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The generalized method of solving ECDLP using
quantum annealing

Łukasz Dzierzkowski

Abstract—This paper presents a generalization of a method
allowing the transformation of the Elliptic Curve Discrete Log-
arithm Problem (ECDLP) over prime fields to the Quadratic
Unconstrained Binary Optimization (QUBO) problem. The orig-
inal method requires that a given elliptic curve model has
complete arithmetic. The new one has no such restriction, which
is a breakthrough. Since the mentioned obstacle is no longer a
problem, the latest version of the algorithm may be used for any
elliptic curve model. As a result, one may use quantum annealing
to solve ECDLP on any given model of elliptic curves.
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I. INTRODUCTION

ELLIPTIC curves have many practical applications nowa-
days, such as: encryption, key exchange, digital sig-

natures, primality testing and factorization. The first three
of them require ensuring safe use, which means that any
eavesdropper will not be able to recover protected data or forge
a valid signature. One of the mechanisms, that allow protocols
in the elliptic curve cryptography (ECC) to remain secure, is
the hardness of solving the elliptic curve discrete logarithm
problem (ECDLP). One can choose one of two possible ways
to deal with this problem: classical or quantum.

While considering the first option, many algorithms are
available. The most desired are those, which may be used in
arbitrary cases, e.g.:

• the method of Pohlig-Hellman [1],
• Baby step, giant step method [2], [3],
• Pollard’s ρ method [4],
• Pollard’s λ method [4].

They all have one thing in common – fully exponential
computational complexity in a general case [5]. That means,
ECDLP used in modern cryptosystems cannot be solved in
a reasonable time with a classical algorithm. Moreover, it is
hard to notice any prospect of changing this situation, at least
in the near future. If so, other ways should be considered.

The second option is quantum computing. The most known
device in the described category is a general purpose quantum
computer (GPQC). There is only one known algorithm, which
may be used to solve ECDLP on the mentioned device – Shor’s
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algorithm. However, none of the ECDLP examples have been
solved with this method so far. The reason for this state of
affairs was mentioned by Martin Roetteler et al. in [6]. The
authors of that paper showed, what is the number of Toffoli
gates required to solve ECDLP with Shor’s algorithm [7].
For an elliptic curve on some n-bit prime field, it could be
even 448n3 log2(n) + 4090n3, which exceeds the achievable
resources.

Fortunately, quantum computing does not end with GPQC.
In the field of cryptography, quantum annealing (QA) is
increasingly used. So far, many applications of QA in crypt-
analysis have been described, i.e.:

• solving discrete logarithm problem (DLP) [8],
• conducting an algebraic attacks on block ciphers [9], [10],
• conducting an algebraic attack on stream ciphers [11],
• integer factorization [12]–[15],
• solving ECDLP [16]–[18].

The last item on the list concerns the problem that is the main
topic of this paper. As may be seen, solving ECDLP with
QA has already been described. Nevertheless, none of the
mentioned articles presents a fully-quantum method of solving
the ECDLP for an arbitrary case ( [16] uses both classical and
quantum computations and [17], [18] require to conduct the
operations on an elliptic curve with complete arithmetic).

The breakthrough will be presented in this article. The
method described below does not require any computations
on a classical computer (just converting the ECDLP to some
specific form) and may be used for any elliptic curve model,
even without complete arithmetic.

II. THEORY

The quantum annealer D-Wave, which allows building ap-
plications to access and use QA in the cloud, accepts a few
different classes of problems, for example:

1) Binary Quadratic Models (BQC),
2) Constrained Quadratic Models (CQM),
3) Discrete Quadratic Models (DQM).

Solving ECDLP with QA requires transforming the problem
to the BQM. There are two possible representations in that
class: the Ising model and the quadratic unconstrained binary
optimization model (QUBO). Switching between models is
almost effortless. Due to practical purposes and because of
the differences in the way of representing variables in both
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models, the QUBO model is more suitable for solving ECDLP
and therefore it was used.

In the below subsections, brief descriptions of ECDLP and
QUBO are provided. Then the original way of solving the
described problem is recalled. Eventually, in the last paragraph
of this chapter, the idea for generalizing and improving the
method is described.

