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Maximizing the practical achievability of quantum
annealing attacks on factorization-based cryptography

Olgierd Żołnierczyk

Abstract—This work focuses on quantum methods for crypt-
analysis of schemes based on the integer factorization problem
and the discrete logarithm problem. We demonstrate how to
practically solve the largest instances of the factorization problem
by improving an approach that combines quantum and classical
computations, assuming the use of the best publicly available
special-class quantum computer: the quantum annealer. We
achieve new computational experiment results by solving the
largest instance of the factorization problem ever announced
as solved using quantum annealing, with a size of 29 bits. The
core idea of the improved approach is to leverage known sub-
exponential classical method to break the problem down into
many smaller computations and perform the most critical ones
on a quantum computer. This approach does not reduce the
complexity class, but it assesses the pragmatic capabilities of an
attacker. It also marks a step forward in the development of
hybrid methods, which in practice may surpass classical methods
in terms of efficiency sooner than purely quantum computations
will.

Keywords—Cryptography; Integer Factorization Problem; Num-
ber Field Sieve; Hybrid quantum computations; Quantum
annealing; QUBO; B-smooth numbers

I. INTRODUCTION

CRYPTOSCHEMES, which are at most as secure as
the factorization problem (factorization-based), can be

compromised in standard, general approaches: classically
with subexponential complexity through decomposition base
methods [1] and quantumly with polynomial complexity
through Shor’s algorithm [2] or via other quantum methods of
unspecified complexity. Importantly, fully quantum solutions
in practice require too many resources: the largest practically
solved examples include: 6 bits - Shor’s algorithm [3], 10 bits
- adiabatic quantum computation [4], and 23 bits - quantum
annealing [5]. Therefore, hybrid methods such as [4], [6]–
[8] have been invented, representing a compromise between
computational complexity and the use of quantum resources.

In this work, we present experimental results of the efficiency
of hybrid classical-quantum computations using quantum an-
nealing. This is a transitional approach between fully quantum
methods and best methods for classical hardware. It involves
factoring numbers based on a subexponential factorization
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method, where part of the computations is performed using
quantum techniques, specifically through quantum annealing.
This phase is crucial for the complexity of the method and
focuses on searching for numbers with special properties,
known as B-smooth numbers. As a result, we obtain an
improvement that has the potential to practically address the
largest instance, ever computed on quantum machine. This
is due to using fewer quantum resources than fully quantum
approaches.

As a result, a 29-bit problem was solved, setting a record
among all approaches with quantum annealing. This result
improves upon the 23-bit result of a fully quantum annealing
method, and the most effective to date, a hybrid approach,
which factored a 26-bit number [8]. The contribution of this
work to improving this record lies in using a more advanced
algebraically decomposition base method (General Number
Field Sieve) for factorization compared to [8]. The quantum
resource occupancy O( log

2 h
4 ) remains the same for h - values

from the relation gathering step, yet h are smaller in this work
due to the refined algebraic sieving of the number field. Among
all hybrid approaches, this also represents the largest result,
excluding only [9], where the type of scalability is unspecified.

Due to the lack of theoretical foundations (regarding the
complexity of quantum annealing), the aim of this paper is not
to fully compare this approach with known ones, including
classical subexponential solutions. Although the complexity
of presented calculations remains in the subexponential class,
in practice, hybrid approaches may surpass classical solutions
sooner than fully quantum methods

A. Paper organization

The article is divided into two main parts: the established
theory and the description of the results of this work – the
experiment. The following sections explain:

• subsection II-A The method of the General Number Field
Sieve and the role of finding B-smooth numbers within.

