strictly positive and exists
if and only if the chain is positive recurrent. This station-
ary distribution extends trivially to a stationary probability
measure of any reducible Markov chain whose state space
includes the recurrent positive state space of this smaller
irreducible chain as one of its closed communication classes
(the measure of the complement of the closed communication
class is zero). A positive recurrent communication class exists
if the chain generated by a DIFS possesses a positive recurrent
state. A positive recurrent state exists, first of all, if the state
space of the associated chain is, or can be appropriately
restricted to a finite set (cf. the second part of Theorem

III.1—we will show that this holds for DIFSs arising from
hyperbolic IFSs) or if some other, more general criteria for
positive recurrence hold (e.g., the existence of a closed class
satisfying Doeblin’s criterion [11] or Foster’s criterion [10]).
Now, suppose that the associated chain has more than one class
Ak, k ∈ I , each being positive recurrent, so the chain has at
least |I| ∈ N stationary distributions. But if πk’s are stationary
distributions of the chain, then any convex combination of
these distributions is also a stationary distribution, because(∑

k∈I

αk[πk]
)
P =

∑
k∈I

αk([πk]P ) =
∑
k∈I

αk[πk], (III.5)

where P is the transition matrix of the chain, and
∑

k∈I αk =
1, αk ≥ 0.

Let us summarize our considerations on the DIFS stationary
measures with the following:

Corollary III.4. Let {S; w̃1, . . . , w̃N ; p1, . . . , pN} be a DIFS,
and let AF be the family of the recurrent communication
classes of the associated Markov chain. Denote by A+

F the
positive recurrent subfamily of AF . Then:
(a) The Markov chain has a stationary probability measure if
|A+

F | ≥ 1.
(b) if |A+

F | = 1, then the stationary probability measure
is unique and supported by the single positive recurrent
communication class in A+

F .
(c) If |A+

F | > 1, then the chain has uncountable number
of stationary probability measures of the form (III.5), that
is, the stationary distributions are convex combinations of
the stationary probability measures on the sets in A+

F and
supported by their unions.

Obviously, by the definition of an attractive distribution,
a stationary distribution can be globally attractive only if
the stationary distribution is unique. Therefore, a necessary
condition for a stationary probability measure π supported
by the sets in A+

F to be the globally attractive distribution is
|A+

F | = 1, that is, there has to be exactly one positive recurrent
communication class, say A+

1 , in the state space of the chain.
However, in order to provide weak convergence of probability
measures to π independently of the initial distribution, in
addition there cannot be other closed recurrent and closed
transient classes in the state space but A+

1 and, moreover,
the probability for the chain to escape from the transient
states T has to be one. As long as the latter ”escape-from-
transient-class” condition is always met when the space upon
which a DIFS acts is, or can be rightly restricted to a finite
set, we usually cannot ensure that there will be only one
recurrent communication class in the state space even in the
case of DIFSs arising from hyperbolic IFSs. Therefore, even
if a DIFS is a discretized version of hyperbolic IFS, it can
have uncountable many stationary distributions (and thus no
globally attractive distribution), and hence DIFSs are not in
general contractive even on average (because in the latter case
the stationary distribution is unique).

Nonetheless, given a DIFS such that the associated chain
leaves the transient class T with probability one, that is,
Pr(∃i ∈ N : X̃i /∈ T ) = 1 independently of X̃0 ∈ T , we
immediately get that the recurrent family AF is nonempty
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(since T is not a closed class, so there must be at least
one recurrent state) and thus the orbit generated by RIA is
guaranteed (almost surely) to reach one of the sets Ak in AF .
Since the sets are closed classes, the orbit will never leave
such a set after it gets to the set. Moreover, due to Eq. (III.3)
it will visit all points x̃ in Ak. Yet the orbit is not guaranteed
to stabilize according to a stationary distribution even if the set
is positive recurrent and, hence, the irreducible Markov chain
on the set possesses a stationary distribution. The reason is
that in order for a stationary distribution to be attractive for
distributions on a positive recurrent communication class, the
class should additionally contain an aperiodic state, a state
for which the greatest common divisor of possible numbers
of steps to return (periods) is 1 (which would imply that
all states of the class were aperiodic too). It is also worth
noting that in contrast to positive recurrence, aperiodicity is
not guaranteed by finiteness of a state space. Therefore, even if
a domain on which a DIFS acts is finite, there is no guarantee
that the DIFS has a stationary probability measure that is
attractive at the very least locally for distributions on a positive
recurrent communication class. Anyway, any positive recurrent
Markov chain is ergodic (see remark below), which means
that despite the fact the associated chain within a positive
recurrent communication class A+

