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A computer scientist’s perspective on approximation
of IFS invariant sets and measures with the random

iteration algorithm—proofs and examples
Tomasz Martyn

Abstract—We present proofs of the theorems and lemmas
demonstrated previously in our paper [1]. We also display
some visual examples of minimal absorbing sets and their
basins of attractions generated by δ-roundoffs of two-dimensional
linear contractions as well as visualizations of DIFS stationary
probability measures.
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I. PROOFS OF THEOREMS AND LEMMAS

IN this section we demonstrate proofs of the theorems and
lemmas we presented previously in [1].

Proof of Theorem II.1. (c) For each x̃ ∈ C and each
Λi from the family of absorbing sets, there is N(i) ∈ N
such that for all m ≥ N(i), w̃◦m(x̃) ∈ Λi. Hence, for all
m ≥ max1≤i≤K N(i), w̃◦m(x̃) ∈

⋂
i Λi.

(d) For any x̃ ∈ C, there is N ∈ N such that
{w̃◦i(x̃)}i≥N ⊂ Λ. Hence, w̃({w̃◦i(x̃)}i≥N ) ⊂ w̃(Λ), or
equivalently {w̃◦i(x̃)}i≥N+1 ⊂ w̃(Λ).

(e) Let x̃ ∈ Λ. The set Λ is absorbing in C, so for each x̃ ∈ Λ
there exists M(x̃) ∈ N such that B(x̃) := {w̃◦i(x̃)}i≥M(x̃) ⊂
Λ. By definition, w̃(B(x̃)) ⊂ B(x̃). Therefore, the set B =⋃

x̃∈Λ B(x̃) has the property that B ⊂ Λ and w̃(B) ⊂ B.
Clearly, B is also absorbing in C, because for any x̃ ∈ C there
is N ∈ N such that w̃◦N (x̃) ∈ Λ, so for all i ≥ M(x̃) + N ,
w̃◦i(x̃) ∈ B.

(f) Let x̃ ∈ D. Since C is an absorbing set in D, there is i ∈ N
such that w̃◦i(x̃) ∈ C. Since Λ is an absorbing set in C, there
exists N ∈ N such that for all k ≥ N , w̃◦(i+k)(x̃) ∈ Λ.

Proof of Theorem II.2. First we show that M includes all
periodic points in C. We have to show that given any periodic
point x̃ ∈ C, x̃ belongs to every absorbing set Λα for w̃. On
the contrary let us assume that x̃ /∈ Λα for some α ∈ I. Since
x̃ is a periodic point, there exists k ∈ N such that w̃◦k(x̃) = x̃,
and thus w̃◦(αk)(x̃) = x̃ for any α ∈ N. It follows that for any
N ∈ N there is i ≥ N such that w̃◦i(x̃) = x̃ /∈ Λα, which
contradicts the assumption of Λα being an absorbing set for w̃.
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Therefore, each absorbing set Λα has to include all periodic
points in C, and hence they are included in the intersection of
the sets.

Now we show that if x̃ ∈ M, then x̃ must be periodic.
On the contrary, let us assume that x̃ ∈ M and x̃ is non-
periodic, which implies that w̃◦i(x̃) ̸= x̃ for all i ∈ N. Let
Λ be any absorbing set such that x̃ ∈ Λ. We will show that
Λ \ {x̃} is an absorbing set in C and thus x̃ cannot be in
M. Since Λ is absorbing in C, we get that for any ỹ ∈ C
there is N(ỹ) ∈ N so that w̃◦i(ỹ) ∈ Λ for all i ≥ N(ỹ).
Therefore, if ỹ is such that w̃◦i(ỹ) ̸= x̃ for all i ∈ N, then for
all i ≥ N(ỹ), w̃◦i(ỹ) ∈ Λ \ {x̃}. Hence Λ \ {x̃} absorbs the
orbits {w̃◦i(ỹ)}i∈N that do not intersect {x̃}. Now, because
x̃ is non-periodic, {w̃◦i(x̃)}i∈N does not intersect {x̃}, and
thus w̃◦i(x̃) ∈ Λ \ {x̃} for all i ≥ N(x̃). Therefore, for any
ỹ ∈ C such that w̃◦k(ỹ) = x̃ for a certain k ∈ N, we get that
w̃◦i(ỹ) ∈ Λ \ {x̃} for all i ≥ N(x̃) + k. Hence Λ \ {x̃} also
absorbs the orbits that do intersect {x̃}. Therefore, Λ \ {x̃}
is an absorbing set in C, and it follows that x̃ is not in M,
so we have arrived at a contradiction, which completes the
proof.