• subsection II-B What is quantum annealing.
• subsection II-C How quantum annealing can be used to

find B-smooth numbers.
• section III The contribution of this work, how the experi-

ment was conducted, and the detailed results obtained.
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II. THEORY

A. Classical factorization method

In cryptology integer factorization goal is to factor N = pq,
where p, q are primes. The most effective classical general
method for integer factorization is the General Number Field
Sieve (GNFS), initially proposed as a generalized version
of previous ideas in [10]. There are many improvements
of this method; however, from the perspective of this work,
it is sufficient to focus on the primary version. It achieves
subexponential cost

O
(
exp

(
(1.923 + o(1)) (lnN)1/3(ln lnN)2/3

))
,

under various heuristic assumptions.
1) Essence of GNFS: This tool is highly sophisticated

and operationalises the fundamental idea of factorization:
establishing relationships of congruences of squares, defined
as follows

X2 ≡ Y 2 (mod N). (1)

If we can indicate such a pair, we then have: (X − Y )(X +
Y ) ≡ 0 (mod N), and if X ̸≡ ±Y (mod N), we can easily
factorize N by computing gcd(X±Y,N). Establishing relation
from Equation 1 leads to factorization with probability at least
1
2 . This is accomplished through the following stages.

Firstly, finding an appropriate polynomial F(x) ∈ Z[x], and
an m such that

F(m) ≡ 0 (mod N). (2)

The simplest way to do this is by: setting m = ⌊N 1
d ⌋, where

d is an integer parameter that regulates the degree of the
polynomial F , then expressing N in base m, that is: N = md+
yd−1m

d−1 + · · ·+ y1m+ y0, where each of yd−1, . . . , y1, y0
is between 0 and m − 1 (for small d we have (N > 2md)),
and finally assigning F = xd + yd−1x

d−1 + · · · + y1x + y0.
Hence, it follows Equation 2. We assume that F is irreducible,
because otherwise we immediately obtain the factorization of
N . Moreover, if we denote ρ as a root of F , this polynomial
defines a ring homomorphism (proof in [11], Lemma. 11.19):

ϕ : Z[ρ] → Z/NZ,∑
i

ziρ
i →

∑
i

zim
i (mod N), (3)

and let us recall that a homomorphism, by definition, has the
following defining property:

∀γ1γ2∈Z[ρ]ϕ (γ1γ2) = ϕ (γ1)ϕ (γ2) ∈ Z/NZ. (4)

Secondly, identifying a set S of pairs (a, b) such that com-
bined:

∏
(a,b)∈S

(a+ bρ) is a square γ2 ∈ Z[ρ] and
∏

(a,b)∈S

(a+bm)

is a square X2 ∈ Z.

Third, by computing γ ∈ Z[ρ] as square root of γ2. At
this point, the factorization is almost complete because the
following holds:

X2 =
∏

(a,b)∈S

(a+ bm)
by Equation 3

≡
(mod N)

ϕ
(
Y 2
)

by Equation 4
= ϕ(γ)ϕ(γ) mod N

= Y 2 mod N,

(5)

for some Y ∈ Z/NZ (the symbol ≡
(mod N)

here denotes con-

gruence modulo N ). Hence, we have relation from Equation 1
and can easily obtain X by taking the square root of X2 in
Z (and then reducing modulo N ), and Y by projecting ϕ(γ).
Equally important, when computing square roots in these two
rings, there is no map that guarantees X ≡ ±Y (mod N),
and in practice, this is often not the case. Then, we satisfy the
conditions to determine a non-trivial divisor of N by computing
gcd(X − Y,N) or gcd(X + Y,N). This is the outline of the
entire method.

All three phases contain more solutions that address the
challenges associated with each of them. However, in particular,
the most important stage for this work and for the complexity
of the entire method is the stage of determining the relation
of congruent squares.

2) Linear algebra stage: The forms γ2 and X2 (being
products of many simple expressions) are not insignificant
here. This arises, among other things, from the fact that
instead of checking each randomly selected pair belonging
to Z × Z[ρ] to see whether it forms a pair of squares (a
naive approach), we determine the desired square values by
multiplying the appropriate combination of previously recorded
simple expressions, represented by (a, b). This multiplication is
understood as the multiplication of the expressions of the form
a + bm and a + ρm in their respective two rings. Thus, we
treat this specific set of pairs (a, b) as a single representation
of both elements from the two rings, as we need to obtain
squares in both rings simultaneously.

