
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 1, PP. 61–68
Manuscript received December 16, 2024; revised March, 2025. doi: 10.24425/ijet.2025.153545

Quantum-safe forward secure password
authenticated key life-cycle management scheme

with key update mechanism
Mariusz Jurkiewicz

Abstract—In this paper we construct and consider a new pass-
word authenticated key life-cycle management scheme (PAKMS)
with key update mechanism, which uses random q-ary lattices
as its domain. We justify that the scheme is existentially forward
unforgeable under a chosen password attack (fu-cpwda). To this
end, we show that breaking this scheme let us to construct a
polynomial-time adversary that is able to solve small integer
solution (SIS) problem. Since the security of the scheme is based
on computational hardness of SIS problem, it tuns out to be
resistant to both classical and quantum computations. The key-
updating mechanism is based on some properties of binary trees,
with a number of leaves being the same as a number of time
periods in the scheme. The forward-security is gained under the
assumption that one out of two hash functions is modeled as a
random oracle.

Keywords—Forward security; q-ary lattices password authen-
tication; random-oracle model; SIS problem

I. INTRODUCTION

NOWADAYS, many services are available in clouds, al-
lowing users to leverage powerful computing resources

without having to purchase or maintain hardware and software.
However, this brings some new challenges concerning, in
particular, secure access to resources and protection against
a data breach. A key to this seams to be to provide trustwor-
thy methods for storing and processing user’s passwords. In
early days of computers’ era passwords were stored in non-
encrypted form as tuples (login, password). However, back in
the 60s, it was noticed that this method is not secure and
must be avoided. Currently, the most common methods is to
store passwords i encrypted form, usually taking advantage of
cryptographic hash functions along with a random string called
salt. In this paper, we design and analyze a new password-
authenticated scheme that, in addition, provide a decent level
of security against quantum computing. The proposed scheme
allows to handle many services available in the domain,
where after registration and setting a pair (login, password),
a user has access to the chosen number of them. It must be
highlighted, that unlike the other indicated practices, neither
password nor login are stored anywhere. This is made possible
by using the concepts of asymmetric cryptography. After
verification of credentials and log-in to a specific service, a

M. Jurkiewicz is with Faculty of Cybernetics, Military University of
Technology, Warsaw, Poland (e-mail: mariusz.jurkiewicz@wat.edu.pl).

user is granted access to the resources. These resources are
stored as encrypted data, and the authentication unlock a secret
(symmetric) key, which is also associated with verification
parameters. In addition, the important part of the scheme
is a self-acting update mechanism, used to periodic change
of secret key-material. The idea is similar to so called UE
schemes, that recently are gaining increasing interest in the
crypto-community [1], [2], [3]. However, the model of security
is ideologically close to eu-cma.

The domain for the presented scheme is the lattice theory
which seams to be the most promising post-quantum substrate
for the modern asymmetric-crypto primitives. This is all the
more true given that the famous mishaps like breaking SIDH
and Rainbow. In order to design the scheme, we use q-ary
lattices that provide a lot of flexibility in obtaining required
statistical properties. We focus on the important question of
forward-security of the scheme [4], [5]. The construction
is partially based on the so-called Fiat-Shamir with aborts
approach [6]–[9], which was proposed by Lyubashevsky [6]
and refers to the idea from statistics called rejection sampling.

II. PRELIMINARIES

A. Notation
If k ∈ Z>0, then we use the following notation: [k] =

{1, . . . k} and [k]0 = {0, 1, . . . k}. The norms ℓ2 and ℓ∞ are
denoted by ∥·∥ and ∥·∥∞, respectively. Vectors are in column
form and are denoted by bold lower case letters (e.g., x). We
view a matrix as the set of its column vectors and denote by
bold capital letters (e.g., A). The ith coefficient of a vector
x is denoted xi, whereas the jth column of A is denoted
by A[j]. The norm of a matrix A is defined as follows:
∥A∥ = maxj ∥A[j]∥. For A ∈ Rn×m1 and B ∈ Rn×m2 ,
having an equal number of rows, [A|B] ∈ Rn×(m1+m2)

denotes the concatenation of the columns of A followed by
the columns of B.

Let I be a countable set, and let {Xn}n∈I , {Yn}n∈I
be two families of random variables such that Xn, Yn

take values in a finite set Rn. We call {Xn}n∈I and
{Yn}n∈I statistically close if ∆(Xn, Yn) ≤ negl(n), where
∆(Xn, Yn) is called the statistical distance between {Xn}n∈I
and {Yn}n∈I and is defined as the function ∆(Xn, Yn) =
1
2

∑
r∈Rn

|Pr[Xn = r]− Pr[Yn = r]| . We refer to [10] for
more details.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

62 M. JURKIEWICZ

B. Lattices

For a set of linearly independent vectors B =
{b1, . . . ,bk} ⊂ Rm, a m-dimensional lattice is defined as
a set of all integer linear combinations of the vectors from
B, e.i. L = L(B) =

{∑k
i=1 αibi | αi ∈ Z

}
. The set B is

called a basis of L, and k = #B is called the rank of L. If
k = m then we say that L is a full-rank lattice. All this means
in particular that every lattice is a Z-module. Furthermore, it
is easily seen that a lattice L is is an additive subgroup of
Rm and therefore, it induces the quotient group Rm /L of
cosets {x + L}x∈Rm , with respect to the addition operation
(x+L) + (y+L) = (x+ y) +L. A fundamental domain of
L is a connected set F ⊂ Rm such that 0 ∈ F and it contains
exactly one representative x̄ of every coset x+L. It turns out
that the measure of fundamental domain is an invariant of the
lattice and, therefore, it is called the determinant of L and
denoted by detL.

