
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 1, PP. 31–37
Manuscript received October 10, 2024; revised March 2025. doi: 10.24425/ijet.2025.153541

Efficiency analysis of parallel swarm intelligence
using rapid range search in Euclidean space

Łukasz Michalski, Andrzej Sołtysik, and Marek Woda

Abstract—Swarm intelligence algorithms are widely recognized
for their efficiency in solving complex optimization problems.
However, their scalability poses challenges, particularly with
large problem instances. This study investigates the time perfor-
mance of swarm intelligence algorithms by leveraging parallel
computing on both central processing units (CPUs) and graphics
processing units (GPUs). The focus is on optimizing algorithms
designed for range search in Euclidean space to enhance GPU
execution. Additionally, the study explores swarm-inspired solu-
tions specifically tailored for GPU implementations, emphasising
improving efficiency in video rendering and computer simula-
tions. The findings highlight the potential of GPU-accelerated
swarm intelligence solutions to address scalability challenges in
large-scale optimization, offering promising advancements in the
field.

Keywords—swarm intelligence; parallel computing; range
search; CUDA

I. INTRODUCTION

NATURAL ecosystems host a wide array of organisms
that exhibit complex, efficient, and fascinating collective

movement behaviours. Among these, classic examples include
fish swimming in synchronized schools, birds migrating in
tightly organized flocks, sheep navigating terrain in cohesive
herds, and insects, such as ants or bees, forming intricate
swarms. These behaviours reflect an inherent collective in-
telligence that enables individual members of a group to act
in union with minimal direct communication. Ants, in par-
ticular, exhibit a highly coordinated foraging strategy, where
they follow a specific, organized path to and from a food
source. This collective action is not random but follows well-
defined principles that ensure the success of the group as a
whole. Mimicking such complex, aggregate motion patterns
has become increasingly relevant in the fields of artificial life,
robotics, and computer animation. These natural phenomena
inspire applications ranging from immersive gaming environ-
ments to sophisticated cinematography. Moreover, these bio-
logical behaviours are frequently leveraged to solve complex
computational optimization problems, as evidenced by the
development of algorithms like ant colony optimization (ACO)
and particle swarm optimization (PSO), both of which draw
heavily from nature’s strategies for group problem-solving [2].

The formalization of computational models designed to
replicate the group dynamics seen in animal motion was first

Authors are with Department of Computer Engineering, Wroclaw Uni-
versity of Technology, Poland (e-mail: marek.woda@pwr.edu.pl).

introduced by Craig Reynolds in 1987. His groundbreaking
work led to the creation of the boids model, a simplified yet
powerful simulation for representing collective animal motion
in computer-generated environments [3]. The term ”boids” is
a playful contraction of ”bird-oid,” referring to the creatures in
the simulation that represent birds or other flocking animals.
The model’s foundation rests on the emergence of flocking
behaviour from the interaction of simple rules followed by
individual boids. Specifically, the boids model is built upon
three essential behavioural rules that govern the movement of
each boid: (1) the avoidance of crowding or collision with
nearby neighbours, (2) the alignment or synchronization of
movements with adjacent boids, and (3) the attraction towards
a central point of cohesion, typically the centre of the group.
These straightforward rules, when combined, generate lifelike
simulations of collective motion without requiring explicit
leadership or central control. Over time, the boids model has
been expanded and refined to include additional behaviors,
such as avoiding obstacles in the environment and steering
towards specific goals. These enhancements have broadened
its utility across diverse applications, particularly in fields such
as robotics, virtual environments, and autonomous vehicle
navigation.

Further modifications to the boids model have been de-
veloped to simulate more nuanced behaviors. For example,
Delgado et al. [4] introduced a sophisticated extension incor-
porating emotional and fear dynamics into the model. In their
version, emotional states are transmitted between individuals
through pheromones, much like how insects communicate.
These pheromones are treated as particles dispersed in a gas-
like medium, simulating free expansion, which can influence
the behaviour of neighbouring boids by triggering flight re-
sponses or changes in group cohesion. Another significant
modification came from Hartman et al. [5], who introduced
the concept of ”change of leadership,” a force that dictates
how likely a boid is to assume a leadership role within the
group. This additional factor affects how a boid might try to
lead the group away from danger or guide it toward a specific
target, adding a layer of complexity to group decision-making
dynamics.