If we succeed in identifying a sufficient number of pairs
(a, b) that imply only those elements that can be expressed
as a unique factorization into prime elements (this applies to
both integers and the ring Z[ρ], in which we factor the element
γ2), we reduce the problem of obtaining congruent squares
to solving a system of linear equations over the field F2. The
assumption of unique factorization is unrealistic in Z[ρ], but it
is close enough to practice to clearly present the main idea of
this phase; hence, we leave the realistic refinements for later.

To illustrate this more clearly, let us assume we repre-
sent a fixed pair (a1, b1). We record the factorization in Z:
a1 + b1m = se11 s

e2
2 s

e3
3 . . . sekk , and the factorization in the ring

of algebraic integers of the number field Q(ρ): a1 + b1ρ =
pv11 , p

v2
2 , p

v3
3 . . . pvtt . Now, the sequence e1e2e3 . . . ekv1v2v3vt

is a vector representing the pair (a1, b1), which we shall call V⃗1.
Furthermore, the assumption of unique factorization still applies.
We know that, in such a case, the parity of all exponents in any
vector V⃗ is equivalent to the fact that the numbers it represents
are squares. Having many different vectors V⃗ , representing
the recorded pairs (a, b), we must determine their combination
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such that the sum of the coefficients of these vectors for each
dimension is even. This implies linear vector calculations over
F2:

x1V1 + x2V2 + . . . xlVl = 0⃗. (6)

The vector x1, x2, . . . , xl, where xi ∈ F2, encodes the solution
to the system of linear equations defined by the matrix formed
from the vectors V⃗ , thereby indicating which pairs (a, b) should
be multiplied together so that the result is a square in both
rings.

3) Factorization of algebraic elements: In practice, to
establish the vector representation of the screened pairs (a, b),
we must determine a finite set of elements s and p necessary
for this, which we call the factor base B. For integers, we rely
on the unique factorization of integers and use the set of prime
numbers smaller than a given bound B, which gives rise to
the term B-smooth number, meaning

Definition 1. A B-smooth number is one whose prime divisors
are all less than or equal to B.

In the second structure, we do not have unique factorization;
instead, we use the unique factorization into so-called prime
ideals in the ring of integers of the number field Q(ρ) (in
this case, the smoothness of the screened algebraic elements
also depends on the bound B, as described more thoroughly
below).

All the concepts and facts from number field theory necessary
for a complete understanding of the factorization of algebraic
elements (from the ring Z[ρ]) can be found in [11]. From
the perspective of this work, two issues are important: firstly,
how factorization into prime ideals relates to detecting B-
smoothness, and secondly, what problems it poses and what
practical steps are involved, ultimately aimed in this phase at
determining the pair γ2, X2. The use of factorization into prime
ideals makes verifying the smoothness of an algebraic element
(i.e., confirming that the element factors into prime ideals from
the factor base) more complex and requires a two-step process.

This is because:

Theorem 1. The factorization into prime ideals of the ideal
generated by (a+ bρ), assuming that gcd(a, b) = 1, contains
only ideals generated by the pair: (s, ρ− r), where:

• s is a prime number such that F has roots modulo s,
• r satisfies: F(r) ≡ 0 (mod s).

(The proof of this theorem can be derived based on the proof
in [11], Theorem 11.12). Therefore, the prime ideals from
the factor base can be represented by pairs (L, r). Hence, the
factor base is narrowed down to those prime ideals generated by
primes from the factor base B that can occur in the factorization
of a+ bρ, according to the theorem. Thus, the first and most
important step in verifying the smoothness of an algebraic
element is identifying all prime numbers that generate the
prime ideals of that element. This is made possible by using
the norm of the number field element, which intuitively has
the following meaning: it generalizes the absolute value of
a real number and serves as a measure of a certain type of
magnitude of a given element. It is defined as follows:

Definition 2. The norm of an element α of the number field
Q(ρ), denoted NQ(ρ)(α), is:

NQ(ρ)(α) =
∏
i

σi(α), (7)

where σi is the i-th field homomorphism, defined as:

σi : Q(ρ) → Q(ρi),∑
j

µjρ
j →

∑
j

µjρ
j
i (mod N), (8)

and ρi is the i-th root of the minimal polynomial of ρ in the
field C.