A full rank lattice L is called an integer lattice if L ⊂ Zm,
an integer lattice is called a q-ary lattice if qZm ⊂ L ⊂ Zm,
where q ∈ Z≥1. By definition, a lattice L = L(B) is an
integer lattice iff B ∈ Zm×m is an integer square matrix,
which implies that the determinant detL is a positive integer.
In addition, Zm /L is a finite group and |Zm /L| = detL.

Let n,m, q ∈ Zq≥1, n < m, and A ∈ Zqn×m be a
full-rank matrix. In this paper we make use of a special
kind of q-ary lattices of the full rank m, that are defined
as follows: L⊥q (A) = {x ∈ Zm | Ax ≡ 0 (mod q)}. A
matrix A, generating L = L⊥q (A), is often called a parity
matrix, however, it must be pointed out that A is not a
base of L. Particularly, if q is a prime, then |detL⊥q (A)| =
|Zm /L⊥q (A)| = qn. The lattice L⊥q (A) is closely related
with another structure that, for a fixed u ∈ Zn

q , is defined by
Lu
q (A) = {x ∈ Zm | Ax ≡ u (mod q)}. Although Lu

q (A) is
usually called a q-ary lattice, this is not formally correct since
it does not contain 0 for v ̸= 0. Since L⊥q (A) is a Z-module,
it is natural to call Lu

q (A) an affine lattice over L⊥q (A). Note
that if v ∈ Lu

q (A), then Lu
q (A) and L⊥q (A) are connected by

the relation Lu
q (A) = v + L⊥q (A).

Theorem 1: ([11]) For n ∈ Z≥1, an odd q ∈ Z≥3 and
integer m ≥ 6n lg q, there is a probabilistic polynomial-time
algorithm TrapGen that, on input q, n,m, outputs A ∈ Zn×m

q

and TA ∈ Zm×m, where A is (m · q−n/6)-uniform over
Zn×m
q , and TA is a short (good) basis of L⊥q (A) except

with negligible probability in n. More precisely, ∥TA∥ ≤
O(n log q) and ∥T∗A∥ ≤ O(

√
n log q).

By consideration conducted in [12], it is relatively easy
to construct a PPT algorithm SampleISIS that takes as input
V ∈ Zn×m

q along with its trapdoor TV ∈ Zm×m, and u ∈ Zn
q ,

and outputs a sample e ∈ Zm from the distribution DLu
q (V),s.

Furthermore, we have Ve ≡ u (mod q) with overwhelming
probability. It turns out, that we can easily generalize this
assertion, taking a matrix instead of u. To this end, we just
apply SampleISIS separately to the consecutive columns of
that matrix. Consequently, we obtain the following useful
theorem.

Theorem 2: Let n, k,m, q ∈ Z>0 be such that q is prime,
and m ≥ 6n lg q. There is a PPT algorithm k-SampleISIS that,
on input A ∈ Zn×m

q , its associated trapdoor TA ∈ Zm×m, a
Gaussian parameter s ≥ ∥T∗A∥ ·ω

(√
logm

)
, and U ∈ Zn×k

q ,
outputs a matrix E ∈ Zm×k from the joint distribution(
DLuj

q (A),s

)
j∈[k]

. Furthermore, the matrices A,U and E are

related by the formula AE ≡ U (mod q) with overwhelming
probability.

C. Discrete Gaussian

For any real s > 0 and c ∈ Rm, the Gauss function
ρs,c : Rm → R centered on c with parameter s is defined
as ρs,c(x) = exp

(
−π · s−2∥x− c∥2

)
, and as a notational

convenience, we write ρs = ρs,0, ρ = ρ1, i.e. ρ(x) = e−π∥x∥
2

.
For a lattice L ⊆ Zm we put ρs,c(L) =

∑
x∈L ρs,c(x),

and define the discrete Gaussian distribution over L with
center c and parameter s as DL,s,c(x) = ρs,c(x)/ρs,c(L),
x ∈ L. For notational convenience, we let DL,s = DL,s,0,
Dm

s,c = DZm,s,c, and Dm
s = DZm,s.

Below, we provide some basic properties of discrete Gaus-
sians over lattices, which are important for consideration
conducted herein.