Since its initial proposal, the boids model has seen
widespread application, particularly in computer graphics and
animation, where it has been used to create realistic and
visually appealing representations of group motion. A prime
example of its early adoption can be seen in the gaming

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

32 Ł. MICHALSKI, A. SOŁTYSIK, M. WODA

Fig. 1. Three fundamental rules that characterize flocking behaviour: The Alignment Rule (leftmost) - oriented towards the average velocity of nearby boids
within the visible range. The Cohesion Rule (centre) - steer towards the centre of mass of boids in the perception range. The Separation Rule (rightmost) -
distance oneself from boids within the protective range [1].

industry, where Valve Corporation used the boids model in
their 1998 video game Half-Life to simulate the flight patterns
of bird-like creatures. This represented a major step forward
from traditional animation techniques, which often relied on
manual, frame-by-frame adjustments. In addition to gaming,
the boids model has made significant contributions to the film
industry. Its first notable application in cinematic animation
occurred in the short film Stanley and Stella in Breaking the
Ice (1987). Following this, it was prominently featured in
the 1992 blockbuster Batman Returns, where the model was
used to simulate the movement of a large flock of penguins,
showcasing its versatility in generating lifelike group behavior.
Over the years, the boids model has been integrated into
a wide range of gaming, animation, and cinematic projects,
highlighting its enduring relevance and adaptability.

This research delves into the implementation of a swarm
intelligence algorithm on both multithreaded Central Process-
ing Units (CPUs) and Graphics Processing Units (GPUs) to
harness the full potential of modern computational resources.
The algorithm leverages CUDA (Compute Unified Device
Architecture) technology, which is specifically designed to
accelerate computational processes on GPU hardware. By
utilizing GPUs, which are optimized for parallel processing
tasks, the algorithm’s runtime is significantly reduced, offering
faster and more efficient simulations of swarm behavior. The
contribution of this study to the existing body of knowledge
is multifaceted. First, it involves a detailed investigation of
performance metrics, comparing the execution speed and effi-
ciency of the algorithm on two distinct architectures: the tra-
ditional multithreaded CPU and the highly parallelized GPU.
This comparative analysis provides insights into how different
hardware platforms handle the computational demands of
swarm intelligence algorithms, offering valuable guidelines for
future implementations.

Another crucial aspect of the study is the visualization of
swarm behaviour within constrained three-dimensional Eu-
clidean space, which presents unique challenges. In such
restricted environments, individual entities must navigate com-
plex spatial limitations while maintaining the group’s collec-
tive behaviour. Our work aims to improve the interpretability
of these simulations by developing visualization techniques

that highlight the emergent properties of the swarm, par-
ticularly in scenarios where space is limited. Additionally,
the research explores optimization strategies for implement-
ing swarm intelligence algorithms on GPU platforms. This
involves adjusting parameters like block sizes to maximize
computational efficiency and using profiling tools to fine-tune
the algorithm’s performance. By focusing on these optimiza-
tions, we aim to push the boundaries of what is possible with
swarm intelligence in modern computational environments,
particularly regarding scalability and runtime efficiency on
GPU architectures.

II. SWARM INTELLIGENCE

The boid swarm model employs a vector-based approach
to represent each behavioural rule, allowing for adaptive
responses to the surrounding environment. These vectors,
characterized by their magnitude and direction, evolve in re-
sponse to local conditions and interactions with neighbouring
agents. The movement of individual boids, or entities within
the swarm, is governed by a linear combination of these
behaviour rule vectors. As the model incorporates more rules,
the challenge of determining and optimizing the coefficient
weights for the movement vector increases. These coefficients
are crucial for balancing the relative influence of each rule
and ensuring a realistic simulation of flocking behaviour. The
collective behaviour of the swarm emerges from the combined
movements and interactions of individual boids, each adhering
to a set of simple steering behaviours. These behaviours mimic
the social reactions observed in real animal flocks, such as
responding to the positions and velocities of neighbours.

a) Cohesion: rule ensures that each boid is drawn to-
wards the centre of its local flock. This fundamental principle
of flocking aligns with Reynolds’ original model and maintains
the group unity of the boids. Without cohesion, the boids
would disperse, losing their characteristic flocking behaviour.
However, excessive cohesion could lead to a single point
of convergence, compromising the dynamic nature of the
movements. Therefore, cohesion must be balanced with other
steering behaviours, such as separation and alignment.