Additionally, it turns out that:

Theorem 2. If α belongs to the ring of integers of the number
field Q(ρ), then NQ(ρ)(α) ∈ Z.

(The proof of this theorem can be found in [11], Corollary
3.17), therefore in this case, we can discuss the prime
factorization of the norm, especially since we can compute it
efficiently, as:

NQ(ρ)(a+ bρ) = (a+ bρ)(a+ bρ2) · · · (a+ bρd)

= (−b)d
(a
b
− ρ
)(a

b
− ρ2

)
· · ·
(a
b
− ρd

)
= (−b)dF

(a
b

)
.

Adding to this the even more significant fact that:

Theorem 3. A prime number s divides NQ(ρ)(α) if and only if
the ideal generated by α includes in its factorization a prime
ideal generated by the pair (s, r).

(The proof of this theorem can be found in [12], Preposition
5.3.), we can conclude that the determination of all prime ideals
into which an algebraic element factors is performed in the
first step by factoring the norm of elements of the form a+ bρ,
where gcd(a, b) = 1, into prime numbers. To fully represent
these ideals, a second step is required — the determination of
the corresponding r, which is done via simple linear modular
calculations. For clarity, we will omit these calculations and
refer to a more comprehensive description, along with other
details of the GNFS method, in [13].

Even after determining the exponents, i.e., the vectors V⃗ ,
the situation is not as straightforward as under the idealised
assumption of unique factorization in Z[ρ]. Factorization into
ideals introduces two additional potential points of failure
related to representing the element by an ideal and vice versa,
as well as two more points of failure associated with the fact
that the ideals are defined not in Z[ρ] but in the ring of integers
of the number field Q(ρ). In practice, we deal with these issues
by determining additional properties for each pair (a, b), in the
form of extra columns in the matrix M (referred to as Adleman
columns). These do not guarantee the success of identifying
the correct pair of squares, but they significantly increase the
probability of success to a sufficiently high level.
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4) Closing notes: The remaining phases of the GNFS
method, namely the selection of the polynomial F and the
determination of the square root of γ2, can be approached
using various methods, which have been developed and refined
over time by researchers. Further details on these phases, as
well as improvements in the sieving process, can be found in
works such as [14]–[16].

Crucially for this work, the factorization problem is effec-
tively broken down into subproblems involving determining
whether a given element is divisible by prime factors greater
than a certain limit B (there is also the cost of additional
computations, which does not increase the complexity of the
entire method.). We say that we are checking the B-smoothness
of a given number. Thus, identifying a sufficient amount of B-
smooth numbers among those sieved provides a high probability
of factorizing the N .

B. Quantum annealing and the QUBO problem

The most general concept of quantum annealing, introduced
in [17], is that due to the quantum phenomena involved,
the computations performed by a quantum annealer rely
on solving a certain type of optimization problems, defined
below. In this process, the minimum of a given objective
function K is found with some probability, where the preimage
of the function is represented by the state of the quantum
computer’s memory (the quantum annealer). From a physical
perspective, the computations involve reaching the system’s
lowest energy level (ground state), which is achievable through
quantum phenomena such as superposition, tunneling, and
energy dissipation. This is a computational technology derived
from the paradigm of adiabatic computing [18], [19].

In practice, a quantum annealing computer resolves com-
putational tasks defined by the Ising problem, which can
equivalently be transformed (through a linear transformation)
into the form of Quadratic Unconstrained Binary Optimization
(QUBO). QUBO is a second-degree, multivariate polynomial
with real coefficients and binary variables:

Q(u1, . . . ,uo) =
∑
i

βiui +
∑
i<j

δi,juiuj. (9)

Transforming any problem into the QUBO allows for
attempts to solve it via quantum annealing.