Lemma 1: Let n < m and TA be any basis of L⊥q (A) for
some A ∈ Zn×m

q whose columns generate Zn
q , let u ∈ Zn

q

and c ∈ Zm be arbitrary, and let s ≥ ∥T∗A∥ ·ω
(√

logm
)
, we

have
1) ([13], [14]): Prx←DLu

q (A),s,c
[∥x− c∥ > s ·

√
m] ≤

negl(n).
2) ([14], [15]): Prx←DL⊥

q (A),s
[x = 0] ≤ negl(n).

3) ([14], [16]): A set of O(m2) independent samples
from DL⊥

q (A),s contains a set of m linearly independent
vectors, except with negligible probability in n.

D. Small integer solution problems

Definition 1: ([6], [13]) The small integer solution problem
SISq,n,m,β (in the ℓ2 norm) is: given q ∈ Z≥1, a uniformly
random matrix S

$← Zn×m
q , and β ∈ R>0, find a nonzero

integer vector x ∈ Zm such that Sx ≡ 0 (mod q) and ∥x∥ ≤
β. Equivalently, the SIS problem asks to find a vector x ∈
L⊥q (S)/{0} with ∥x∥ ≤ β.
An inhomogeneous variant of SIS problem, that is called ISIS,
is presented below.

Definition 2: ([12]) The inhomogeneous small integer so-
lution problem ISISq,n,m,β (in the ℓ2 norm) is: given q ∈ Z≥1,
a uniformly random matrix S

$← Zn×m
q , a syndrome u

$← Zn
q ,

and β ∈ R>0, find an integer vector x ∈ Zm such that Sx ≡ u
(mod q) and ∥x∥ ≤ β.
Both problems are as hard as worst-case of the lattice-based
SIVP problem.

Theorem 3: ([12], [13]) For any positive integers n, m, real
β = poly(n) and prime q ≥ β ·ω

(√
n log n

)
, the average-case

problem SISq,n,m,β and ISISq,n,m,β are as hard as the worst-
case problem SIVPγ with γ = β · Õ(

√
n).

The next, important, lemma is inspired by [6].

QUANTUM-SAFE FORWARD SECURE PASSWORD AUTHENTICATED KEY LIFE-CYCLE MANAGEMENT SCHEME WITH KEY UPDATE MECHANISM 63

Lemma 2: ([9]) Assume that d ∈ Z≥9 and let m >
24 + n lg q/lg (2d+ 1). Then for any matrix A ∈ Zn×m

q

and for uniformly random e
$← (−[d] ∪ [d]0)

m, we have
Pr [∃ e′ ∈ (−[d] ∪ [d]0)

m
: e′ ̸= e, Ae = Ae′ (mod q)] >

1− 2−101.

III. FORWARD SECURITY OF PASSWORD AUTHENTICATED
KEY LIFE-CYCLE MANAGEMENT SCHEMES WITH KEY

UPDATE MECHANISM

Assume there is given an alphabet Σ without a blank
symbol, positive integers τl, τp (values of τl and τp do not
depend on n), and finite set of available services S . We define
a password authenticated key life-cycle management scheme
(PAKMS) with key update mechanism as a tuple of algorithms
Π = (G ,GVParam, IntMKGen,UsrKGen,KUpd,PwdVrfy)
such that:
• G (system parameters generation) is a PT algorithm,

which on input the value 1n of a security parameter, max-
imum number of epochs E, outputs the system parameters
params.

• GVParam (global verification parameters generation) is a
PPT algorithm, which on input 1n, params, and E, outputs
a set of global verification parameters gvp.

• IntMKGen (initial user’s master key generation) is a
PPT algorithm, which on input 1n, gvp, login ∈ Σ≤τl ,
password ∈ Σ≤τp , and E, outputs a user’s master key
mk0 = (msk0,mvp) for the initial epoch e = 0; msk’s are
called master secret keys, whereas mvp is called master
verification parameter and is unchanged.

• UsrKGen (generation of users’ key-material for a service)
is a PPT algorithm, which takes as input login, password,
gvp, mvp, a service identifier srvId, mke, and a current
epoch e, and outputs the service (symmetric) encryption
secret key esk along with its verification parameters evp.

• KUpd (user’s master secret key update) is a PPT algo-
rithm, which takes as input a mater secret key mske for
the epoch e < E − 1, and outputs a master secret key
mske+1 for the subsequent epoch e+ 1.

• PwdVrfy (password verification) is DPT algorithm, which
on input login, password, srvId, gvp, mvp, evp, and
e, outputs one out of two values, namely accepted or
rejected

Below, we described the proposed security model for
PAKMS. To this end, let A be an adversary and assume that
the system parameters params have been generated and they
have been revealed to the adversary. In addition, A has been
granted access to four oracles: IntMKGen,KUpd, UsrKGen and
break in oracle Break. In order to improve the consistency
let q0 = q0(n) denote the maximum number of queries
to IntMKGen oracle, and assume without loss of generality
that A always makes exactly this many queries; note that q0
must be polynomial. Let us consider the following experiment
Expfu-cpwda

A,Π (forward unforgeability under a chosen password
attack):

1) The adversary A is given mvp, and can request initial
master keys (mk0) for q0 different pairs (credentials)
(login, password). Denote by C the (finite) set of this

credentials, and let Cl be an associated set of all login’s
used.