The cohesion vector for a boid (−−−→Cohi) is calculated in two
steps. First, the algorithm determines the centre of mass (f)

EFFICIENCY ANALYSIS OF PARALLEL SWARM INTELLIGENCE USING RAPID RANGE SEARCH IN EUCLIDEAN SPACE 33

of the flock containing the boid. This is achieved by averaging
the positions of all neighbouring boids, as shown in equation
1. The centre of the flock (−→Fci) is then calculated by averaging
the positions of these neighbouring boids. Finally, the cohesion
displacement vector is determined by calculating the direction
and magnitude required for the boid to move towards the
centre, as represented in equation 2. Here, pj represents the
position of a neighbouring boid j, and N is the total number
of boids in the local flock.

−→
Fci =

∑
∀bj∈f

−→pj
N

(1)

−−−→
Cohi =

−→
Fci −−→pi (2)

b) Alignment: rule ensures that each boid adjusts its
heading and speed to match its neighbouring flock mates. This
rule fosters synchronized movement, preventing erratic and
disorganized motion. By aligning with the average velocity of
nearby boids, the boids produce the smooth, flowing patterns
observed in natural flocks, such as birds flying in formation
or fish swimming in schools.

The alignment vector for a boid (−−→Alii) is calculated by first
determining the average velocity of all nearby boids (−−→Fvi),
as shown in equation 3. This average velocity serves as a
reference for adjusting the boid’s speed and direction. The
alignment vector is then derived by subtracting the boid’s
current velocity from the average flock velocity, as described in
equation 4. This difference guides the boid towards alignment
with the group’s overall movement.

−−→
Fvi =

∑
∀bj∈f

−→vj
N

(3)

−−→
Alii =

−−→
Fvi −−→vi (4)

c) Separation: rule prevents collisions and overcrowding
among flock members. Without this rule, boids would clump
together, potentially colliding and losing the realistic spacing
seen in natural flocks. The separation rule encourages boids
to maintain a comfortable distance from their neighbours,
ensuring that the group maintains cohesion and individual
spacing.

The separation vector (−−→Sepi) is calculated by summing the
vectors that point from the boid in question (bi) to each
of its neighbours (bj) within its local perception range. The
separation steer vector is the negative sum of these individual
vectors, as described in equation 5. This negative value forces
the boid to move away from any nearby neighbours, preventing
crowding and preserving the fluidity of motion.

−−→
Sepi = −

∑
∀bj∈f

(−→pi −−→pj) (5)

The overall movement vector for each boid (−→Vi) is calcu-
lated by combining the vectors from each of the three primary
steering behaviours: cohesion, alignment, and separation. The
coefficients (w1, w2, and w3) determine the relative impor-
tance of each rule and are adjusted to fine-tune the resulting

behaviour, ensuring that the boids exhibit lifelike, realistic
motion. The general form of the movement vector is shown
in equation 6:

−→
Vi = w1 ·

−−−→
Cohi + w2 ·

−−→
Alii + w3 ·

−−→
Sepi (6)

The iterative calculation of this vector at each time step
governs the continuous movement and interaction of the boids
within the simulation, producing emergent flocking behaviour
that closely resembles that of real animals.

III. RANGE SEARCH & IMPLEMENTATION

A. Range Search

A critical component of the boid algorithm is the ability
to efficiently identify and interact with nearby boids within
a certain perception range. This range search is a computa-
tional challenge that directly impacts the performance of the
algorithm, especially as the number of boids increases.