Proof of Theorem II.4. By Theorem II.1 (b) there is at least
one absorbing set in C. Moreover, C is bounded and thus
finite, so there is at most a finite number of absorbing sets
in C. Hence, the the conclusion follows from Theorem II.1
(c).

Proof of Theorem II.5. By Theorem II.2, M[w̃, C] consists
of all periodic points of w̃ in C. Naturally, the points remain
periodic in every superset of C, in this instance the set D.
Hence, every absorbing set in D has to include all periodic
points in D (otherwise the set would not be absorbing in D),
and we get that the intersection of all absorbing sets in D
is nonempty and include M[w̃, C]. Moreover, M[w̃, C] is an
absorbing set in C, and by the assumption of the theorem, C
is an absorbing set in D, so from Theorem II.1 (f) it follows
that M[w̃, C] is also an absorbing set in D, and thus M[w̃, C]
include the intersection of all absorbing sets in D. Since, as
we have shown, M[w̃, C] is also included in the intersection,
this completes the proof.

Proof of Theorem II.7. Let x̃ be any point of Dn(δ). The
mapping w is a contraction on (Rn, d), so limi→∞ w◦i(w̃) =
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xf or equivalently

∀ε > 0,∃N ∈ N,∀i ≥ N, d(w◦i(x̃), xf ) < ε.

As a consequence, for a given ε > 0, there exists N ∈ N such
that for any i ≥ N we get that

d(w̃◦i(x̃), xf ) ≤ d(w̃◦i(x̃), w◦i(x̃)) + d(w◦i(x̃), xf )

< θ(1− λ)−1 + ε

on the basis of inequality (II.2) in [1]. Hence, for all i ≥ N ,
w̃◦i(x̃) ∈ Λ(xf , r0+ε), and because x̃ is any point of Dn(δ),
we get that, for every ε > 0, Λ(xf , r0+ ε) is an absorbing set
for w̃.

Now we prove that Λ(xf , r0 + ε) also owns the absorbing
property for ε = 0. Let ΛC(xf , r0) = Dn(δ)\Λ(xf , r0). Since
ΛC(xf , r0) is countable, the minimum ε = min{d(ỹ, xf ) :
ỹ ∈ ΛC(xf , r0)} exists and ε > r0. Therefore, Λ(xf , r0 +
ε/2) does not include any point from ΛC(xf , r0), and thus
Λ(xf , r0 + ε/2) = Λ(xf , r0).

The last thing to we show is that w̃ maps Λ(xf , r0) into
itself. Let ỹ ∈ Λ(xf , r0). We have

d(w̃(ỹ), xf ) ≤ d(w̃(ỹ), w(ỹ)) + d(w(ỹ), xf )

≤ θ + λd(ỹ, xf )

≤ θ
(
1 + λ(1− λ)−1

)
= θ(1− λ)−1

because d(w̃(ỹ), w(ỹ)) ≤ θ by the definition of a δ-roundoff
of a mapping (Def. II.2 in [1]). Therefore, w̃(ỹ) ∈ Λ(xf , r0),
which completes the proof.

Proof of Corollary II.8. On the basis of Theorem II.7,
Λ(xf , r0) is bounded and w̃ maps it into itself, so from
Theorem II.4 there exists M[w̃,Λ(xf , r0)]. But, by Theorem
II.7, Λ(xf , r0) is an absorbing set for w̃ in Dn(δ), and thus
M[w̃] = M[w̃,Λ(xf , r0)] by Theorem II.5.

Proof of Theorem III.2. (a) Suppose C is a closed class, so for
every i ∈ {1, . . . , N}, w̃i(C) ⊂ C. Hence

⋃N
i=1 w̃i(C) ⊂ C.

Now, suppose that
⋃N

i=1 w̃i(C) ⊂ C. The mappings wi map
C into itself, so for any x̃ ∈ C and every finite sequence
i1, . . . , im of indices from {1, . . . , N}, we have wim ◦ · · · ◦
wi1(x̃) ∈ C. Therefore, if ỹ /∈ C, then ỹ is not accessible
from C, and thus C is a closed class. (b) Let x̃ ∈ C, where
C is a communication class. Then x̃ is accessible from any
state in C, and hence there exist at least one ỹ ∈ C and
i ∈ {1, . . . , N} such that w̃i(ỹ) = x̃. Hence, x̃ ∈ w̃i(C), and
as a consequence

⋃N
i=1 w̃i(C) ⊃ C.