A. ECDLP

Elliptic curve discrete logarithm problem is defined as
finding such integer y, that for given elliptic curve E over
a prime field Fp

[y]P = P + P + · · ·+ P︸ ︷︷ ︸
y addends

= Q, (1)

where P and Q are points on the curve E and y ∈
{1, . . . , Ord(P )− 1}. Let m be the bitlength of Ord(P ), then
y may be written with m binary variables ui as

y = 2m−1um + · · ·+ 2u2 + u1, (2)

what makes possible to transform Eq. (1) into

Q = [y]P = [2m−1um + · · ·+ 2u2 + u1]P
= [2m−1um]P + . . .+ [2u2]P + [u1]P
= [um]([2m−1]P ) + . . .+ [u2]([2]P ) + [u1]P
= Pm + . . .+ P2 + P1.

(3)
As an example, curve E : y2 = x3 − 3x+ 63 over a prime

field F1021 with order ord(E) = 964 may be given. For points
P = (74, 841) and Q = [k]P = (1017, 824), solving ECDLP
means finding the proper k value. For a finite field of a 10-bit
length, dealing with this problem manually may be tedious,
but any computer can accomplish it in fractions of a second
and calculate the solution, which is k = 43. The situation is
quite different in modern cryptosystems, where the bit length
of a finite field is expressed using hundreds of bits.

B. QUBO

Quadratic unconstrained binary optimization model is pre-
sented as

min
x∈{0,1}N

xTQx, (4)

where Q is an N ×N upper-diagonal matrix of real weights,
and x is a vector of binary variables. It can be also defined as
minimizing the function

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj . (5)

As an example, a function f(x1, x2, x3) = 3x2
1−3x2

3+5x2x3

may be given. With the vector x and the matrix Q, it may be
written as

x =

 x1

x2

x3

 , Q =

 3 0 0
0 0 5
0 0 −3

 .

Minimal energy of the given function is −3 for (x1, x2, x3) =
(0, 0, 1).

C. Transformation

Since the starting and ending points for solving ECDLP
have been described above, the last missing part is the road
in between. It was minutely characterized in [17]. Below one
can find a briefer explanation.

A single summand from the third line of Eq. (3) can be
written as

[ui]
(
[2i−1]P

)
=

{
O for ui = 0,

[2i−1]P for ui = 1.
(6)

The two cases can be united into one expression as

[ui]
(
[2i−1]P

)
= O + ui

(
[2i−1]P −O

)
(7)

and for the corresponding values of ui from Eq. (6), the results
are as assumed above. If the arithmetic of points on the chosen
elliptic curve model is complete, the above formula may be
divided into affine coordinates{

Pi,x = Ox + ui

(
[2i−1]Px −Ox

)
,

Pi,y = Oy + ui

(
[2i−1]Py −Oy

)
.

(8)

Based on these equations, every precomputed multiplicity
(only powers of 2) of point P from Eq. (3) can be represented.
In order to improve the intuition of the whole process, an
illustration may be helpful.
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Fig. 1. The decomposition of ECDLP [17, Fig. 2]

The way of representing points Pi is described above and
the form of a given point Q is with the given coordinates, just
like in the example at the end of subsection II-A. The only one
unknown so far is the idea of representing the sum points Ri.
Since ECDLP is given over some finite field, the coordinates
of points Ri must belong to this field. If so, each of them may
be written with n binary variables, where n is the bit length
of a field characteristic p.

Having knowledge about the representation forms of the
points Pi, Ri and Q, one may insert them into complete
arithmetic equations on the selected elliptic curve model and
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perform the whole process. Well described example on the
Edwards curve may be found in [17]. Moreover, in continu-
ation of that research the authors have noticed, that changing
the representation of a sought multiplicity of a point P from
binary to, for example, ternary may improve the process and
lower the number of necessary resources. The results may be
found in [18].

However, there is still a problem: how to solve the ECDLP
which is defined on curve models without complete arith-
metic?

D. Problems with the original method

First of all, before the generalization is described, one needs
to think about the motivation and ideas of how to go beyond
the restrictions. The following conditions for solving ECDLP
on the particular elliptic curve model have been mentioned by
the authors of [17] for using the method from subsection II-C:

1) arithmetic with a small number of multiplications,
2) neutral element represented by affine coordinates,
3) complete arithmetic.
The first condition seems to affect the efficiency of the

computations, so it may be omitted at the expense of increasing
the number of necessary resources.

The second prerequisite must be satisfied in the part of
the existence of the numerical representation of the neutral
element O. Without that, points Pi cannot be represented with
the form from Eq. (7) and thus with Eqs. (8). The type of
coordinates influences mainly the efficiency, as, for example,
computations in affine coordinates require less resources than
in projective ones.