1) Linear Search: is a straightforward, brute-force ap-
proach to this problem. Where the position and velocity of
every other boid in the flock are evaluated based on an
exhaustive search. This method, while simple, is computa-
tionally expensive, requiring O(n2) operations, where n is the
total number of boids. As the size of the flock grows, the
computational cost becomes prohibitively large, making this
approach inefficient for large-scale simulations.

2) Fast Range Search: is the key to addressing this issue,
with more sophisticated methods like k-d trees and octrees
that can be employed to optimize the range search process.
K-d trees are particularly useful for organizing spatial data,
allowing for faster nearest-neighbour and range searches in
multidimensional space. In this structure, space is recursively
divided along different dimensions, resulting in more efficient
searches for nearby boids. Similarly, octrees partition space
into octants and are especially well-suited for 3D simulations.
By organizing boids into these hierarchical structures, the
algorithm can dramatically reduce the number of comparisons
required to find neighbouring boids, significantly improving
performance without sacrificing accuracy.

These optimizations are essential for scaling up the boid
model to handle larger and more complex simulations, where
computational efficiency is a primary concern. Through these
advanced data structures, the boid algorithm can simulate the
movement of large groups of boids in real time, enabling
more realistic and expansive simulations of collective animal
behaviour.

B. Implementation

While the proposed solution to improve time complexity
is effective, implementing it efficiently on the GPU poses
several challenges, particularly when using tree-based data
structures. One primary challenge stems from the fact that trees
are often considered ”pointer machine” data structures, which
can lead to fragmentation and gaps in memory, complicating
GPU execution. The GPU architecture, specifically CUDA, is
optimized for parallelism but requires efficient memory access

34 Ł. MICHALSKI, A. SOŁTYSIK, M. WODA

(0, 0)

(-5, 3)

(-3, 1)

(-4, 0)

L

(-1, 2)

R

L

(-1, 7)

(-2, 4)

L

#

R

R

L

(1, 4)

(2, -3)

(1, -5)

L

(3, 1)

R

L

(2,7)

(1, 5)

L

(3, 9)

R

R

R

spilt by X axis

spilt by Y axis

spilt by X axis

tr
ee

he
ig

ht
=

lo
g
n

Fig. 2. The k-d tree data structure, characterized by a dimensionality of k = 2, is utilized to efficiently locate the nearest neighbour to the point (3, 3). The
steps involved in this search are highlighted in green, demonstrating the algorithm’s logarithmic time complexity [6].

patterns, which trees do not inherently provide due to their
structure.

To mitigate this, one approach is to assign one CUDA thread
to each boid in the simulation. Each thread would then loop
through the entire position and velocity buffers (excluding
its boid) and compute a new velocity based on the local
interaction rules. Following this step, another CUDA kernel
would apply the updated velocities to modify each boid’s
position accordingly. While this brute-force method does not
take advantage of spatial partitioning, it aligns well with the
GPU’s architecture and avoids the complexities of managing
tree structures in global memory.

a) Proper Data Represenatation: is a key factor in
optimizing GPU-based algorithms. Right data representation
can greatly minimize memory throughput and increase com-
putational efficiency. One crucial decision is how to store and
organize an agent’s properties in GPU memory. In a swarm
simulation, each agent (boid) has various properties such as
position, velocity, and other behavioural parameters.

Storing these properties in a struct-of-array (SoA) format is
often the preferred method for improving coalesced memory
access, which is critical for maximizing the performance of
global memory access on the GPU. In SoA, each property
of all agents is stored in a separate array, which ensures

Fig. 3. Octree Data Structure: A recursive subdivision technique that splits a cube into eight distinct regions, called octants. This process creates an octree
that visually represents the hierarchical breakdown of Euclidean space into increasingly smaller octants for efficient spatial organization.

EFFICIENCY ANALYSIS OF PARALLEL SWARM INTELLIGENCE USING RAPID RANGE SEARCH IN EUCLIDEAN SPACE 35

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

8

2

1

3

4

5

6

7

9

Fig. 4. Range-based search applied to a particle space distributed across a
uniform scattered grid structure.

that consecutive threads in a warp access consecutive mem-
ory addresses. This minimizes cache misses and enhances
throughput. However, the drawback is that it can make the
code more difficult to maintain, especially if different agents
have different sets of properties.