Lemma. Let {S; w̃1, . . . , w̃N ; p1, . . . , pN} be a DIFS. Sup-
pose that for at least one DIFS mapping w̃i there exists
a minimal absorbing set M[w̃i, S]. Let Ak be a recurrent
communication class of the associated Markov chain {X̃k}.
If there exists x̃ ∈ S such that both x̃ ∈ Ak and x̃ ∈
B[Mj [w̃i, S]], then Ak ⊃ Mj [w̃i, S].

Proof. Suppose that x̃ ∈ S satisfies the assumptions above.
Since x̃ is in the basin of attraction of Mj [w̃i, S], by Def.
II.4 there is m ∈ N such that w̃◦m

i (x̃) ∈ Mj [w̃i, S]. Moreover,
Mj [w̃i, S] is a periodic orbit for wi in S (Corollary II.3 in
[1]). Therefore, writing p ∈ N for the period of Mj [w̃i, S], we

get that for any y ∈ Mj [w̃i, S], there is a certain k < m+ p
such that

Pr(X̃k = ỹ | X̃0 = x̃) ≥
k∏

l=1

pi(w̃
◦l
i (x̃)) > 0,

because pi(.) is strictly positive over S. Hence, every point
of Mj [w̃i, S] is accessible from x̃. Since, by assumption, x̃
is also in Ak and the set is a closed class, as a result we get
that Ak ⊃ Mj [w̃i, S] as required.

Proof of Theorem III.3. (a) Let Ak ∈ AF and let
M[w̃i, S] ∈ MF . The basins of attraction B[Mj [w̃i, S]],
j ∈ {1, . . . ,M#[w̃i, S]} forms a countable partition of S.
Therefore, Ak is a subset of a union of a certain number of the
basins, Ak = Ak∩

⋃
j B[Mj [w̃i, S]]. On the basis of the above

lemma, if Ak ∩ B[Mj [w̃i, S]] ̸= ∅, then Ak ⊃ Mj [w̃i, S].
Hence, each set in AF includes at least one component
of the set M[w̃i, S]. Moreover, for any Am ∈ AF such
that Am ⊃ Mj [w̃i, S], we have Ak = Am, because the
recurrent communication classes are disjoint. Hence, for any
M[w̃i, S] ∈ MF , the number of sets in AF cannot exceed
the number of the components of M[w̃i, S], which completes
this part of the proof.

(b) If AF is empty, the conclusion of the theorem follows triv-
ially. Assume that AF is nonempty. The basins of attractions
of the components of the set M[w̃i, S] constitute a countable
partition of S, so by the above lemma, each Ak ∈ AF
includes at least one of the components of M[w̃i, S]. But by
the assumption of the theorem, all the components belong to
the basin of attraction B[Mk[w̃j , S]] and thus, again by the
lemma above, Mk[w̃j , S] is a subset of every set Ak ∈ AF .
Since AF is a family of disjoint sets, AF consists of a single
set as required.

Proof of Theorem III.6. First we show that the DIFS transfor-
mations map S into itself. Suppose that x̃ is any point of S. We
need to show that, for any i ∈ {1, . . . , N}, w̃i(x̃) ∈ S.Using
the triangle inequality along with the Lipschitz continuity of
wi’s and the definition of a δ-roundoff of a mapping (Def. II.2
in [1]), we get, for any i ∈ {1, . . . , N} and ε > 0, that

d(w̃i(x̃), o) ≤ d(wi(x̃), o) + d(w̃i(x̃), wi(x̃))

≤ d(wi(x̃), x
(i)
f ) + d(x

(i)
f , o) + θ

≤ λmax d(x̃, x
(i)
f ) + rmax + θ

≤ λmax

(
d(x̃, o) + d(x

(i)
f , o)

)
+ rmax + θ

< λmax (αrmax + θ(1− λmax)
−1 + ε+ rmax)

+ rmax + θ

= αrmax + λmax(θ(1− λmax)
−1 + ε)