It has already been shown how to transform into the QUBO
form: the discrete logarithm problem over a finite field [20], as
well as the discrete logarithm problem in the group of points
on an elliptic curve [21], block cipher equations [22], [23],
and stream cipher equations [24], [25].

Some results suggest that the time complexity of quantum
annealing falls within the sub-exponential class; however, so
far, determining the full formal complexity requires further
research. Another important issue related to the specification of
quantum annealing is that the quantum annealing qubit should
not be compared to the qubit in gate-based quantum computers,
as these are different types of hardware components.

C. Quantum annealing methods for factorization and deter-
mining B-smooth Numbers

1) Direct factorization: Direct methods for factorization of
N = pq through quantum annealing are known for several
years, see [26]–[28]. The main idea of transforming the problem
involves the binary representation pτ(p) . . . p3p2p1p0 of p, the
binary representation qτ(q) . . . q3q2q1q0 of q and defining a
cost function of these variables

K
dir

(
p0,p1,p2, . . . ,pτ(p), q0, q1, q2, . . . qτ(q)

)
=(

N −

(∑
i

pi2
i

)(∑
i

qi2
i

))2

= (N − pq)
2
,

(10)

which gives us the optimization form of the factorization
problem, but not the QUBO form.

2) Degree reduction of a polynomial: To reduce K
dir

to the
QUBO form Q

dir

, we must reduce the degree of the polynomial

K
dir

to 2. The reduction process involves applying a series of
transformations λ to each monomial of the original function to
obtain a new function, which is a polynomial of the appropriate
degree. The transformation λ is defined to preserve the minima
of the function at the same points (values of the arguments) but
reduces the degree of the given monomial. The transformation λ
is performed by introducing a new auxiliary variable â ∈ {0, 1}
and adding a so-called penalty Pâ:

p0p1p2 → âp1 + Pâ,

Pâ = 2(p0p1 − 2â(p0 + p1) + 3â)
(11)

Considering the above expressions as functions, we find that
the minimal values of the expressions (i.e., zero) on both sides
of the transformation are achieved for the same values of
p0,p1,p2, which can be easily verified through exhaustive
search. This also holds true for expressions of the form
ψp0p1p2, where ψ ∈ R (thus for any monomial form), and
obviously remains true for functions that are sums of such
monomials.

The reduction can be performed on the form of the function
before squaring (in which case we must reduce the degree of
the polynomial to 1, linearization see [8] ), and we denote it by
λ̊lin or after squaring (in which case it is sufficient to reduce
the degree to 2, quadratization see [26]), and we denote it by
λ̊quad.

3) Detecting smoothness: Factorization through quantum
annealing is used to detect B-smooth numbers, whose identi-
fication is motivated as described in subsection II-A. This is
done in a very intuitive and simple way. A potentially smooth
number h > B is broken down into two divisors

h = fg. (12)

We define the lengths: τ(g) as the number of bits ⌊h/s1⌋ and
τ(f) as the number of bits sk, where s1 is the smallest and sk
is the largest prime in the chosen base B. Additionally, instead
of taking s1 as a reference, we can choose a larger number
from the base and check and record the divisibility of h by
the smallest primes (for example 2, 3) in an efficient manner
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before the annealing process, which can increase the efficiency
of the procedure.

The values τ(g) and τ(f) determine the number of binary
variables used to represent g and f , respectively. If we obtain
a non-trivial f | h, we can proceed to further factorize g
(if necessary), recursively invoking the procedure until all
divisors are less than or equal to B and we confirm smoothness.
Otherwise, we treat the number h as non-smooth. This results
in a simple procedure for finding B-smooth numbers through
quantum annealing.

4) Multiplication table procedure: In practice, for smooth-
ness detection, we use an enhanced method of factorization
through quantum annealing. Specifically, a multiplication table
is established, constructed exactly according to the long
multiplication technique, where the binary variables of the
table are hi, fi, gi, representing the bits of h, f, g, respectively,
and the carry bits ci. The table is then divided into blocks, each
covering several columns. The width of the i-th block (i.e.,
the number of its columns) is denoted by wi. This gives us a
Table I, where w0 is always equal to 1, because, in practice,
checking for divisibility by at least s1 = 2 occurs before the
smoothness verification procedure.