k does not necessarily reach
a stationary distribution, the orbit generated by RIA can still be
used to determine the value of the counterpart of the integral
on the right-hand side of Eq. (III.4). In particular, if π is a
stationary distribution on A+

k , then for any state ỹ ∈ A+
k ,

lim
m→∞

1

m

m−1∑
i=0

1{ỹ}(X̃i) = π{ỹ} a.s.

provided that Pr(X̃0 ∈ A+
k ) = 1. Hence, for any ỹ ∈ A+

k ,

Pr
(

lim
m→∞

1

m

m−1∑
i=0

1{ỹ}(X̃i) = π{ỹ}|X̃j ∈ A+
k

)
= 1,

provided that there is a certain j ∈ N such that Pr(X̃j ∈
A+

k ) > 0. As a consequence, if the orbit generated by RIA
enters A+

k , one can use the orbit to render an image of the
stationary distribution supported by the set. On the other hand,
if the orbit does not enter a positive recurrent communication
class, that is, it arrives either in Ak that is not positive recurrent
or it stays in a transient class, then for any x̃ ∈ S,

lim
m→∞

1

m

m−1∑
k=0

1{x̃}(Xk) = 0 a.s.

no matter what the initial distribution (see [11], pp. 72–74). In
such a case, an attempt to visualize a measure with RIA would
yield a gradually vanishing image of a measure on points in
S ⊂ Dn(δ).

Remark III.2 (On egodicity of Markov chains). It is common
in the literature on countable Markov chains that an ergodic
chain is defined as an irreducible chain that is both positive
recurrent and aperiodic, which is a sufficient condition for
the chain to have an attractive (limiting) and, thus, unique
stationary distribution. Such a chain is also ergodic in the

sense of ergodic theory by some standard arguments. However,
this usage of the term ’ergodic’ in this context is somewhat
misleading because it suggests that aperiodicity is necessary
for a Markov chain to be ergodic in the sense of ergodic
theory, whereas—as we pointed out earlier—every irreducible
positive recurrent chain is ergodic (see e.g. [11], also a
remark on Markov ergodicity by Elton in [9]). An instructive
instance of an irreducible positive recurrent chain that is not
aperiodic, but still ergodic is a 2-state chain with the transition
matrix

[
0 1
1 0

]
. The chain is positive recurrent and periodic with

period 2, it has a unique stationary distribution [ 12 ,
1
2 ], but the

distribution is not attractive. Nevertheless, it is clearly seen
that the chain is ergodic.

Corollary III.5. Let {S; w̃1, . . . , w̃N ; p1, . . . , pN} be a DIFS
such that the associated Markov chain {X̃i : i ≥ 0} satisfies
Pr(∃i ∈ N : X̃i /∈ T ) = 1 for any X̃0 = x̃ ∈ S. Let {x̃i}∞i=0

be an orbit generated by RIA. Then, for a certain m ∈ N, with
probability one,

{x̃i}∞i=m = Ak,

where Ak ∈ AF , that is, the set is one of the recurrent
communication classes of {X̃i}.

In addition, if the set is positive recurrent, Ak ∈ A+
F , and

Pr(X̃j ∈ Ak) = 1 for a certain j ∈ N, then, with probability
one, for any ỹ ∈ S, the ratio of the points in {x̃i}Mi=0 that
coincide with ỹ to their total number M converges to the value
of πk{ỹ} as M → ∞, where πk is the stationary probability
measure of the chain on Ak; that is

Pr
(

lim
M→∞

1

M

M−1∑
i=0

δX̃i
= πk|X̃j ∈ Ak

)
= 1

and

Pr
(

lim
M→∞

1

M

M−1∑
i=0

1{ỹ}(X̃i) = πk{ỹ}|X̃j ∈ Ak

)
= 1,

if only Pr(X̃j ∈ Ak) > 0 for a certain j ∈ N.
In particular, both statements of the corollary hold if S is

a finite set.

D. DIFSs for hyperbolic IFSs

In this section we examine the case of DIFSs consisting of
maps being δ-roundoffs of contractions, in particular, DIFSs
that are discretized versions of hyperbolic IFSs with constant
probabilities. We start with the following theorem that es-
tablishes important facts concerning a DIFS composed of δ-
roundoffs of contractions.