< αrmax + θ(1− λmax)
−1 + ε

as required.
Now we show that the Markov chain associated with the

DIFS possesses a set A of recurrent states. By Theorem III.2
(a) in [1], the set S is a closed class and, moreover, S is
by definition finite, so due to the second part of Theorem
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Fig. 1. Examples of minimal absorbing sets and their basins of attractions generated by δ-roundoffs of two-dimensional linear contractions. From left to
right, top to bottom, the first five pictures are derived from similarities with scaling factors and rotations respectively: 0.6 and 0◦, 0.6 and 5◦, 0.6 and 150◦,
0.6 and 30◦, 0.9 and 30◦. The last picture is derived from a linear mapping specified by the matrix

[
0.5 0.3
−0.1 0.4

]
.

III.1 in [1], the Markov chain possesses at least one nonempty
recurrent communication class within S, and hence A ≠ ∅.

To complete the proof we need to show that A ⊂ S. By the
assumption of the theorem, w̃i are roundoffs of contractions,
so by Corollary II.8 in [1], for each w̃i, there is a finite
minimal absorbing set M[w̃i] (with respect to the whole space
Dn(δ)). Now, fix some i ∈ {1, . . . , N} and observe that if
x̃ ∈ A, then x̃ is located in one of the basins of attraction of
M[w̃i]. Therefore, for each x̃ ∈ A, there is a state ỹ ∈ M[w̃i]
accessible from x̃, and thus also ỹ ∈ A, because A is a closed
class. In addition, A is composed of communication classes
Ak. From this we conclude that any set which is a closed class
and, at the same time, includes M[w̃i] has to contain A too.
The set S is a closed class, so to finish the proof it suffices
to show that S ⊃ M[w̃i]. On the basis of Theorem II.7 in
[1], for every point x̃ ∈ M[w̃i], d(x̃, x

(i)
f ) ≤ θ(1−λi)

−1, and
hence for any ε > 0,

d(x̃, o) ≤ d(x
(i)
f , o) + d(x̃, x

(i)
f )

≤ rmax + θ(1− λmax)
−1

< αrmax + θ(1− λmax)
−1 + ε,

because α ≥ 1. This completes the proof.

Proof of Corollary III.7. The only thing to show is that for
every X̃0 = x̃ ∈ Dn(δ), Pr(∃i ∈ N : X̃i /∈ T ) = 1. Using
Theorem III.6 in [1], for any x̃ ∈ T one can construct a
finite closed class S so that x̃ ∈ S and A ⊂ S. Therefore,

the ”escape-from-transient-class” conclusion follows from the
second part of Theorem III.1.

Proof of Lemma III.8. The mutual existence of the orbits
{x̃k = w̃ik(x̃k−1)} and {xk = wik(xk−1)} of the chain
X̃ and X , respectively, is trivially provided by the strict
positivity of probability functions pi(.) and probability weights
qi. Therefore, all we need to show is that all points of the orbits
satisfy inequality (III.6) in [1]. The proof is by induction. For
k = 1, we have

d(x1, x̃1) ≤ d(x1, wi1(x̃0)) + d(wi1(x̃0), x̃1)

≤ d(wi1(x̃0), w̃i1(x̃0)) ≤ θ,

where the last inequality follows from the definition of a δ-
roundoff of a mapping (Def. II.2 in [1]). Now assume that
inequality III.6 in [1] is true for k. Then

d(xk+1, x̃k+1) ≤ d(xk+1, wik+1
(x̃k)) + d(wik+1

(x̃k), x̃k+1)

≤ d(wik+1
(xk), wik+1

(x̃k))

+ d(wik+1
(x̃k), w̃ik+1

(x̃k))

≤ λmax d(xk, x̃k) + θ

≤ λmax (1− λmax)
−1θ + θ

= θ(1− λmax)
−1

as required.

Proof of Theorem III.9. The Hausdorff distance between
A+

k and A∞ is h(A+
k , A∞) = inf{ε ≥ 0 : A∞ ⊂
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Fig. 2. Examples of basins of attractions generated by δ-roundoffs of two-dimensional affine maps being contractions with respect to the ”weighted” maximum
metric d

(p)
∞ (x, y) = max(p|x1 − y1|, |x2 − y2|), p > 1.