2) e← 0;
3) while e < E

2.1. UsrKGen : For a current epoch e the adversary A
requests the key-material for chosen pairs form C
and chosen services, as many times as it likes (ob-
viously, as A is PPT, this number is a polynomial
of n).

2.2. KUpd : If t < T −1 is a current epoch, then A re-
quests update: e← e+1, mske+1 ← KUpd(mske),
for every element of S.

2.3 If Break then break the loop while;
Break : If A is intended to move to the breach
phase then it points out a specific login⋆ ∈ Cl and
launches the oracle Break. Then the experiment
records the break-in epoch ē = e and sends the
current master secret key mskē to A. This oracle
can only be queried once, and after it has been
queried, the adversary can make no further queries
to the other oracles.

4) Eventually (e⋆, password⋆, srvId⋆, evp⋆) ← A(1n,
state). If e⋆ < ē and PwdVrfy(login⋆, password⋆,
srvId⋆, gvp⋆, mvp⋆, evp⋆, e⋆) = accepted and
UsrKGen oracle has been never queried about a triple
(login⋆, password⋆, srvId⋆) for the epoch e⋆, then out-
put 1, otherwise output 0.

A scheme PAKMS with key update mechanism
Π = (G ,GVParam, IntMKGen, KUpd,UsrKGen,PwdVrfy)
is called to be existentially forward unforgeable under a
chosen-password attack if for each efficient PPT adversary A,
its advantage Advfu-cpwda

Π,n (A) = Pr[Expfu-cpwda
A,Π (1n,E) = 1] is

a negligible function of n.

IV. CONSTRUCTION OF THE SCHEME

In the following subsections we provide a detailed descrip-
tion of the algorithms that make up the presented PAKMS
scheme.

Let Σ be a fixed alphabet without a blank symbol, and let
τl, τp ∈ Z>0 be such that they do not depend on n (they
are associated with an outer security policy). Without loss of
generality we may assume that letters of Σ can be encoded as
base-l numerals.

A. System parameters generation
Let ℓ ∈ Z>0. We denote by n a value of the security

parameter and by E = 2ℓ the number of epoch. The algo-
rithm G , on input 1n, and the number of epoch E, outputs
params = (q,m, ηmin, k, r, h,H), where
• q = poly(n), q ≥ 3 is a prime;
• m ≥ ⌈6n lg q⌉;
• h : Zn

q × {0, 1}n → Bk
h = {w ∈ Rk | wi ∈

{−1, 0, 1}, ∥w∥ ≤
√
r} is a collision-resistant hash

function;
• ηmin is required minimal entropy of h;
• k ∈ Z>0 and r ∈ [k]0 are such that 2ηmin ≤

∑r
i=0

(
k
i

)
;

then H(h) ≥ ηmin;
• H : {0, 1}∗ → {0, 1}n is a cryptographic hash function.

64 M. JURKIEWICZ

B. Global Verification Parameters Generation
The algorithm GVParam takes as input 1n, params, and E =

2ℓ. Fist, it chooses uniformly and independently 2ℓ matrices
V

(b)
i

$← Zn×m
q , i ∈ [ℓ− 1]0, b ∈ {0, 1}, and constructs the or-

dered set gvp←
{
V

(0)
ℓ−1,V

(1)
ℓ−1,V

(0)
ℓ−2,V

(1)
ℓ−2, . . .V

(0)
0 ,V

(1)
0

}
.

Next, it outputs gvp.

C. User Initial Master Key Generation
We start by defining the algorithm which is used as a

subroutine in the attempt to derive an initial and updated
key-material. Since this algorithm contains the mechanisms
providing forward-security, and therefore ,,memory loss” of
the past epochs, we call it Dory.

Algorithm 1 Dory

Input: ℓ, gvp, mvp, msk[2], e = bℓ−1 · · · b0
Output: msk = (msk[1],msk[2])

1: (T, h)← msk[2].pop()
2: h← h− 1
3: while h ≥ 0 do
4: Nh+1 ←

[
Vℓ | V(bℓ-1)

ℓ-1 | . . . | V(bh+1)
h+1

]
5: tmp← ExtBasis

(
TNh+1

,
[
Nh+1 | V(1)

h

])
6: msk[2].push (tmp, h)
7: T← ExtBasis

(
TNh+1

,
[
Nh+1 | V0

h

])
8: h← h− 1
9: end while

10: msk[1]← T

The algorithm IntMKGen should be viewed as registration
to a domain, providing a number of separated services. For-
mally, it takes as input 1n, gvp, E, login ∈ Σ≤τl , password ∈
Σ≤τp , and runs as follows:

1) The algorithm TrapGen(q, n) (Theorem 1) is run, and it
outputs (Vℓ,TVℓ

), where Vℓ ∈ Zn×m
q is a matrix and

TVℓ
∈ Zm×m

q its trapdoor. Furthermore, mvp ← Vℓ.
The matrix Vℓ gets bound with login in such a way that
it constitutes a system mirror image of login.