TABLE I
MULTIPLICATION TABLE

fτ(f) . . . f2 f1 1

gτ(g) . . . g2 g1 1

c0 fτ(f) . . . f2 f1 1
c1 fτ(f)g1 . . . f2g1 f1g1 g1

. fτ(f)g2 . . . f2g2 f1g2 g2
. . .

. . .
ck . .

fτ(f)gτ(g) . . . f2gτ(g) f1gτ(g) gτ(g)

hτ(h) . . . h2 h1 1︸ ︷︷ ︸ . . . ︸ ︷︷ ︸ ︸ ︷︷ ︸
L-th block 1. block 0. block

Instead of forming a single objective function K as before,
we break down the problem by equating each expression Ki

from the i-th block separately to the value read from the
fragment of bits of the number h, as an independent binary
representation: ni. More specifically, we define Ki as follows:

Ki = Ki(f0, f1, . . . , fτ(f), g0, g1, . . . , gτ(g))

+ Ci(c0, c1, . . . , cJ)− 2wiCi+1(c0, c1, . . . , cJ)− ni,
(13)

where:
- Ki(f0, f1, . . . , fτ(f), g0, g1, . . . , gτ(g)) is the result of mul-

tiplying the bits fi and gi from the i-th block,
- Ci(c0, c1, . . . , cJ) is an expression created by the shifted

bits ci in the i-th block,
- τ(c) is the number of carry bits into the i-th block.
In this way, we can formulate the QUBO form:

Q = λ̊lin (K1)
2
+ λ̊lin (K2)

2
+ · · ·+ λ̊lin (KL)

2 (14)

Additional improvements involve techniques for determining
the total number of carry bits J+1, which have been explained
more precisely in [8].

Finally, quantum annealing is used to find the solution to the
problem Q. By applying this procedure to the steps described

in subsubsection II-C3, we determine whether the number h
is B-smooth.

III. EXPERIMENT

A. Contribution

The contribution of this work lies in proposing an improve-
ment to the hybrid quadratic sieve method, known from [8],
allowing for the assessment of the maximum potential of
quantum annealing-based attacks on the integer factorization
problem, and obtaining practical results through computational
experiments.

The improvement involves the use of the known method for
finding B-smooth numbers via quantum annealing, generally
described in subsection II-C, to sieve pairs (a, b) in search
of smooth elements in the GNFS method, as described in
section II (in the previous work, a less effective method
– the quadratic sieve – was used). While the sieving was
conducted through quantum computations, all other steps, such
as polynomial selection, solving the system of linear equations,
square root extraction, and smaller calculations, were performed
classically (without a quantum computer). The sieving of pairs
(a, b) was done by attempting a quantum factorization of the
corresponding values (see subsection II-A), preceded by a
classical removal of the highest power of 2 dividing the value.

This improvement, which enabled achieving the maxi-
mum problem size, meant that the framework of hybrid
(quantum-classical) computations, the most efficient of the
known classical methods was utilized, while solutions to
subproblems (searching for B-smooth relations) were sought
through quantum annealing. This did not change the number
of basic operations, thus the approach remains within the
subexponential complexity class. The potential practical speed-
up in full-scale attacks remains an unresolved issue due to the
lack of precise knowledge about the complexity of quantum
annealing. The answer to the question of whether the presented
method will solve larger instances than the classical GNFS
in full-scale applications lies in comparing the smoothness
verification procedures in the classical and hybrid methods.
Unfortunately, such a comparison is not possible when relying
solely on computation time without determining the complexity
of quantum annealing.

This practical example demonstrates how solving small
subproblems by currently available quantum annealing com-
puters, using all available results, realistically translates to
the size of the factorization problem being solved. These are
the implications of the possibility of a quantum solution for
subproblems of this size.

The practical results of the experiment are described below.