N(A+
k , ε) and A+

k ⊂ N(A∞, ε)}, where N(A, ε) := {x ∈
Rn : d(x, a) < ε, a ∈ A} denotes the (open) ε-neighbourhood
of a set A. First we show that for any ε > 0, A∞ ⊂
N(A+

k , θ(1 − λmax)
−1 + ε). We need to show that for any

a ∈ A∞, there is a certain x̃ ∈ A+
k such that d(a, x̃) <

θ(1− λmax)
−1 + ε. Let a be any point of A∞. The attractor

is the support of the IFS invariant measure π, so for any
ε > 0, π(B(a, ε)) > 0. Moreover, by Elton’s ergodic theorem
(Eq. III.4 in [1]) π is ergodic, and hence, for any initial
point x0 ∈ Rn, almost every orbit {xi}∞i=0 of the Markov
chain generated by the IFS visits B(a, ε) infinitely often.
Hence, for any x0 ∈ Rn, there is a finite sequence of indices
im, . . . , i1 ∈ {1, . . . , N} such that d(wim◦· · ·◦w1(x0), a) < ε.
On that basis, putting x0 ∈ A+

k and using the previous lemma,

we get that there is a finite sequence i = (im, . . . , i1) of
indices such that

d(w̃i(x0), a) ≤ d(w̃i(x0), wi(x0)) + d(wi(x0), a)

< θ(1− λmax)
−1 + ε,

where wi(.) := wim ◦· · ·◦w1(.). But A+
k is a closed class, and

thus w̃i(x0) ∈ A+
k . Hence, A∞ ⊂ N(A+

k , θ(1−λmax)
−1+ε)

as required.

Now we show that for any ε > 0, A+
k ⊂ N(A∞, θ(1 −

λmax)
−1 + ε). Let x̃ be any point of A+

k . Since A+
k is a

recurrent class, x̃ is a recurrent state and thus there is a finite
sequence of indices i = (im, . . . , i1) ∈ {1, . . . , N}m such that
w̃i(x̃) = x̃, and hence for any j ∈ N, w̃◦j

i (x̃) = x̃. Now let
a ∈ A∞. Since the IFS maps wi are contractions, we have,
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for any j ∈ N,

d(w◦j
i (x̃), w◦j

i (a)) ≤ λm·j
max d(x̃, a)

and hence for any ε > 0, there is M ∈ N such that

d(w◦M
i (x̃), w◦M

i (a)) ≤ λM
max d(x̃, a) < ε,

because λmax ∈ [0, 1). On the basis of above, using the
previous lemma we conclude that

d(x̃, w◦M
i (a)) = d(w̃◦M

i (x̃), w◦M
i (a))

≤ d(w̃◦M
i (x̃), w◦M

i (x̃)) + d(w◦M
i (x̃), w◦M

i (ã))

< θ(1− λmax)
−1 + ε.

But w◦M
i (a) ∈ A∞, because wi’s map A∞ into itself. It

follows that A+
k ⊂ N(A∞, θ(1− λmax)

−1 + ε) as required.
Since both A∞ ⊂ N(A+

k , θ(1 − λmax)
−1 + ε) and A+

k ⊂
N(A∞, θ(1 − λmax)

−1 + ε) for any ε > 0, we get that the
infimum in the Hausdorff distance h(A+

k , A∞) is bounded
from above by the value of θ(1 − λmax)

−1. This completes
the proof.

Proof of Corollary III.10. By Theorem III.6 in [1], for any
δ > 0, the set of all recurrent states of the associated Markov
chain is nonempty and finite (and thus compact), and so are
the set’s subsets A+

k (δ). Therefore, for any δ > 0, A+
k (δ) is an

element of H(Rn), the family of all nonempty and compact
subsets of Rn. By a standard argument for hyperbolic IFSs,
A∞ ∈ H(Rn) too. Since diamd(Cδ) → 0 as δ → 0, and the
Hausdorff distance h is a metric on H(Rn), the conclusion
follows from inequality III.7 in [1].

Proof of Theorem III.11. In [2] Peruggia showed that a very
similar conclusion holds under the assumption that the fixed
point of one of the IFS mappings coincides with 0 ∈ D2(δ),
the zero vector of the discrete (pixel) space, which naturally
stays intact while changing the value of the discretization
parameter δ (cf. [2], Theorem 4.38, pp. 129–131). Although
our theorem does not impose such a restriction, the proof is
founded on similar arguments as those used in the proof by
Peruggia.