Theorem III.6. Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be a
DIFS such that the mappings w̃i are δ-roundoffs of con-
tractions wi on (Rn, d). Let o be any point of Rn. Denote
rmax := maxi d(x

(i)
f , o), λmax := maxi λi and α := 1+λmax

1−λmax
,

where x
(i)
f and λi are the fixed points and, respectively,

the contractivity factors of the mappings wi. Then, for any
ε > 0 and S = B(o, r + ε) ∩ Dn(δ), where B(o, r)
is an open ball in (Rn, d), centred at o and with radius
r = αrmax + θ(1− λmax)

−1, the DIFS transformations map



A COMPUTER SCIENTIST’S PERSPECTIVE ON APPROXIMATION OF IFS INVARIANT SETS AND MEASURES WITH ... 1121

S into itself, w̃i(S) ⊂ S for every i ∈ {1, . . . , N}. Moreover,
the DIFS possesses nonempty A, the set of all recurrent states
of the associated Markov chain, and A ⊂ S.

Remark III.3. One can easily check that if
{Rn;w1, . . . , wN ; p1, . . . , pN} is a hyperbolic IFS,
then for any ε > 0 and S = B(o, r + ε), where
r = limδ→0 αrmax + θ(1 − λmax)

−1 = αrmax, the
IFS transformations map S into itself, wi(S) ⊂ S for every
i ∈ {1, . . . , N}. Hence, the space upon which the IFS acts
can be restricted to any of the compact sets (closed balls) S,
and the IFS attractor A∞ ⊂ S.

Corollary III.7. If {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} is a
DIFS in which the mappings w̃i are δ-roundoffs of contrac-
tions, then A is nonempty and finite and hence consists of
positive recurrent states; thus AF = A+

F ̸= ∅. Therefore, the
DIFS possesses stationary probability measures supported by
unions of the finite positive recurrent communication classes
A+

k of which A is composed. Moreover, for every X̃0 =
x̃ ∈ Dn(δ), Pr(∃i ∈ N : X̃i /∈ T ) = 1. Therefore, by
Corollary III.5, each run of RIA results, with probability one,
in rendering a stationary probability measure supported by
one of the classes A+

k . The stationary probability measure
is unique if for a certain i ∈ {1, . . . , N}, the minimal
absorbing set for w̃i consists of a single component, or there
are i, j ∈ {1, . . . , N}, such that M[w̃i, S] ⊂ B[Mk[w̃j , S]]
for a certain component Mk[w̃j ] of the minimal absorbing set
Mk[w̃j ] (Theorem III.3).

The lemma below establishes a connection between a hy-
perbolic IFS and a DIFS composed of δ-roundoffs of the IFS
mapping, in the form of an assertion on mutual shadowing
of orbits of Markov chains generated by the DIFS and the
corresponding IFS.

Lemma III.8. Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be a
DIFS in which w̃i’s are δ-roundoffs of contractions wi on
(Rn, d). Let {Rn;w1, . . . , wn; q1, . . . , qN} be an IFS with
strictly positive probabilities qi ∈ (0, 1],

∑N
i=1 qi = 1. Let

x̃0 be any point of Dn(δ). Let X = {Xk : X0 = x̃0} and
X̃ = {X̃k : X̃0 = x̃0} be the chains generated by the IFS and
the DIFS, respectively. Then for any orbit {xk = wik(xk−1)}
of X (respectively, any orbit {x̃k = w̃ik(x̃k−1)} of X̃), there
exists an orbit {x̃k = w̃ik(x̃k−1)} of X̃ (respectively, an orbit
{xk = wik(xk−1)} of X) such that, for any k ∈ N,

d(xk, x̃k) ≤ θ(1− λmax)
−1, (III.6)

where λmax = maxi λi, λi is the contractivity factor of wi.

In turn, the next theorem answers the question about geo-
metrical resemblance between DIFS invariant sets A+

k ∈ AF
and the attractor A∞ of a hyperbolic IFS, expressed in terms
of the Hausdorff distance.