2) A positive ε = o(1) is chosen to derive s0 ≥ ∥T∗Vℓ
∥ ·

(lg(ℓ+ 1)m)
1
2+ε.

3) It is created an empty stack msk[2], to be next initialized
with (TVℓ

, ℓ) by invoking msk[2].push (TVℓ
, ℓ).

4) The algorithm Dory (ℓ, gvp,mvp,msk[2], e = 0) is
launches to get msk0 = (msk0[1],msk[2]).

5) Eventually, IntMKGen outputs mk0 = (msk0,mvp).

D. Service Key-material Generation
Let srvId be an identifier of a specific service. The algorithm

UsrKGen takes as input login, password, gvp, mvp, srvId, mke,
a current epoch e, and runs as follows:

1) A matrix U
$← Zn×k

q is chosen uniformly at random.
The matrix U is an identifier of the service srvId (this
specific one) for the whole epoch e.

2) It is constructed the matrix Ve =[
Vℓ | V

(bℓ−1)
ℓ−1 | V(bℓ−2)

ℓ−2 | · · · | V(b0)
0

]
∈ Zn×(ℓ+1)m

q ,
where e = (bℓ−1 · · · b0)2.

3) The algorithm k-SampleISIS is run, given as input a
tuple (Ve,mske[1], s0,U), it outputs Ee ∈ Z(ℓ+1)m×k,
such that Ve ·Ee = U (mod q).

4) The service encryption secret key is derived esk ←
H(password∥Ee).

5) The numbers α1, α2 ≥ 12 are set, and next the
algorithm computes s1 = max{α1

√
r, (lg k)

1
2+ε},

and s2 = max
{
α2s0(1 + α1

√
k)
√

(ℓ+ 1)mr,

(lg ((ℓ+ 1)m))
1
2+ε
}

, where ε = o(1).

6) The algorithm samples b ← Dk
s1 , a ← D(ℓ+1)m

s2 , r $←
{0, 1}n, and computes x1 ← Vea+Ub (mod q), x2 ←
H(login∥password∥r), and gets ϑ1 ← h(x1,x2).

7) Set ϑ′1 ← ϑ1 + b and go to the next step with proba-

bility min

(
Dk

s1
(ϑ′

1)

M1Dk
ϑ1,s1

(ϑ′
1)
, 1

)
; otherwise the algorithm

is restarted.
8) Set ϑ2 ← Eeϑ

′
1 + a and output ϑ2 with probability

min

(
D(ℓ+1)m

s2
(ϑ2)

M2D(ℓ+1)m

Eeϑ
′
1,s2

(ϑ2)
, 1

)
; otherwise the algorithm is

restarted.
9) If ∥ϑ2∥ ≤ s2

√
(ℓ+ 1)m then the algorithm sets evp←

(ϑ1,ϑ2, r), otherwise it is restarted.
10) Eventually, the algorithm outputs esk along with evp.

E. Master Secret Key Update

In this section we define a user’s master secret key update
mechanism KUpd, which is based on some properties of
binary trees. We refer to [5] for the comprehensive description
of this idea. The algorithm takes as an input a current mater
secret key mske, and carries out the following steps:

1) It updates e← e+ 1.
2) If e ≡ 1 (mod 2), then the following steps are con-

ducted:
3.1 (T, h)← msk[2].pop() and mske[1]← T;
3.2 The updated mater secret key for the new epoch is

of the form mske = (mske[1],msk[2]).
3) If e ≡ 0 (mod 2), then the following steps are done:

4.1 (msk[1],msk[2])← Dory (ℓ, gvp,mvp,msk[2], e).
4.2 The updated mater secret key for the new epoch is

of the form mske = (mske[1],msk[2]).

F. Credentials Verification

This algorithm PwdVrfy is launched just after a user’s
intention to log-in to a specific service srvId in the domain. The
only assumption here is that the user has previously logged-in
to this service, meaning formally that the algorithm UsrKGen
has already generated a proper key-material. The algorithm
takes as input login, password, srvId, gvp, mvp, evp, e and
runs as follows:

1) The algorithm constructs the matrix Ve = [Vℓ|V
(bℓ−1)
ℓ−1

|V(bℓ−2)
ℓ−2 | · · · ∥V

(b0)
0] ∈ Zn×(ℓ+1)m

q associated with the
epoch e.

2) It sets x̂1 ← Veϑ2 −Uϑ1 (mod q).

QUANTUM-SAFE FORWARD SECURE PASSWORD AUTHENTICATED KEY LIFE-CYCLE MANAGEMENT SCHEME WITH KEY UPDATE MECHANISM 65

3) If ϑ1 = h(x̂1,H(login∥password∥r)) and ∥ϑ2∥ ≤
s2
√
(ℓ+ 1)m, then output accepted, otherwise return

rejected.