First, observe that the summation on the left hand side of
Eq. III.8 in [1] can be restricted to the support of the measure
πk(δ), supp(πk(δ)) = A+

k (δ), and, as we pointed out earlier,
the corresponding Markov chain {X̃δ

i (x̃0) : X̃δ
0 (x̃0) = x̃0 ∈

A+
k (δ)} generated by the DIFS (for fixed δ) is (Birkhoff’s)

ergodic on A+
k (δ). In addition, by Elton’s ergodic theorem,

the IFS invariant measure π∞ is ergodic for the Markov chain
{Xi(x0) : X0 = x0 ∈ Rn} generated by the IFS on Rn.
Putting these facts together, we get that for any δ > 0, with
probability one,∣∣∣ ∑

x̃∈A+
k (δ)

f(x̃)πk(δ){x̃} −
∫
Rn

f(x)dπ∞

∣∣∣
= lim

m→∞

1

m

∣∣∣m−1∑
i=0

(
f(X̃δ

i (x̃0))− f(Xi(x̃0))
)∣∣∣

≤ lim
m→∞

1

m

m−1∑
i=0

∣∣f(X̃δ
i (x̃0))− f(Xi(x̃0))

∣∣
(I.1)

where x̃0 ∈ A+
k (δ). But X̃δ

i (x̃0) = w̃Ii

(
X̃δ

i−1(x̃0)
)

and
Xi(x̃0) = wIi

(
Xi−1(x̃0)

)
, that is, both Markov chains are

driven by the same sequence {Ii}i∈N of the i.i.d. random
variables Ii distributed as [p1, . . . , pN ]. Hence, from Lemma
III.8 in [1],

d(Xi(x̃0), X̃
δ
i (x̃0)) ≤ θ(1− λmax)

−1 (I.2)

for every i ∈ N, where λmax is the maximum contractivity
factor of the IFS mappings wi. Now crucial is the observation,
which will be shown to be true at the end of the proof, that
there exists a compact set E ⊂ Rn such that, for every δ ∈
(0, R), where R > 0 is a certain real number, E ⊃ {Xi(x̃0)}
and E ⊃ {X̃δ

i (x̃0)} for any x̃0 ∈ A+
k (δ), that is, none of the

chains for δ ∈ (0, R) moves out of E. Then, on the basis of
the Heine–Cantor theorem, f ’s are uniformly continuous on
E. Since the right-hand side of inequality (I.2) converges to 0
as δ → 0, from this we conclude that for any ε > 0, there is
δ(ε) ∈ (0, R) such that for any δ ∈ (0, δ(ε)),

∣∣f(X̃δ
i (x̃0)) −

f(Xi(x̃0))
∣∣ < ε for all i ∈ N. Therefore,

lim
δ→0

(
lim

m→∞

1

m

m−1∑
i=0

∣∣f(X̃δ
i (x̃0))− f(Xi(x̃0))

∣∣) = 0

and hence, taking limits as δ → 0 on both sides of inequality
(I.1), we get

lim
δ→0

∑
x̃∈A+

k (δ)

f(x̃)πk(δ){x̃} =

∫
Rn

f(x)dπ∞.

Since the sets A+
k (δ) are the supports of the measures πk(δ),

the summation on the left-hand side of the above formula
equals the summation over the whole space Dn(δ), and thus
we have arrived at the conclusion of the theorem.

The remaining thing to show is the existence of a compact
set E, in which the Markov chains {Xi(x̃0)} and {X̃δ

i (x̃0)}
reside for any x̃0 ∈ A+

k (δ) and δ ∈ (0, R), so as to
assure the uniform continuity of the functions f . To this end,
we can apply the following construction: Fix R > 0 and
observe that by inequality III.7 in [1], for any δ ∈ (0, R),
A+

k (δ) ⊂ N(A∞, r0), r0 = 1
2 diamd(CR)(1 − λmax)

−1, and
because A∞ is compact, so is the closure N(A∞, r0) of the
neighbourhood. Hence, for all δ ∈ (0, R) and x̃0 ∈ A+

k (δ),
all Markov chains {X̃δ

i (x̃0)} reside in N(A∞, r0) (because
A+

k (δ)’s are closed classes). Next we extend N(A∞, r0) so
as to additionally encompass all Markov chains {Xi(x̃0)} for
δ ∈ (0, R) and x̃0 ∈ A+

k (δ). Due to inequality (I.2), it is easily
done by doubling the radius of N(A∞, r0), so the required
compact set is N(A∞, 2r0). This completes the proof.