Theorem III.9. Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be a
DIFS in which w̃i’s are δ-roundoffs of contractions wi on
(Rn, d), and let {Rn;w1, . . . , wn; q1, . . . , qN} be a corre-
sponding hyperbolic IFS with strictly positive probabilities
qi. Let AF be the family of all positive recurrent classes of
the Markov chain associated with the DIFS, and let A∞ be

the attractor of the IFS. Then, independently of the values of
probabilities pi(.) and qi, for each A+

k ∈ AF , the Hausdorff
distance between A+

k and A∞ is bounded from above as

h(A+
k , A∞) ≤ θ(1− λmax)

−1. (III.7)

Corollary III.10. Let {Rn;w1, . . . , wn; p1, . . . , pN}
be a hyperbolic IFS with the attractor A∞. Let
{Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be the corresponding
DIFSs (with the same constant probabilities as in the IFS),
parametrized by δ > 0, in which w̃i’s are δ-roundoffs of
contractions wi. Let AF (δ) = {A+

k (δ)}k be the family of
all positive recurrent classes of the Markov chain associated
with a DIFS for fixed δ. Then

lim
δ→0

A+
k (δ) = A∞ (in the Hausdorff metric),

where A+
k (δ) is any set from AF (δ) for fixed δ.

We also have a theorem concerning a relationship between
DIFS and IFS measures:

Theorem III.11. Let {Rn;w1, . . . , wn; p1, . . . , pN} be a hy-
perbolic IFS, and let π∞ be the IFS invariant measure.
Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be the corresponding
DIFSs (with the same constant probabilities as in the IFS),
parametrized by δ > 0, in which w̃i’s are δ-roundoffs of
contractions wi. Let AF (δ) be the family of all positive
recurrent classes of the Markov chain associated with a DIFS
for fixed δ, and Π (δ) = {πk(δ) : supp(πk(δ)) ∈ AF (δ)}
be the family of the chain’s stationary distributions supported
by the sets in AF (δ). Then for any continuous and bounded
f : Rn → R,

lim
δ→0

∑
x̃∈Dn(δ)

f(x̃)πk(δ){x̃} =

∫
Rn

f(x)dπ∞, (III.8)

where πk(δ) is any stationary distribution from Π (δ) for fixed
δ. In other words, πk(δ)’s converge weakly to π∞ as δ → 0.

E. DIFSs for hyperbolic IFSs

In this section we examine the case of DIFSs consisting of
maps being δ-roundoffs of contractions, in particular, DIFSs
that are discretized versions of hyperbolic IFSs with constant
probabilities. We start with the following theorem that es-
tablishes important facts concerning a DIFS composed of δ-
roundoffs of contractions.

Theorem III.12. Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be a
DIFS such that the mappings w̃i are δ-roundoffs of con-
tractions wi on (Rn, d). Let o be any point of Rn. Denote
rmax := maxi d(x

(i)
f , o), λmax := maxi λi and α := 1+λmax

1−λmax
,

where x
(i)
f and λi are the fixed points and, respectively,

the contractivity factors of the mappings wi. Then, for any
ε > 0 and S = B(o, r + ε) ∩ Dn(δ), where B(o, r)
is an open ball in (Rn, d), centred at o and with radius
r = αrmax + θ(1− λmax)

−1, the DIFS transformations map
S into itself, w̃i(S) ⊂ S for every i ∈ {1, . . . , N}. Moreover,
the DIFS possesses nonempty A, the set of all recurrent states
of the associated Markov chain, and A ⊂ S.
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Remark III.4. One can easily check that if
{Rn;w1, . . . , wN ; p1, . . . , pN} is a hyperbolic IFS,
then for any ε > 0 and S = B(o, r + ε), where
r = limδ→0 αrmax + θ(1 − λmax)

−1 = αrmax, the
IFS transformations map S into itself, wi(S) ⊂ S for every
i ∈ {1, . . . , N}. Hence, the space upon which the IFS acts
can be restricted to any of the compact sets (closed balls) S,
and the IFS attractor A∞ ⊂ S.

Corollary III.13. If {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} is a
DIFS in which the mappings w̃i are δ-roundoffs of contrac-
tions, then A is nonempty and finite and hence consists of
positive recurrent states; thus AF = A+

F ̸= ∅. Therefore, the
DIFS possesses stationary probability measures supported by
unions of the finite positive recurrent communication classes
A+

k of which A is composed. Moreover, for every X̃0 =
x̃ ∈ Dn(δ), Pr(∃i ∈ N : X̃i /∈ T ) = 1. Therefore, by
Corollary III.5, each run of RIA results, with probability one,
in rendering a stationary probability measure supported by
one of the classes A+

k . The stationary probability measure
is unique if for a certain i ∈ {1, . . . , N}, the minimal
absorbing set for w̃i consists of a single component, or there
are i, j ∈ {1, . . . , N}, such that M[w̃i, S] ⊂ B[Mk[w̃j , S]]
for a certain component Mk[w̃j ] of the minimal absorbing set
Mk[w̃j ] (Theorem III.3).