From the practical perspective, it should be also defined an
algorithm which updates the key-material for the supported
services. It seems to be important since although the update of
the master keys is able to be done without user’s intervention,
the process of updating a service’s key requires to provide the
associated credentials. The natural design of such an algorithm
is that after logging-in to a chosen service, it starts by verifying
the current credentials, next requires to change a password and,
having it given, runs UsrKGen so as to carry out update for all
services supported by the user. It is, therefore, seen that such
an algorithm is based entirely on PwdVrfy and UsrKGen, and
thus constitutes at most a negligible added value in terms of
the security of the scheme and consequently can be skipped.

G. Correctness of the verification process

Let evp = (ϑ1,ϑ2, r) be the union of verification
parameters for the credentials (login, password), and an
epoch e. We have ϑ1 = h(x1,x2), where x1 = Vea + Ub
(mod q), x2 = H(login∥password∥r), and ϑ2 = Eeϑ

′
1 + a

(mod q), where ϑ′1 = ϑ1 + b (mod q). Then
Veϑ2 − Uϑ1 = Ve(Eeϑ

′
1 + a) = Ub + Vea. This

implies h (Veϑ2 −Uϑ1 (mod q),H(login∥password∥r)) =
h (Vea+Ub (mod q),H(login∥ password∥r)) =
h(x1,x2) = ϑ1.

Both vectors ϑ′1 and ϑ2 were sampled from distributions
Dk

ϑ1,s1
and D(ℓ+1)m

Etϑ′
1,s2

. However, our task is to associate them

with the other distributions, namely Dk
s1 and D(ℓ+1)m

s2 . To this
end, we use the rejection sampling method (Theorem 4.6, [6]),
and show that M ’s and s’s can be chosen in such a way that
the outputs distributions of the steps 7, 8 of UsrKGen, are
statistically close to the distributions in which ϑ′1 and ϑ2 are
sampled form Dk

s1 and D(ℓ+1)m
s2 , respectively. Then, Lemma

1.1, implies that the estimation ∥ϑ2∥ ≤ s2
√

(ℓ+ 1)m holds
with overwhelming probability. Further, by Lemma 4.5 of [6]

we conclude that M1 ≥ e
24α1+1

2α2
1 and M2 ≥ e

24α2+1

2α2
2 , with

probabilities at least 1 − 2−100. This, therefore, means that
the optimal choices are M1 ≈ exp

(
24α1+1

2α2
1

)
and M2 ≈

exp
(

24α2+1
2α2

2

)
.

V. JUSTIFICATION OF THE SCHEME SECURITY

In this section we prove that any security breach of our
PAKMS scheme will enable us to find a non-trivial solution
to SIS problem.

Theorem 4: Assume that n is a value of a security parameter,
ℓ ∈ Z>0, and that Π = (G ,GVParam, IntMKGen,UsrKGen,
KUpd,PwdVrfy) is a PAKMS scheme presented in Section
IV, with the associated message spaceM = {0, 1}∗. If A is a
fu-cpwda -adversary attacking Π in the random oracle model,
with a number of at most qh queries to this oracle, then for

β = (2s2 + 2s0
√
r)
√
(ℓ+ 1)m there is a PPT adversary B

attacking SISq,n,(1+2ℓ)m,β problem with advantage

AdvSIS
n (B) ≈ 1

#S 2τl+1qhE2
·
(
Advfu-cpwda

Π,n (A)
)2

, (1)

and a running time (time(A)).
Proof. Let A be an adversary against Π. Our goal here is
to construct an algorithm B, which solves SISq,n,(1+2ℓ)m,β

problem, for β = (2s2 +2s0
√
r)
√

(ℓ+ 1)m and, in addition,
it exploits A as its subroutine. Let

S =
[
Sℓ | S(0)

ℓ−1 | S
(1)
ℓ−1 | · · · |S

(0)
0 | S(1)

0

]
∈ Zn×(1+2ℓ)m

q ,

be a (random) matrix sent to B by its SISq,n,(1+2ℓ)m,β-game
challenger. Therefore, the challenge is to find x ∈ Z(1+2ℓ)m,
such that

S · x ≡ 0 (mod q) with ∥x∥ ≤ (2s2 + 2s0
√
r)
√

(ℓ+ 1)m.

First, B chooses e∗
$← E − 1, login∗

$← Σ≤τl , and
srvId∗

$← S . According to the assumptions, the function
h is modeled as a random oracle, and A is entitled to
ask at most q := qh queries to this oracle. Therefore, B
chooses vectors w1,w2, . . . ,wqh uniformly at random from
{w ∈ Rk | wi ∈ {−1, 0, 1}, ∥w∥ ≤

√
r}, and constructs

an ordered set Wh = {w1,w2, . . . ,wqh}, where the ordering
relation ”≼” is defined as follow wi ≼ wj iff i < j. Let
(b∗ℓ−1, b

∗
ℓ−2, . . . , b

∗
0)2 be the binary representation of e∗, then

B creates gvp as follows

gvp←
(
V

(b=0)
ℓ−1 ,V

(b=1)
ℓ−1 , . . .V

(b=0)
0 ,V

(b=1)
0 ,U

)
,

where for every i ∈ [ℓ− 1]0:

• if b = b∗i then V
(b)
i = S

(b∗i)
i ;

• else, i.e. if b ̸= b∗i then the algorithm TrapGen(q, n,m) is
run to get V(b)

i ∈ Zn×m
q along with its trapdoor T

V
(b)
i
∈

Zm×m.
In addition, B sets the master ver. parameter of login∗ as
mvp∗ ← Vℓ = Sℓ.

