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Abstract—This paper presents the author's proposal for a 

neural detector realization of a Massive-MIMO-OFDM system 

using extended Hopfield neural circuits. An important feature of 

such an implementation is that the system can be learned without 

the need to solve multi-parameter optimization tasks requiring 

high computational power.  
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I. INTRODUCTION 

ACHINE learning algorithms, implemented in neural 

circuit structures, have revolutionized many areas of 

significant theoretical and practical interest. First and foremost, 

data processing systems such as image processing, speech 

recognition, automatic translation or autonomous systems 

should be mentioned here. A product of recent years are artificial 

intelligence (A. I.) systems. However, it can be noted that in 

such an important field as wireless communication, machine 

learning algorithms have not yet found satisfactory practical 

implementations. Traditional communication systems are based 

on statistical models describing transmission processes, wave 

propagation, noise levels and channel interference. Such models 

are complex and do not always sufficiently describe and adapt 

to dynamically developing communication systems (e.g. 

Internet of Things). As an alternative to statistical models, 

machine learning systems can be used, i.e. based on the 

availability of I/O data to form training sets [1]. 
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 Fig. 1. Basic structures, conventional and neural, of communication systems 

T - training set,  

Py│S - statistical model estimating the relation of the sets {𝒚𝑖} and {𝑺𝑖} 

 

Figure 1 illustrates the basic communication structures realized 

by conventional and machine learning technology. The main 
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difference is in the means of detecting symbols transmitted over 

time-varying channels. Receivers in conventional systems 

require the implementation of symbol detection based on the 

knowledge of statistical relationships [2]. It should be 

emphasized that the effective realizability of a neural 

communication system requires solving two problems: 

- channel estimation, 

- realization of the neural detector. 

The realization of these tasks is based on the appropriate 

generation of training sets. The realization of neural detector 

learning is more difficult compared to, for example, neural 

image processing due to channel variability and time 

constraints for the use of stationarity of channel parameters 

(coherence interval). 

II. CHANNEL ESTIMATION AND DETECTION MIMO-OFDM 

OFDM systems are currently the dominant structure of 

broadband communication systems. Such systems are analyzed 

in this paper. The availability of channel state information (CSI) 

is critical to the realization of MIMO-OFDM communication 

systems. It is worth noting that the signal transmission structure 

of an OFDM system is given in the form of a table as in Fig. 2. 
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Fig. 2. OFDM system time-frequency tables 

● pilot vector element symbol 

○ symbol of the information signal vector element. 

 

The data blocks are transmitted in parallel on M orthogonal 

subcarriers. The OFDM channel estimation using machine 

learning algorithms has been the subject of research for a 

decade. One of the most interesting proposals is to treat the 

array in Fig. 2 as an image defined by the distribution of 

symbols (pixels). A reasonable solution is therefore to use the 

structures of convolutional neural circuits (CNNs), which, 

according to the established opinions in the literature, are best 

suited for image processing. Training sets for learning CNNs 
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are obtained using 'images' containing pilot signal symbols [3]-

[6]. The detection of a MIMO system under the assumptions of 

stationarity and flat frequency characteristics of the channel, is 

described in the baseband by the equation: 
 

 𝒚 = 𝑯𝒙 + 𝒏 (1) 
 

where: 𝒙 ∈ 𝐶𝑁𝑡 is a vector of transmitted symbols belonging to 

a finite constellation of dimension M, 

𝒚 ∈ 𝐶𝑁𝑟 is the received vector, 

𝑯 ∈ 𝐶𝑁𝑟×𝑁𝑡 is the composite channel matrix, 

𝒏 ∈ 𝐶𝑁𝑟 is additive white noise with Gaussian distribution. 

 

Assuming knowledge of the channel matrix H, the solution of 

(1) is given by the solution of the optimization problem: 
 

 𝒙 = arg min
𝒙

‖𝒚 − 𝑯𝒙‖2 (2) 

 

where: 𝒙 – estimator of 𝒙. 

Obtaining such a solution would require an analysis of all the x 

vectors transmitted in the channel. Such an analysis is 

practically unfeasible with large constellations and in large 

MIMO systems. Hence the attempt to find the solution of (2) by 

detectors based on neural circuit structures [7]. 