B. Purpose of the tests

The goal of the experiment was to investigate the maximum
size of the integer factorization problem in cryptography that
can be solved using quantum annealing. This approach did not
exclude the use of the best tools, both quantum and classical.
By framing the problem in this way, we demonstrate how
effectively cryptography based on the integer factorization
problem and the discrete logarithm can already be attacked
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using quantum computers, despite remaining in the same
computational complexity class, which, for now, cannot be
practically changed. This provides a very realistic and current
view of the range of possibilities available to attackers,
while also taking a practical step toward hybrid attack ideas
with lower complexity than classical methods, such as those
proposed in [6].

C. Methodology - classical part

The methodology of the experiment comprises: detailed
solutions in GNFS, the method of selecting a computational
example, and the allowable precision for annealing. Key
details of the GNFS method pertain to the implementation
of random relation sampling, examined for B-smoothness. In
the experiment, the pairs (a, b) were limited by a constant
constraint 0 < b ≤ D, and a restriction |a| ≤ A, where A
was increased when, despite exhausting available pairs, no
solution to the system of equations existed, according to [1].
The degree d of the polynomial F was specified at the input,
and a standard method for determining the polynomial F was
adopted by expressing N in base m. The search for examples
was designed to limit the sizes of the algebraic-side value:
NQ[ρ](a+ bm) and the integer-side value a+ bm, to be written
on W bits. Importantly, the value of W reflects the asymptotic
size of the sieved numbers to N

1
d , where d ∼ 3

√
3 logN
log logN (see

[11]). Examples exceeding this limit in the relation search phase
were rejected. This naturally results from the computational
limitations assumed for quantum annealing.

D. Methodology - quantum part

The experiment was conducted using a quantum annealing
computer, the most powerful commercially available model at
the time. Specifically, the D-Wave Advantage system, model
Advantage system 4.1, was utilized. The enhanced version
of this model, Advantage system 2, was not commercially
available at the time of the research (March 2024).

The computer used was characterized by the following basic
technical data: a total of 5760 qubits, a Pegasus topology in a
16x16 unit cell configuration, and 40279 couplers. The number
of couplers affects the ability to embed more complex problems,
and therefore, with an increase in the number of couplers, the
capability to sieve larger B-smooth numbers is expected. A
more detailed specification of the device can be found in [29].

The quantum computer was queried using tools from the
Ocean SDK and D-Wave system library. Annealing was carried
out with a sampling number of 10,000, allowing a maximum
of four attempts to check the B-smoothness of a given pair.
The number of samples determines the precision of the result
but increases the computation time. The annealing time was
set at 20µs, which is standard, well-known solution.

QUBO transforming into the QPU structure (embedding)
were automatically handled using Ocean SDK tools, while the
coefficients defining the specific problem were auto-scaled by
the QPU solver API.

We allowed up to nine attempts to verify the smoothness of
a single element, which was known in advance to be smooth.

Even with nine attempts, we obtained a relatively low QPU
working time, as shown below.

E. Outcomes

The most significant result achieved was the factorization
of a 29-bit number: 448383577 = 20771 × 21587. This was
accomplished with the input parameters set as follows:

• D = 2,
• B = 224,
• d = 4,
• W = 13,
• M = 1.

The polynomial F , forming the homomorphism, was given by

F = x4 + 2x3 + 11x2 + 30x+ 77.

Next, after performing the sieving of smooth elements, we de-
termined the following set: {(−1, 1), (1, 1), (1, 2)}. These pairs
represented the following elements in Z: −146,−144,−289,
and elements in Z[ρ] with the following norms: 57, 121, 1521.
By solving the system of equations, we determined the set S,
which included S = {(1, 1), (1, 2)}. From this, we obtained
the values: X2 = 41616, ϕ(γ) = 224202378, and thus
gcd(448383577, 224202378− 204) = 20771.

The following results were obtained in the quantum part
of the experiment. These are the largest numbers of qubits,
respectively logical or physical, for all QUBO problems
generated during the smoothness detection procedure for,
respectively, a+bm (integer part) and NQ(ρ)(a+bρ) (algebraic
part):

• logical qubits in integer part: 63,
• logical qubits in algebraic part: 81,
• physical qubits in integer part: 328,
• physical qubits in algebraic part: 471,
• QPU working time: 980 µs.