Next, B puts Tmax := maxi∈[ℓ−1]0{∥T∗V(b)
i

∥ | b ̸= t∗i }.
and chooses a positive ε = o(1) so as to compute d =
s0
√
(1 + ℓ)m, where a Gauss distribution parameter s0 is

chosen in such a way to meet the following conditions:

• s0 ≥ Tmax · (lg((ℓ+ 1)m))
1
2+ε;

• (ℓ+ 1)m > 24 + (n lg q)/lg (2d+ 1) (see Lemma 2).
h-Query. B prepares a list L to record all queries and
responses as follows

(1) At the beginning, the list L is empty.
(2) Let (x1,x2) ∈ Zn

q × {0, 1}n be a k-th query to h:
a) If A has already asked about (x1,x2) then the list

L consists of a pair ((x1,x2), h(x1,x2)) and, in
this case, B outputs h(x1,x2).

b) Otherwise, there is taken the first element w ∈ Wh

which has not yet been used (i.e. if w′ ∈ Wh is
such that w′ ≼ w, then w′ has been already used),
a pair ((x1,x2),w) is appended to the list L and
h(x1,x2) = w is given on output.

66 M. JURKIEWICZ

Queries. Master secret key update KUpd. Let e ̸= e∗, then
there exists at least one i ∈ [ℓ] such that bi ̸= b∗i . Set i0 :=
max{i ∈ [ℓ− 1]0 | bi ̸= b∗i }. If only i0 ̸= ℓ, then bi = b∗i for
i > i0. As B knows V

(bi0)
i0

∈ Zn×m
q along with its trapdoor

T
V

(bi0
)

i0

∈ Zm×m, it uses ExtBasis (see Theorem 5 of [17])

in order to get

TVe ← ExtBasis

(
T

V
(bi0

)

i0

,
[
mvp | V(t∗ℓ−1)

ℓ−1 |V
(b∗ℓ−2)

ℓ−2 | · · ·

|V
(b∗i0−1)

i0−1 |V
(bi0)
i0
| · · · |V(b0)

0

])
,

if login ̸= login∗ then mvp
$← Zn×m

q , otherwise mvp← mvp∗.

User Initial Master Key Generation IntMKGen. If login ̸=
login∗ it just run IntMKGen, otherwise the simulation is the
same as in the simulation of KUpd.

Service Key-material Generation UsrKGen.

• If login ̸= login∗, B just run UsrKGen.
• If login = login∗,

– If srvId = srvId∗, B runs k-times the algorithm
E∗ ← SampleD

(
{|i⟩}m−1i=0 , s0, c = 0) (see [18]),

where the distribution E∗ is D(1+ℓ)m×k
s0 . Note that

∥E∗∥ = max {∥e∗,1∥, . . . , ∥e∗,k∥} ≤ d, with
overwhelming probability, by Lemma 1.1. Next, B
sets U∗ = Ve∗ ·E∗, Ve∗ = [mvp∗ | V

(b∗ℓ−1)

ℓ−1 |V
(b∗ℓ−2)

ℓ−2 |
· · · |V(b∗0)

0] ∈ Zn×(ℓ+1)m
q .

∗ If e ̸= e∗ then B makes Ve = [mvp∗ |
V

(bℓ−1)
ℓ−1 |V

(bℓ−2)
ℓ−2 | · · · |V

(b0)
0] runs k-SampleISIS

that takes as input (TVe ,Ve, s0,U∗), and outputs
Ee from the distribution Dk,U

q,A,s. Having done this,
evp for password are generated as in Section IV-D.

∗ If e = e∗ then B assigns Ee∗ ← E∗.
– If srvId ̸= srvId∗ then B runs k-SampleISIS that

takes as input (TVe ,Ve, s0,U), and outputs Ee from
the distribution Dk,U

q,A,s. Having done this, evp for
password are generated as in Section IV-D.

Break in Break. If the adversary A runs the break in oracle, the
current epoch ē is saved and the adversary is given the proper
master secret key mskē. This key consists of two components,
namely mske[1] and mske[2]. In order to generate mske[1], B
proceeds in the same way as in KUpd. When it comes to the
component mske[2], B uses Dory (with obvious changes, as it
only focuses on the node’s indexes) so as to get the identifiers
of nodes from mske[2]. Having done this, B is able to derive
nodes corresponding to these identifiers. To this end, it does
the following. At first, it takes an identifier (bℓ − 1 . . . bh)2
and indicate i0 := max{i ∈ [ℓ − 1]0 | ei ̸= e∗i }. Such i0
exists, since there is not node in mske[2] that lies on the
branch linking the root with a leaf associated with e∗. B
knows a pair

(
V

(bio)
i0

,T
V

(bi0
)

i0

)
, therefore it runs ExtBasis

in order to obtain TNh
← ExtBasis

(
T

V
(bi0

)

i0

,Nh

)
, where

Nh =
[
Vℓ | V(bℓ-1)

ℓ-1 | . . . | V(bh)
h

]
, Vℓ = mvp.