III. APPLICATION OF AN EXTENDED HOPFIELD NEURAL 

CIRCUIT MODEL IN A WIRELESS COMMUNICATION SYSTEM 

One important neural structure are Hopfield-type systems, 

which are both physical models and algorithms used in neural 

computing. The earlier paper proposed an extended model of 

the systems defined by the following differential equation [8]: 
 

 𝒙̇ = (𝜂𝑾 − 𝑤𝟎𝟏 + 𝜀𝑾𝑠)𝜽(𝒙) + 𝑰𝑑 (3) 
 

where: 𝑾— skew symmetric orthogonal matrix of weights  

 connections, 

𝑾𝑠— real symmetric matrix, 

𝟏— unitary matrix, 

𝜽(𝒙)— vector of activation functions, 

𝑰𝑑 — input vector, 

𝜀, 𝑤0, 𝜂 — parameters. 

 

Equation (3) at equilibrium of the system takes the form: 
 

 (𝜂𝑾 − 𝑤𝟎𝟏 + 𝜀𝑾𝑠)𝜽(𝒙) + 𝑰𝑑 = 𝟎 (4) 
 

Equation (4) provides the basis for universal machine learning 

models based on biorthogonal transformations that enable 

typical functions of learning systems. One of these functions is 

the implementation of associative memories. The application of 

the system to reconstruct and recognize distorted/noisy images 

using associative memory is described in the paper [8]. On the 

other hand, the implementation of a machine learning system 

for solving inverse problems (Inverse Problem) was 

investigated in the paper [9]. In the aforementioned works, the 

original image was processed by a linear matrix operator whose 

size was not quadratic. Thus, there was no inverse operator in 

the sense of matrix algebra. A suitably designed machine 

learning system performed the reconstruction of the original 

image based on its projection. This paper proposes the 

application of the above machine learning model to the 

implementation of a Massive-MIMO-OFDM communication 

system [10]. 

IV. STRUCTURE OF THE MACHINE LEARNING MODEL 

The equilibrium (4) is the basis for creating the structures of 

universal machine learning models. It should be noted that 

assuming: 𝑾𝑠  is a Hermitian matrix, a complex data (vector) 

processing model is obtained. Thus, the solution (4) transforms 

to the form: 
 

 (𝑾 − 2𝟏 + 𝑾𝐻)𝜽 + 𝑰𝑑 = 𝟎 (5) 
 

where: 𝑾 — skew symmetric orthogonal matrix, 

𝑾𝐻 — Hermitian matrix  𝑾𝐻 =  𝑾𝑯
+ , 

𝟏 — unitary matrix, 

𝜽 — activation function vector, 

𝑰𝑑 — input vector, 

𝜀 = 1, 𝑤0 = 2, 𝜂 = 1. 
 

The machine learning model realizes the mapping: 𝐹: 𝑋 → 𝑌, 

of the I/O type, where the sets 𝑋  and  𝑌 are realized by pairs of 

complex training vectors  {𝒙𝑖 , 𝒚𝑖}𝑖=1
𝑁 , 𝒙𝑖 ∈ 𝑋 ⊂ 𝐶𝑚, 𝒚𝑖 ∈ 𝑌 ⊂

𝐶𝑛. The realizations of the mapping 𝐹 can be obtained by 

transforming (5) to the form: 
 

 (𝑾 − 2𝟏 + 𝑾𝐻)𝒎𝑖 + 𝒖𝑖 = 𝟎 (6) 
 

where: 𝒖𝑖 = [
𝒙𝑖

𝒚𝑖
] , 𝑖 = 1, … , 𝑁; 𝑑𝑖𝑚𝒖𝑖 = 𝑚 + 𝑛, 

𝒎𝑖 =
1

2
(𝑊 + 𝟏)𝒖𝑖  , 

𝒎𝑖 ∈ 𝑴 = [𝒎1, 𝒎2, … , 𝒎𝑁], 
𝑾𝑯 = 𝑴(𝑴𝑻𝑴)−𝟏𝑴𝑻, 

𝑴— the spectral matrix of the vectors 𝒖𝑖. 
 