In contrast, an array-of-structs (AoS) format stores all the
properties of each agent together in a contiguous memory. This
makes it easier to program and maintain, as each agent’s data
is self-contained, but it does not facilitate efficient memory
access. In the AoS format, consecutive threads may need to
access memory locations that are not adjacent, resulting in
non-coalesced memory access and poorer performance.

Given the trade-offs, our approach adopts the struct-of-
array format, which balances the need for efficient coalesced
memory access while also managing the complexity of main-
taining the simulation’s diverse agent properties. This decision
optimizes memory throughput, which is crucial for high-
performance GPU simulations.

b) Efficient Range Search on the GPU: Efficiently im-
plementing a spatial data structure on the GPU can greatly
enhance the algorithm’s performance by reducing the number
of boids each thread needs to evaluate. The three primary steer-
ing rules—cohesion, alignment, and separation—only apply
within a certain neighbourhood radius. Thus, organizing boids
into a spatial grid can significantly reduce the computational
load.

To achieve this, the simulation space can be divided into a
uniform grid where each cell is as wide as the neighbourhood
radius. This preprocessing step allows each boid to only check
its neighbours within the surrounding cells, minimizing the
number of comparisons. In the 3D case, if the grid’s cell width
is set to twice the neighbourhood radius, each boid only needs
to check for interactions within the eight surrounding cells. In
2D, this number reduces to four cells (see Figure 4).

However, constructing a uniform grid on the GPU presents
its own set of challenges. In a CPU-based implementation,

each boid would be assigned to a grid cell, and pointers to
the boids within each cell would be stored in a dynamically
resizable array. Unfortunately, this approach is not feasible on
the GPU because arrays in CUDA are not resizable, and race
conditions can occur if multiple threads attempt to write to the
same memory location simultaneously.

To overcome this, a sorting-based approach is used to
construct the grid on the GPU. Each boid is first labelled with
an index corresponding to its enclosing grid cell. These boids
are then sorted by their cell indices, ensuring that all boids
belonging to the same cell are contiguous in memory. Once
sorted, the array of grid indices is traversed, and boundaries
between cells are identified by detecting changes in the in-
dices.

This method allows the GPU to efficiently manage boid-
to-cell assignments without the need for resizable arrays or
complex synchronization mechanisms. The uniform grid’s rep-
resentation is stored as an array, where each entry corresponds
to a specific grid cell, and parallelization is achieved through
CUDA’s inherent data-parallel execution model. This approach
ensures that range searches can be performed efficiently,
significantly reducing the number of boids that each thread
must process, and making the simulation scalable to larger
populations.

By adopting this strategy, the GPU can handle a much larger
number of boids in real-time, with computational complexity
reduced to manageable levels. The uniform grid method,
combined with careful data representation, strikes an effective
balance between memory efficiency, computational speed, and
scalability.

IV. RESULTS

The comparative analysis conducted in this study focused
on evaluating the performance of an algorithm across different
computational implementations: CPU single-threaded (ST),
multithreaded (MT), and GPU parallel versions linear search
(LS) and uniform scattered grid (U-SG). The primary metric
used for assessment was frames per second (FPS), with the
number of particles N serving as a critical parameter.

In the CPU-based implementations, tested on an AMD
Ryzen 5 7600 processor, the simulations encountered per-
formance limitations. Specifically, the single-threaded (ST)
setup successfully handled simulations with up to 50,000
particles, while the multithreaded (MT) configuration extended
this capacity to 100,000 particles.

Conversely, the GPU implementation, leveraging the
NVIDIA GeForce RTX 4070Ti with the CUDA framework,
exhibited notable scalability advantages. The naive implemen-
tation sustained simulations with 1 million particles, and the
fast-range search method extended this capability to 5 million
particles. Despite these achievements, the achieved FPS rates
did not consistently meet the desired responsiveness levels
under these configurations.