The last requirement forces using such arithmetic, that
works correctly for all inputs. That means, it does not matter
if the arguments are two different points, two same points
or some point and the neutral point, for all these cases the
formula should proceed and return a correct result. Due to
the form of ECDLP decomposition in Eq. (3), the arithmetic
does not have to be unified (the same for adding and doubling
points), because doubling points never happens, so adding one
is enough. However, for the proper algorithm to work, the
formula must take into account adding an arbitrary point with
a neutral point O.

Summing up, the biggest problem in generalizing the orig-
inal method is the behavior of the algorithm when facing the
neutral point. For elliptic curve models, in which the neutral
point does not have a numerical form or the arithmetic does
not cooperate with the neutral point (like in short Weierstrass
model), the original method from [17] cannot work.

E. Generalization - introduction

To face that problem, the algorithm must be modified. The
idea is to perform operations one level higher than in the
original method. This means, that instead of converting points
Pi like in Eq. (7) and then inserting it into the addition
formula, one may use the binary variables ui from Eq. (2)
and the third line of Eq. (3) and consider cases in addition
[ui]Pi + [uj ]Pj .

The first one, when both ui and uj are positive. If so, the
correct value is a point Pi + Pj .

The second one, when only ui is positive. Then, the proper
result is Pi.

The third one, when only uj is positive. The correct result
is Pj .

The last one, when neither ui nor uj is positive. Thinking
logically, this is a case for a neutral point O. However, it
should not be used, because there may be an elliptic curve
model, on which the corresponding arithmetic does not coop-
erate with the neutral points. For now, this case is unresolved
but it will be below.

Based on the above considerations, the generalized addition
may be written as

[ui]Pi + [uj ]Pj =


??? for ui = 0 ∧ uj = 0,

Pi for ui = 1 ∧ uj = 0,

Pj for ui = 0 ∧ uj = 1,

Pi + Pj for ui = 1 ∧ uj = 1.

(9)

As long as variables ui and uj are binary, the above cases
may be transformed with boolean algebra into the expression

[ui]Pi + [uj ]Pj = ??? + [ui(1− uj)]Pi + [(1− ui)uj ]Pj

+[ui · uj ](Pi + Pj).
(10)

Now the ”???” signs have to be replaced with a numerical
value. It can be done in at least two ways. Before the further
description is presented, a few things should be noticed. The
illustration in Fig. 1 will be helpful.

Let’s think about the first addition

P1 + P2 = [u1]P + [u2] ([2]P ) .

If at least one out of the variables ui or uj is positive, the
problematic case does not appear. What is more, that incident
will not occur during subsequent additions, as all of the first
arguments, being the results of all previous operations, will
be different than the neutral element. Since binary variables
in the first addition are the less significant bits of a multiplicity
y, the analyzed ”???” case appears when y is divisible by 4.

F. Generalization - first idea

The first idea of dealing with the problem is very simple.
While solving ECDLP [y]P = Q, points P , Q and the elliptic
curve E are known. If so, one may perform an addition Q+
P = [y + 1]P . Since the result of finding y is not correct, it
may indicate that y is divisible by 4. If so, y + 1 does not
have this property so the algorithm should solve the problem.
The small inconvenience is that the result must be reduced
by 1. While using this solution, the case with ui and uj both
negative can be omitted, so it is equal

[ui]Pi + [uj ]Pj =


Pi for ui = 1 ∧ uj = 0,

Pj for ui = 0 ∧ uj = 1,

Pi + Pj for ui = 1 ∧ uj = 1,

(11)

and thus
[ui]Pi + [uj ]Pj = [ui(1− uj)]Pi + [(1− ui)uj ]Pj

+[ui · uj ](Pi + Pj).
(12)
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G. Generalization - second idea

The second idea is to conditionally add point P during the
first addition. Thanks to this, the result of a first operation will
always be different than O and at the same time, potential
problems in subsequent additions are eliminated. However,
adding extra P makes, that the solver has to deal with a
problem [y+1]P = [y]P , which is not true if P ̸= O. That is
why an extra P has to be added to Q as well. The modification
was presented in the Fig. 2.
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Fig. 2. The modified decomposition of ECDLP

Now the final version of arithmetic formulas may be pre-
sented. The first addition should be done with