Hence, Eq.(6) has N - stable solutions, which are the centers of 

attraction of the mapping F. The block structure of the machine 

learning model is shown in Fig. 3. 
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Fig. 3. Block structure of the machine learning model 

V. RECOGNITION AND RECONSTRUCTION OF A VECTOR 

(IMAGE) AS AN INVERSE PROBLEM 

The paper [9] gives a method for reconstructing a vector 

(image) from the knowledge of its projection, i.e.: 
 

 𝑨𝒙 = 𝒚̃;  𝐴(𝒙) = 𝒚̃ (7) 
 

where: 𝐴(∙) — linear operator, 

𝑨 — complex rectangular matrix: dim 𝑨 = (𝑚 × 𝑛), 𝑚 > 𝑛, 

𝒙 — original image, 𝒙 ∈ 𝐶𝑛, 

𝒚̃ — available projection of the original 𝒚̃ ∈ 𝐶𝑚. 
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The solution of (7) belongs to the solution of the inverse 

problem: 
 

 𝒙 = 𝐴−1(𝒚̃) (8) 
 

Most of the solutions to (8) known from the literature use 

optimization methods, for example: 
 

 min
𝑥

‖𝒚̃ − 𝑨𝒙‖2
2, s.t. 𝒙 ∈ 𝐾 (9) 

min
𝑥

‖𝒚̃ − 𝑨𝒙‖2
2 +𝛽𝑅(𝒙)   

 

where: K — set of admissible solutions,  

𝑅(𝒙) — regularize,  

𝛽 — regularization parameter.  
 

Equation (7) was solved using the model in Fig.3, with the 

system vectors 𝒖𝑖 in (6) being of the form: 
 

 𝒖𝑖 = [
𝒙𝑖

𝒚𝑖
] , 𝑖 = 1, … , 𝑁; 𝑁 = 𝑛 (10) 

 

where:: 𝒙𝑖 ∈ 𝐶𝑛, 𝒚𝑖 ∈ 𝐶𝑚 are pairs of training random vectors: 

 

 𝑨𝒙𝑖 = 𝒚𝑖 (11) 
 

The solution to the inverse problem is realized by the model 

shown in Fig. 4. 
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Fig. 4. Structure of the model implementing the inverse mapping  
 

It should further be noted that the model performs the solution 

of the inverse problem by superposition of random training 

vectors. The detection of the MIMO system described by (1) 

can be interpreted as the solution of the inverse problem after 

the estimation of the H-channel matrix. 

VI. MACHINE LEARNING MODEL FOR THE MASSIVE-MIMO-

OFDM SYSTEM 

A. Uplink Channel 

The Massive-MIMO-OFDM wireless communication 

system is considered to be the most scalable communication 

structure [10]. The architecture of such a system is shown in 

Fig. 5. 

 
 

Fig. 5. Uplink of a Massive-MIMO system (𝑁𝑟 > 𝑁𝑡) (number of receiving BS 

antennas 𝑁𝑟 greater than the number of transmitting terminal antennas 𝑁𝑡) 

 

The system uses a TDD (time-division duplex) operation. The 

base station learns the channel (uplink) using pilots. The 

estimation of the downlink channel, on the other hand, is 

obtained by transposing the uplink channel. Using the structure 

realizing the 𝐴−1(∙) operator in Fig. 4, for the H-channel 

estimation and vector detection 𝒙 ∈ 𝐶𝑁𝑡, requires the 

transmission of 𝑁𝑡 pilot signals. Thus, according to (6), the 

system vectors 𝒖𝑖 take the form: 
 

 𝒖𝑖 = [
𝒚𝑖

𝒙𝑖
] , 𝑖 = 1, … , 𝑁𝑡; dim 𝒚𝑖 = 𝑁𝑟 , dim 𝒙𝑖 = 𝑁𝑡 (12) 

 

where: 

 𝒚𝑖 = 𝑯𝒙𝑖 ; 𝑖 = 1, … , 𝑁𝑡 (13) 
 

𝒙𝑖 — pilot vectors, 

𝒚𝑖 — vectors received at base station,  

𝑯(∙) — physical model of noisy channel (𝑯 is static in the 

coherence interval). 
 

Statement: 

The detection of any  vector 𝒙𝑡 ∈ 𝐶𝑁𝑡 transmitted through the 

channel i.e. 
 

 𝒚 = 𝑯𝒙𝑡 , 𝒙𝑡 ≠ 𝟎 (14) 
 

hence: 
 

 𝒙𝑡 = 𝑯−1𝒚 (15) 
 

leads to an estimate of  𝒙𝑡  at the output of the neural detector 

with the MSE error: 
 

 ‖𝒙𝑡 − 𝒙𝑡‖2 ≈ 0 (16) 
 

The channel estimation and detector model is shown in Fig. 6. 
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Fig. 6. Neural channel and detector model, 𝒙̂  vector estimation of 𝒙 

 

The learning of the above model is described by Eq. (6). The 

limitation of such a model is the number: 𝑁𝑡 + 𝑁𝑟 = 2𝑘 , 𝑘 =
3, 4, … , 𝑁𝑟 > 𝑁𝑡 (massive model) 

B. Downlink Channel 

Assuming the operation of the communication system using 

TDD (Time Division Duplex), the uplink channel estimation 

can be used for downlink estimation due to the reversibility of 

the channel. From the considerations carried out in the previous 

section, the base station has an uplink channel model as shown 

in Fig. 6. In particular, the 𝑿 matrix of the pilot vectors and the 

𝒀 matrix of their transmission through the channel are fixed. 