Detailed results are summarized in Table II, where metrics
are rounded to two significant digits for clarity and com-
parison. This comprehensive evaluation provides insights into
the comparative performance across different computational

36 Ł. MICHALSKI, A. SOŁTYSIK, M. WODA

0 500 1,000 1,500 2,000 2,500

2,500

5,000

10,000

25,000

50,000

100,000

250,000

500,000

1,000,000

1,033.2

593.2

282.4

119.7

36.2

9.8

2.1

0.53

0.13

2,252.8

1,739.2

1,778.3

1,449.35

1,080.5

457

199.5

54.8

14.2

Frames per second (FPS)

Pa
rt

ic
le

s
(N

)

LS
U-SG

Fig. 5. Performance comparison between GPU-based linear search (LS) and fast-range search with a uniform grid (U-SG) in terms of FPS across varying
particle counts (N).

platforms and implementations, highlighting both strengths
and limitations in handling varying particle counts.

In addition to the initial comparative analysis, we conducted
a thorough assessment of the algorithmic performance on
the GPU by systematically varying the threads per block
configuration in simulations involving N = 25, 000 particles.
Our objective was to identify the optimal thread block size that
would yield the highest performance for the specific workloads
and hardware specifications employed in our study.

To achieve this, we implemented a systematic approach
that combined experimentation with profiling. This involved
analyzing various parameters, including the thread block size,
warp occupancy, and other relevant metrics. Through this
profiling process, we successfully determined that the most
effective configuration for maximizing performance with N =
25, 000 particles was a block size of 128 threads.

It is crucial to understand the characteristics of warps in
this context, particularly when the block size is set to T < 32.
Under such circumstances, a block would consist of only a
single warp. Although some threads within the block may
remain unused, each thread is executed individually, which
does not yield any algorithmic benefits. This configuration
results in inefficient resource utilization, as the benefits of
having a larger number of threads per block are lost.

Moreover, utilizing smaller blocks necessitates an increase
in the total number of blocks required for the computation.
This, in turn, leads to a higher memory allocation demand for
each of these numerous blocks—each containing only a single
warp. As a result, the performance advantages associated with
shared memory within a block are diminished, creating further
inefficiencies.

When we analyzed the speedup provided by the GPU
for parallel calculations, we observed an impressive average
speedup of x50 times compared to a CPU multithreaded

solution, particularly when the number of particles N was
set to 25,000 or greater. Importantly, the bottleneck related to
data transfer between the host and device via the PCIe bus
becomes negligible in this scenario. This reduction in data
transfer overhead can be largely attributed to the significant
advantages gained from highly parallel calculations, especially
when working with simulation sizes in the thousands. Overall,
our findings underscore the effectiveness of GPU imple-
mentations in handling large-scale simulations and highlight
the importance of optimizing thread block configurations to
achieve maximum performance.

TABLE I
PERFORMANCE RESULTS - FPS TO PARTICLE COUNT N . THE ✗ NOTATION

SIGNIFIES CASES WHERE THE SIMULATION COULD NOT BE INITIATED.

AMD Ryzen 5 7600 NVIDIA GeForce RTX 4070Ti

N
CPU GPU

ST [FPS] MT [FPS] LS [FPS] U-SG [FPS]

1.0 · 103 182 450 1700 2300
2.5 · 103 38 120 1000 2300
5.0 · 103 9.9 42 590 1700
1.0 · 104 2.5 13 280 1800
2.5 · 104 0.43 2.6 120 1500
5.0 · 104 0.97 0.68 36 1100
0.1 · 106 ✗ 0.16 9.8 460

0.25 · 106 ✗ ✗ 2.1 200
0.5 · 106 ✗ ✗ 0.53 55
1.0 · 106 ✗ ✗ 0.13 14
2.5 · 106 ✗ ✗ ✗ 0.58
5.0 · 106 ✗ ✗ ✗ 0.1

V. SUMMARY

The author’s parallel implementation of the algorithm
demonstrates significant performance gains by utilizing CUDA
technology on the GPU compared to traditional CPU ap-
proaches. GPU parallelism, particularly through CUDA,

EFFICIENCY ANALYSIS OF PARALLEL SWARM INTELLIGENCE USING RAPID RANGE SEARCH IN EUCLIDEAN SPACE 37

TABLE II
PERFORMANCE RESULTS - FPS TO PARTICLE COUNT N . THE ✗ NOTATION

SIGNIFIES CASES WHERE THE SIMULATION COULD NOT BE INITIATED.