[ui]Pi + [uj ]Pj =


P for ui = 0 ∧ uj = 0,

Pi for ui = 1 ∧ uj = 0,

Pj for ui = 0 ∧ uj = 1,

Pi + Pj for ui = 1 ∧ uj = 1,

(13)

what can be converted to

[ui]Pi + [uj ]Pj = [(1− ui)(1− uj)]P + [ui(1− uj)]Pi

+[(1− ui)uj ]Pj + [ui · uj ](Pi + Pj).
(14)

Due to the fact, that in subsequent additions the first argument
is a sum of the previous elements and it is different than O,
the form of an operation Ri + Pi+2 is

Ri + [ui+2]Pi+2 =

{
Ri for ui+2 = 0,

Ri + Pi+2 for ui+2 = 1,
(15)

what is equal to

Ri+[ui+2]Pi+2 = [(1− ui+2)]Ri+[ui+2](Ri + Pi+2). (16)

H. Complexity

As the first idea for generalization requires less operations,
the memory complexity will be calculated for that method. The
whole process was described in details for Edwards curves in
[18, §4.2]. Computation for case with short Weierstrass curves

is straightforward to conduct based on the mentioned paper,
the differences are in the selected model. The proper addition
formulas will be written in Sec. III-A.

Because the computation is technical, tedious and may be
conducted based on [18], it will not be described here.

Eventually, the number of binary variables necessary to
perform the reduction of ECDLP to the QUBO for short
Weierstrass curve is equal to O

(
n3

log2 n

)
, where n is the

bit length of a field characteristic p and d is the base of
a point multiplicity representation, thus the generalization is
asymptotically equal to the original method.

III. PRACTICAL EXAMPLE

Because for fields of characteristic greater than 3 every
elliptic curve can be transformed into a short Weierstrass
curve, this model will be used in the example.

A. Short Weierstrass curve

Short Weierstrass curve ESW over prime field Fp is given
by the equation

y2 = x3 + ax+ b, (17)

where a, b are coordinates from Fp.
The addition formulas on short Weierstrass curve ESW for

points P = (x1, y1), Q = (x2, y2) and R = P +Q = (x3, y3)
are

x3 = (y2−y1)
2−(x1+x2)(x2−x1)

2

(x2−x1)2
= nomx

denomx
,

y3 = (2x1+x2)(y2−y1)(x2−x1)
2−(y2−y1)

3−y1(x2−x1)
3

(x2−x1)3

=
nomy

denomy
.

(18)

B. Explanation

The example will be conducted with the first idea from
Subsection II-F. To do this, Eq. (12) has to be used. Combining
it with addition formulas Eqs. (18), one obtains

Ri = [ui]Pi + [uj ]Pj = [ui(1− uj)]Pi + [(1− ui)uj ]Pj

+[ui · uj ]
nomx/y

denomx/y
.

(19)
Because in the QUBO model the equation must equal 0
and must not be represented with any fractions, the last
transformation is required. After that, the formula is given by

Fi = ui · uj · nomx/y + denomx/y ·
(
ui · (1− uj) · Pi,x/y

+uj · (1− ui) · Pj,x/y

)
−Ri,x/y · denomx/y.

(20)
Because the formula in Eq. (20) does not operate on points
on an elliptic curve, instead uses polynomials and numerical
coordinates, variables ui and uj are treated as integers from set
{0, 1} and thus notation with square brackets is unnecessary
and may be confusing.

For every single addition, two functions Fi will be obtained
– one for coordinate x and one for coordinate y.
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C. Experiment

Consider the following short Weierstrass curve EW /F3 :
y2 = x3+3x+1. The order of the group of points is equal to
7 and the group is cyclic. The generator of this group is point
P = (2, 1) and Q = (0, 2) = [y]P .

Since ord(P ) = 7 and Q ̸= O, y ∈ {1, . . . , 6}. The sought
multiplicity y can be written as y = 4u2 + 2u1 + u0. Based
on (3), one get

[y]P = [4u2 + 2u1 + u0]P = [4u2]P + [2u1]P + [u0]P
= [u2] ([4]P ) + [u1] ([2]P ) + [u0]P
= [u2]P4 + [u1]P2 + [u0]P1.