II. MINIMAL ABSORBING SETS—EXAMPLES

In Fig. 1 we present examples of minimal absorbing sets
and their basins of attractions generated by δ-roundoffs of
two-dimensional affine contractions with respect to the Eu-
clidean metric. In turn, Fig. 2 shows some examples of
basins of attractions of affine contractions with respect to
the ”weighted” maximum metric defined as d

(p)
∞ (x, y) :=

max(p|x1− y1|, |x2− y2|), with weight p > 1 as a parameter.
It is worth noting what intricate dynamics an iteration of a
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single affine map can exhibit when quantized and viewed in
a discrete space.

III. DIFS STATIONARY PROBABILITY
MEASURES—EXAMPLES

Fig. 3. An example of a DIFS stationary distribution visualized with the use
of the random iteration algorithm. The DIFS is composed of three maps with
minimal absorbing sets consisting of 2, 3 and 6 components, respectively.
The basins of attractions of the maps are depicted on the left-hand side of the
picture

Fig. 4. Another example of a DIFS stationary distribution visualized with the
use of the random iteration algorithm. The minimal absorbing sets consist of
1, 13 and 1 components, respectively

In Fig. 3–5 we present three examples of stationary proba-
bility measures of Discrete Iterated Function Systems defined
on a squared subset C ⊂ D2(δ) of 1000 × 1000 resolution.
Each DIFS consists of three mappings, which were constructed
and stored in 1000× 1000 arrays. Each array Wi represented
a single DIFS map w̃i in the form of a pair of integer numbers
as (Wi)kl = w̃(kδ, lδ)/δ. In other words, each Wi held
information about a directed graph with vertices (k, l) being
states of the associated Markov chain and edges generated by
w̃i, and thus the outdegree of each vertex being 1. For each

Fig. 5. One more example of a DIFS stationary distribution visualized with
the aid of the random iteration algorithm. The minimal absorbing sets consist
of 1, 11 and 5 components, respectively

DIFS, the arrays were initialized with three δ-roundoffs of
contractive similarities describing a Sierpiński’s triangle, and
then connections between the states were processed (changed)
several times with the aid of nonlinear mappings (a collection
of interesting transformations can be found in [3]), with care
not to create a connection with a state lying outside C. Finally,
the arrays (graphs) were additionally delicately ”smoothed”
with a 3 × 3 Gaussian filter. Analogously, the distributions
of the DIFS place-dependent probabilities were stored in a
1000× 1000 array D such that (D)kl was the distribution at
state (k, l). The array was initiated with uniform distributions,
which were then perturbed with a nonlinear mapping. The
renderings were obtained by means of the random iteration
algorithm that generated an orbit in subset C with the aid of
the arrays Wi and D, so that given state (k, l), the next state
was determined as (Wi)kl with i drawn from the distribution
(D)kl. Since Wi’s and D function as lookup tables, the orbit
was generated in an extremely efficient manner, based only on
fetches from the arrays and a pseudorandom generator. In the
images the value of the measure of a state is interpreted as
brightness, and the coloring reflects participation of a DIFS
map in conveying a measure to a state, according to the
formula cnew = (cold + ci)/2, where cnew and cold are a new
color and, respectively, a current color assigned to a visited
state (with cold initialized with black at the beginning of the
algorithm), and ci is a color assigned to the ith DIFS map.

REFERENCES

[1] T. Martyn, ”A computer scientist’s perspective on approximation of
IFS invariant sets and measures with the random iteration algorithm”,
International Journal of Electronics and Telecommunications, vol. 70,
no. 4, pp. 1113-1123, 2024. https://doi.org/10.24425/ijet.2024.152514

[2] M. Peruggia, Discrete Iterated Function Systems. A. K. Peters Wellesley
MA, 1993. https://doi.org/10.5402/2012/825782

[3] O. S. Lawlor OS, GPU-accelerated rendering of unbounded nonlinear
iterated function system fixed points, ISRN Computer Graphics, vol.
2012:1–17, 2012.

https://doi.org/10.24425/ijet.2024.152514
https://doi.org/10.5402/2012/825782

	Proofs of Theorems and Lemmas
	Minimal Absorbing Sets—Examples
	DIFS Stationary Probability Measures—Examples
	References