AMD Ryzen 5 7600 NVIDIA GeForce RTX 4070Ti

N
CPU GPU

ST [FPS] MT [FPS] LS [FPS] U-SG [FPS]

1.0 · 103 182 450 1700 2300
2.5 · 103 38 120 1000 2300
5.0 · 103 9.9 42 590 1700
1.0 · 104 2.5 13 280 1800
2.5 · 104 0.43 2.6 120 1500
5.0 · 104 0.97 0.68 36 1100
0.1 · 106 ✗ 0.16 9.8 460

0.25 · 106 ✗ ✗ 2.1 200
0.5 · 106 ✗ ✗ 0.53 55
1.0 · 106 ✗ ✗ 0.13 14
2.5 · 106 ✗ ✗ ✗ 0.58
5.0 · 106 ✗ ✗ ✗ 0.1

greatly enhances the computational efficiency of the mul-
tivariate cooperative algorithm by distributing tasks across
thousands of threads simultaneously, which CPUs with fewer
cores cannot match.

A key factor in this performance boost is the use of CUDA’s
thread block structure, which enables massive parallelism.
However, further improvements can be realized through opti-
mization techniques, especially in shared memory utilization.
As discussed in [7], shared memory allows for faster data ac-
cess within thread blocks, reducing latency compared to global
memory. Enhancing the shared memory management could
further decrease memory bottlenecks and improve execution
speed.

In addition to shared memory optimization, techniques such
as dynamic parallelism and warp-level programming could
also boost performance. Dynamic parallelism allows for more
efficient execution of complex algorithms, while warp-level
programming minimizes thread divergence, ensuring optimal
thread execution.

In summary, while the CUDA-based GPU implementation
significantly improves performance, focusing on optimizing
shared memory and exploring advanced CUDA features could
lead to even greater gains, further advancing GPU-based
parallel computing for large-scale data processing.

REFERENCES

[1] Cornell University ECE 4760 - Obsolete Designing with
Microcontrollers., “Boids.” [Online]. Available: https://people.ece.cornell.
edu/land/courses/ece4760/labs/s2021/Boids/Boids.html

[2] I. Michelakos, N. Mallios, E. Papageorgiou, and M. Vassilakopoulos, Ant
Colony Optimization and Data Mining. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 31–60.

[3] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 1987, pp. 25–34.

[4] C. Delgado-Mata, J. Ibáñez-Martı́nez, S. Bee, R. Ruiz-Rodarte, and
R. Aylett, “On the Use of Virtual Animals with Artificial Fear in Virtual
Environments,” New Generation Comput., vol. 25, pp. 145–169, 02 2007.

[5] C. Hartman and B. Benes, “Autonomous boids.” Journal of Visualization
and Computer Animation, vol. 17, pp. 199–206, 01 2006.

[6] D. R. Karger, “Advanced Algorithms,” in Advanced Algorithms MIT
Course No.6.5210/18.415. MIT OpenCourseWare, 2022. [Online].
Available: https://6.5210.csail.mit.edu/

[7] X. Li, W. Cai, and S. J. Turner, “Efficient Neighbor Searching
for Agent-Based Simulation on GPU,” ser. DS-RT ’14. USA:
IEEE Computer Society, 2014, p. 87–96. [Online]. Available: https:
//doi.org/10.1109/DS-RT.2014.19

https://people.ece.cornell.edu/land/courses/ece4760/labs/s2021/Boids/Boids.html
https://people.ece.cornell.edu/land/courses/ece4760/labs/s2021/Boids/Boids.html
https://6.5210.csail.mit.edu/
https://doi.org/10.1109/DS-RT.2014.19
https://doi.org/10.1109/DS-RT.2014.19

	Introduction
	Swarm Intelligence
	Range Search & Implementation
	Range Search
	Linear Search
	Fast Range Search

	Implementation

	Results
	Summary
	References