Thus, the numerical value of the channel matrix 𝑯̂ can be 

determined from the following relationship: 
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 𝑯̂ = 𝑿(𝑿𝑇𝑿 + 𝛾𝟏)−1𝑿𝑇  (17) 
 

where: 𝛾𝟏 — regularization component (𝛾 > 0) 
 

It can be shown that the evaluation occurs: 
 

 ‖𝑯̂ − 𝑯‖
2

≈ 0 (18) 
 

where: 𝑯 — test matrix (random matrix) 
 

The Massive-MIMO model for downlink transmission is shown 

in Fig. 7. 
 

 
 

Fig. 7. Downlink of a Massive-MIMO system (𝑁𝑟 > 𝑁𝑡) (number of receiving 

BS antennas 𝑁𝑟 greater than the number of transmitting terminal antennas 𝑁𝑡) 
 

In conventional down-link transmission of the symbol vectors 

𝒔 (Fig. 7), the base station uses H-channel estimators. It uses 

𝑯𝑇  to linear  precoding the symbols and transmit them to all 

terminals. Each terminal should have a CSI for coherent 

detection of the transmitted symbols. The literature proposes 

beamforming of pilots generated at the base stations for path 

estimation to each terminal. In the authors' further research, it 

is assumed that an attempt will be made to solve the down-link 

transmission problem using the neural model of Fig. 6. using 

beamforming or spatial filtering for each terminal. 

VII. COMPUTATIONAL EXAMPLE OF NEURAL UPLINK 

DETECTOR 

The computational example assumes a Massive-MIMO 

communication system consisting of 12 single-antenna 

terminals and a base station containing 20 receive antennas. A 

model of such a system is illustrated in Fig. 8. 
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Fig. 8. Massive-MIMO system model analyzed in the example 

𝒙𝑖 – pilots vectors 

𝒚𝑖- vectors received at the base station 
 

According to (13), the matrix operator 𝐻(∙) modeling the 

physical channel was assumed as a random matrix 𝑯(20 ×
12) with coefficients taking complex values with a normal 

distribution. If 𝒙1 is a fixed vector from the set {𝒙𝑖}𝑖=1
12 , 

according to the relation: 
 

 𝒚1 = 𝑯𝒙1 (19) 
 

it corresponds to the received after the transmission vector 𝒚1. 

The selected exemplary pair of vectors 𝒙1 and  𝒚1take the form: 

𝒙1
𝑇=  [ 1-1i,  -1-3i, -1+3i,  1+3i,  3-1i, 1+1i,  

   1-3i, -3+1i, -1+1i, -1-1i, -3-1i, 3-1i ] 
 

𝒚1
𝑇= [-16.5-0.5i, -9.5+10.2i, -1.4-9.1i, -10.2-21.9i, 

 5.5-30.9i, -12.4+0.9i, -19.5+0.7i,  2.5+9.2i, 

 -6.6-16.3i, -5.9-8.7i, -2.3-0.5i, 21.8+1.2i, 

 9.2-13.6i, 1.0-1.1i, -4.4+10.1i, 10.1-1.1i, 

 3.3-10.9i, -3.5+7.8i, -9.3-4.9i, -2.0+1.5i] 
 

where: 𝒙1 – transmitted vector, 𝒚1 – vector received after 

transmission in the channel. 

a) 

 
b) 

 
Fig. 9. Constellation of vectors 

a) 𝒙1 − transmitted vector  

b) 𝒚1 − received vector after transmission in the channel 

 

All 12 pilot vectors were generated as permutations of the 𝒙1  

vector. According to (10), the system vectors 𝒖𝑖 take the form: 
 

𝒖𝑖 = [
𝒙𝑖

𝒚𝑖
] , 𝑖 = 1, … ,12; dim 𝒚𝑖 = 20, dim 𝒙𝑖 = 12 

The neural detector implementation for the above data is 

presented in Fig. 6. The detection of any  vector 𝒙𝑡 ∈ 𝐶12 

transmitted through the channel, i.e. 
 