(21)
One can compute P4 = (1, 1), P2 = (0, 1) and P1 = (2, 1).
Because ECDLP is defined over F3 and ord(P ) = 7, only
one point Ri will be necessary and it has a form R1 =
(2u4 + u5, 2u6 + u7). From addition [u0]P1 + [u1]P2 = R1

one obtains

F1 = 2u0u1 + 2u0 + u4 + 2u5,
F2 = u0 + u1 + u6 + 2u7.

From addition R1 + [u2]P4 = Q one obtains

F3 = 2u2u
3
4 + u2u

3
5 + 2u3

4 + u3
5 + u2u

2
6 + u2u6u7 + u2u

2
7

+u2
4 + u4u5 + u2

5 + 2u2u6 + u2u7 + 2u4 + u5,
F4 = u2u

3
4 + 2u2u

3
5 + 2u3

4u6 + u3
5u6 + 2u2u

3
6 + u3

4u7

+2u3
5u7 + u2u

3
7 + u3

4 + 2u3
5 + 2u6 + u7 + 1.

Next, the following operations are performed:

1) reducing uk to u using a property of binary variables,
2) transformation from the pseudo-boolean function over

F3 to the pseudo-boolean function over integers,
3) linearization,
4) summing squares of all equations.
5) adding penalties.

More details about the whole process can be found in [8].
The correct solution was found, which is y = 5

(u2, u1, u0) = (1, 0, 1). The values of parameters used in
solving this QUBO problem are shown in Tab. III-C. Con-
nections between source variables are presented in Fig. 3. The
embedding of a problem to D-Wave Advantage is presented
in Fig. 4.

TABLE I
D-WAVE ADVANTAGE SOLVER PARAMETERS USED IN SOLVING QUBO

PROBLEM EQUIVALENT TO THE PROBLEM OF SOLVING ECDLP OVER F3

ON SHORT WEIERSTRASS CURVE IN A SUBGROUP OF SIZE 7

Parameter Value
Solver Advantage2 prototype2.3
Qubits 1248

Topology Zephyr
Number of read 10000
Annealing Time 200 µs

Number of source variables 25
Number of target variables 51

Max chain length 3

Fig. 3. Connection between source variables

IV. CONCLUSION AND FURTHER WORK

This paper presents a generalization of a method for solving
the elliptic curve discrete logarithm problem with quantum
annealing, described in [17]. The proper work of the method
was confirmed with the practical implementation on the D-
Wave computer with the D-Wave Leap cloud [19].

The ECDLP has been solved with a fully quantum device
for a 2-bit finite field. Unfortunately, bigger problems have not
been solved fully quantum. However, a few more problems
have been solved with a hybrid solver. The biggest solved
problem was ECDLP on an elliptic curve with order 7 over
a 4-bit field F11. Detailed information may be found in the
below Tab. IV. About the colors of the cells in a table:

• the green ones mean that the problem has been solved
with a fully-quantum solver,

• the yellow ones mean that the problem has been solved
with a hybrid solver,

• the white one that problem has not been solved.

TABLE II
NUMBER OF BINARY VARIABLES NECESSARY TO SOLVE ECDLP ON

ELLIPTIC CURVE WITH ORDER 7

Finite field bit length [b] Finite field 1st method 2nd method
2 F3 26 32
3 F5 74 98
3 F7 74 98
4 F11 159 202

The advantages of the generalized method:

• does not require the numerical form of the neutral ele-
ment,

• does not require using projective coordinates,
• allows to solve ECDLP on any model of elliptic curve,
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Fig. 4. Embedding of a problem equivalent to the problem of finding elliptic
curve discrete logarithm over F3 on shorts Weierstrass curve to the D-Wave
Advantage

• proper working is confirmed with quantum and hybrid
computations, as well as with simulated annealing.

The disadvantages of the new method:
• requires more resources than the original method, but is

asymptotically equal to it.
As seen in Tab. IV, the first method requires fewer variables

to solve ECDLP than the second one, however it demands
supplementary actions for multiplicities divisible by 4. The
alternative method does not need additional effort, but this
comes at the cost of more necessary resources. Considering
those arguments and the fact, that the extraordinary cases in
a simpler method will happen with an expected probability
about 25%, the author recommends using the first method.

The description of the generalized method does not exhaust
a topic. In further work, some improvements may be tried, for
example:

• changing the multiplicity representation like in [18],
• checking described method for other elliptic curve mod-

els,

• checking if for special cases using morphisms and arith-
metic on other models will allow to use less resources
like in [20].
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