The lemma below establishes a connection between a hy-
perbolic IFS and a DIFS composed of δ-roundoffs of the IFS
mapping, in the form of an assertion on mutual shadowing
of orbits of Markov chains generated by the DIFS and the
corresponding IFS.

Lemma III.14. Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be a
DIFS in which w̃i’s are δ-roundoffs of contractions wi on
(Rn, d). Let {Rn;w1, . . . , wn; q1, . . . , qN} be an IFS with
strictly positive probabilities qi ∈ (0, 1],

∑N
i=1 qi = 1. Let

x̃0 be any point of Dn(δ). Let X = {Xk : X0 = x̃0} and
X̃ = {X̃k : X̃0 = x̃0} be the chains generated by the IFS and
the DIFS, respectively. Then for any orbit {xk = wik(xk−1)}
of X (respectively, any orbit {x̃k = w̃ik(x̃k−1)} of X̃), there
exists an orbit {x̃k = w̃ik(x̃k−1)} of X̃ (respectively, an orbit
{xk = wik(xk−1)} of X) such that, for any k ∈ N,

d(xk, x̃k) ≤ θ(1− λmax)
−1, (III.9)

where λmax = maxi λi, λi is the contractivity factor of wi.

In turn, the next theorem answers the question about geo-
metrical resemblance between DIFS invariant sets A+

k ∈ AF
and the attractor A∞ of a hyperbolic IFS, expressed in terms
of the Hausdorff distance.

Theorem III.15. Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be a
DIFS in which w̃i’s are δ-roundoffs of contractions wi on
(Rn, d), and let {Rn;w1, . . . , wn; q1, . . . , qN} be a corre-
sponding hyperbolic IFS with strictly positive probabilities
qi. Let AF be the family of all positive recurrent classes of
the Markov chain associated with the DIFS, and let A∞ be
the attractor of the IFS. Then, independently of the values of
probabilities pi(.) and qi, for each A+

k ∈ AF , the Hausdorff

distance between A+
k and A∞ is bounded from above as

h(A+
k , A∞) ≤ θ(1− λmax)

−1. (III.10)

Corollary III.16. Let {Rn;w1, . . . , wn; p1, . . . , pN}
be a hyperbolic IFS with the attractor A∞. Let
{Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be the corresponding
DIFSs (with the same constant probabilities as in the IFS),
parametrized by δ > 0, in which w̃i’s are δ-roundoffs of
contractions wi. Let AF (δ) = {A+

k (δ)}k be the family of
all positive recurrent classes of the Markov chain associated
with a DIFS for fixed δ. Then

lim
δ→0

A+
k (δ) = A∞ (in the Hausdorff metric),

where A+
k (δ) is any set from AF (δ) for fixed δ.

We also have a theorem concerning a relationship between
DIFS and IFS measures:

Theorem III.17. Let {Rn;w1, . . . , wn; p1, . . . , pN} be a hy-
perbolic IFS, and let π∞ be the IFS invariant measure.
Let {Dn(δ); w̃1, . . . , w̃N ; p1, . . . , pN} be the corresponding
DIFSs (with the same constant probabilities as in the IFS),
parametrized by δ > 0, in which w̃i’s are δ-roundoffs of
contractions wi. Let AF (δ) be the family of all positive
recurrent classes of the Markov chain associated with a DIFS
for fixed δ, and Π (δ) = {πk(δ) : supp(πk(δ)) ∈ AF (δ)}
be the family of the chain’s stationary distributions supported
by the sets in AF (δ). Then for any continuous and bounded
f : Rn → R,

lim
δ→0

∑
x̃∈Dn(δ)

f(x̃)πk(δ){x̃} =

∫
Rn

f(x)dπ∞, (III.11)

where πk(δ) is any stationary distribution from Π (δ) for fixed
δ. In other words, πk(δ)’s converge weakly to π∞ as δ → 0.
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