The ”QPU working time” was summed only for the smoothness
verification of the smooth elements.

The probability of success was influenced by the choice of
N , for which the sieved numbers h were closer in size to the
asymptotic values.

IV. CONCLUSIONS

The results of the experiment address the question of the
maximum practical effectiveness of solving the factorization
problem using quantum annealing, assuming a hybrid com-
bination of computations, that is, the most effective classical
general method combined with a quantum QUBO solver. The
decomposition of the largest problem to date, a 29-bit size,
was achieved for all quantum annealing approaches, thereby
improving the previous best result [8].

Although the results demonstrate new achievements, there
are certain significant limitations, mainly regarding the number
of steps in the quantum phase (the number of required B-
smooth elements). The number of elements that need to be
searched does not change compared to the classical method,
which makes this approach unsuitable for significantly larger
examples than those addressed by the best classical methods.
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To better present the context of this work’s result, we provide
below the collected parameters of quantum methods used to
factor the largest numbers. The comparison is divided into
four tables: Table II, Table III, Table IV, Table V, where
corresponding rows refer to the same results. The general
conclusions drawn from these are as follows. Quantum methods
with better complexities are, so far, less practically efficient
due to hardware limitations. On the other hand, hybrid methods
currently demonstrate greater efficiency. We also observe that,
to date, no hybrid method has been practically implemented
that clearly improves the complexity compared to its classical
counterpart.

TABLE II
FACTORING RECORDS: HARDWARE USED

ID Problem size (bits) Hardware Paper
1 6 gate-based quantum computer [3]
2 10 NMR adiabatic quantum computer [4]
3 10 gate-based quantum computer [30]
4 23 quantum annealer [5]
5 26 quantum annealer [8]
6 29 quantum annealer this paper

TABLE III
FACTORING RECORDS: ALGORITHMS USED

ID Algorithm
1 Shor’s Algorithm
2 hybrid adiabatic quantum algorithm
3 quantum variational imaginary time evolution
4 quantum annealing
5 hybrid method with quantum annealing
6 hybrid method with quantum annealing

TABLE IV
FACTORING RECORDS: COMPLEXITY

ID Complexity
1 polynomial
2 problem instance dependent
3 unspecified,
4 heuristicaly subexponential
5 heuristicaly subexponential
6 heuristicaly subexponential

TABLE V
FACTORING RECORDS: QUANTUM LOGICAL RESOURCES

ID Quantum logical resources
1 O

(
log2 N

)
gate model qubits

2 unspecified
3 O(logN) gate model qubits
4 unspecified

5 O

 log2 N

4
(

3 log N
log log N

) 2
3

 quantum annealing qubits

6 O
(

log2 N
16

)
quantum annealing qubits

Good effectiveness in searching for B-smooth numbers was
observed up to a maximum size of 11-12 bits. The measured
qubit cost in terms of the maximum number of logical qubits
(the number of variables in the QUBO problem), equal to 81,
corresponds to the asymptotic assumptions of the logical qubit
cost of the applied approach: O( log

2 n
4 ),where n is a sieved

number (see [8]). The actual number of used qubits on the
quantum computer, i.e., the number of physical qubits, turned
out to be more than 5 times greater, due to the necessity to
represent one logical qubit by many physical qubits in order
to model the QUBO problem within the physical architecture
of the QPU chip.

The maximum size of the solved problem should also be
related to the discrete logarithm problem. The GNFS method
achieves the same size of sieved elements for the variant
intended to solve the discrete logarithm problem (DLP). This
means that a problem of the same size can be solved using an
approach similar to that presented in this work.

In summary, the results of the experiment should be
interpreted as an answer to the question: how far are we from
attacks on cryptography based on the factorization problem
and DLP, which are quantum enhancements of classic general
methods? Such attempts may occur sooner than the direct use
of quantum methods, due to the lower resource requirements
of the former approaches.
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