 𝒚 = 𝑯𝒙𝑡 , 𝒙𝑡 ≠ 𝟎 (20) 

hence: 

 𝒙𝑡 = 𝑯−1𝒚 (21) 
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leads to an estimate of  𝒙𝑡  at the output of the neural detector 

system shown in Fig. 6. with the MSE error: 
 

 ‖𝒙𝑡 − 𝒙𝑡‖2 ≈ 0 (22) 

 

It is interesting to note that for non-static channel (due to the 

noisy component) the solution of Eq. (19) can be illustrated by 

the constellations as shown in Fig. 10 where 𝒙𝑡 = 𝑯−1(𝒚 + 𝒏); 

𝒏 - noise vector. 

 

 

Fig. 10. The constellations of 𝒙̂𝑡obtained at different SNR levels 

 

 

The analyses, the results of which are shown in Fig. 10, were 

carried out to investigate the properties of the neural decoder in 

the presence of Gaussian noise in the communication channel. 

Simulations were performed for different signal-to-noise ratios 

ranging from 60dB to 20dB. In each case, 10,000 trials were 

carried out. It can be concluded that the decoder shows some 
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resistance to channel interference. By analyzing the individual 

results, it can be concluded that correct symbol detection is 

possible when the signal-to-noise ratio in the communication 

channel is not less than 20dB.  

A full assessment of the suitability of the communication 

system using the neural detector described in this paper requires 

further research. 

VIII. CONCLUSION 

According to the available literature, the application of 

machine learning to the realization of wireless communication 

systems is in the early stages of technological development. 

Research in this area, indicates the potential to realize the 

technology that is competitive to the conventional technology. 

This paper focuses on describing the implementation rationale 

for the Massive-MIMO-OFDM system. The literature indicates 

that the research has been conducted at a number of research 

centers using a variety of neural circuit architectures (e.g. 

CNNs). The final choice of learning methods and architecture 

does not appear to be fixed. This paper presents the author's 

contributions to the neural detector realization of the Massive-

MIMO-OFDM system using extended Hopfield neural circuits. 

An important feature of such implementations is learning 

without the need to solve multi-parameter optimization tasks 

that require high computational power. The neural detector 

model presented in this paper requires further simulation 

studies. 
 

Appendix  

Algorithm of Machine Learning Model Design [8] 
 

1. Declaration: 

Input the set of training points: 

𝑆 = {𝒙𝑖 , 𝒚𝑖}, 𝑖 = 1, 2, … , 𝑁,  

𝒙𝑖 ∈ 𝐶𝑛, 𝒚𝑖 ∈ 𝐶𝑚, 𝑛 + 𝑚 = 2𝑘 , 𝑘 = 3, 4, …  

2. System design: 

Create system vectors 𝒖𝑖: 

𝒖𝑖 = [
𝒙𝑖

𝒚𝑖
] , 𝑑𝑖𝑚 𝒖𝑖 = 𝑛 + 𝑚. 

Calculate the spectrum 𝒎𝑖 of system vectors 𝒖𝑖: 

𝒎𝑖 =
1

2
(𝑾2𝑘 + 𝟏)𝒖𝑖 

Create spectrum matrix 𝑴: 

𝑴 = [𝒎1, 𝒎2, … , 𝒎𝑁] 

Calculate Hermitian matrix 𝑾𝐻: 

𝑾𝐻 = 𝑴(𝑴𝑇𝑴)−1𝑴𝑇 

Calculate orthogonal transformation 𝑇(∙): 

𝑇(∙) ≡ 𝑻 =
1

2
(𝑾2𝑘 + 𝟏)  

Calculate biorthogonal transformation 𝑇𝑠(∙): 

𝑇𝑠(∙) ≡ 𝑻𝑠 = (2 ∙ 𝟏 − 𝑾𝐻 − 𝑾2𝑘)
−1

. 

 

 

3. Recursive procedure: 

for l =1:N 

𝒙𝑖
(0)

= 𝟎 

while   ‖𝒙𝑖
(𝑙)

− 𝒙𝑖
(𝑙−1)

‖ ≥ 𝑒𝑝𝑠  

[
𝒙𝑖

𝒚𝑖
]

(𝑙)

= 𝑻−1𝑻𝑠 ([
𝟎
𝒚𝑖

] + [
𝒙𝑖

𝟎
]

(𝑙−1)

)   

end 

end 

 

(𝑙 = 1, 2, … steps of recurrence) 

 

Final results of recurrence: 𝒙𝑖 = 𝒙𝑖. 
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