Forgery. B is statistically indistinguishable from a real chal-
lenger in the experiment Expfu-cpwda

A,Π . Therefore, the adversary
A eventually outputs a forgery for an epochê∗. If ê∗ ̸= e∗,
B aborts. Otherwise, B accepts the forgery (e∗, login∗, evp∗),
where evp = (ϑ∗1,ϑ

∗
2, r
∗) and

• ∥ϑ∗2∥ ≤ s2
√
(ℓ+ 1)m;

• ϑ∗1 = h (Ve∗ϑ
∗
2 −Uϑ∗1 (mod q),H(login∗∥password∗∥r∗));

• Ae∗ = [mvp∗|V
(b∗ℓ−1)

ℓ−1 |V
(b∗ℓ−2)

ℓ−2 | · · · |V
(b∗0)
0] ∈ Zn×(ℓ+1)m

q .
Let wi ∈ Wh be such that ϑ∗1 = wi. The answers to h-queries
are taken successively formWh, following the relation ”≼”. B
picks vectors ŵi, ŵi+1, . . . , ŵqh independently and uniformly
at random from Bk

h , and modifies Wh in such a way that the
vectors w1,w2, . . . ,wi−1 are kept, whereas q − i + 1 of the
remaining vectors are replaced by the newly-generated vectors
ŵ’s. After this update, the set of answers to h-queries has the
form Ŵh = {w1, . . . ,wi−1, ŵi, ŵi+1, . . . , ŵqh}.
Having this done, B runs A again with the same parameters
(params) and the same random tape ρ as in the first run,
but this time it uses Ŵh instead of Wh to answer the h-
queries. By Lemma General Forking Lemma (see [19]), A
outputs a new forgery

(
ê∗, l̂ogin∗, êvp∗ = (ϑ̂∗1, ϑ̂

∗
2, r̂
∗)
)

using

the same h-queries. If ê∗ ̸= e∗, B aborts. Otherwise B accepts
the forgery and then this means, in particular, that ∥ϑ̂∗2∥ ≤
s2
√
(ℓ+ 1)m and ŵi = ϑ̂∗1 = h

(
Ve∗ϑ̂

∗
2 −U∗ϑ̂

∗
1 (mod q),

H(login∗∥ ̂password∗∥r̂∗)
)

. In addition, the probability P1 that

ŵi ̸= wi is P1 ≈ Advfu-cpwda
Π,n (A)/qh.

Before asking the i-th h-query, B uses the same inputs,
random tape ρ and w1, . . . ,wi−1 to generate A’s inputs,
random tape and h-queries responses. This implies that the
two executions of A are identical up to the i-th h-query, what
means that the arguments of both i-th h-queries must be the
same. Thus At∗ϑ

∗
2 − Uϑ∗1 ≡ At∗ϑ̂

∗
2 − Uϑ̂∗1 (mod q) and

H(login∗∥password∗∥r∗) = H(login∗∥ ̂password∗∥r̂∗). This
implies

0 ≡ At∗(ϑ
∗
2 − ϑ̂∗2)−U(ϑ∗1 − ϑ̂∗1)

≡ At∗

(
ϑ∗2 − ϑ̂∗2 −E∗(ϑ

∗
1 − ϑ̂∗1)

)
(mod q). (2)

Now, B sets x0 = ϑ∗2 − ϑ̂∗2 − E∗(ϑ
∗
1 − ϑ̂∗1), then ∥x0∥ ≤

(2s2 + 2s0
√
r)
√

(ℓ+ 1)m, and therefore by (2), if x0 ̸= 0
then it is a solution of the following SISq,n,(1+ℓ)m,β problem

Ve∗x0 ≡ 0 (mod q) with ∥x0∥ ≤ β.

It remains to evaluate how likely it is that ϑ∗2− ϑ̂∗2−E∗(ϑ
∗
1−

ϑ̂∗1) ̸= 0. Let j0 = min
{
j ∈ [k] | ϑ∗1,j ̸= ϑ̂∗1,j

}
; j0 exists as

ϑ∗1 = wi ̸= ŵi = ϑ̂∗1. Set e = E∗[j0]. Then, since d ≥ 9 and
(ℓ+ 1)m > 24 + (n lg q)/lg (2d+ 1), Lemma 2 says that the
probability of existence of another e′ ∈ (−[d] ∪ [d]0)

m such
that e′ ̸= e and At∗e

′ = At∗e is at least 1−2−101. This let B
to construct a matrix E′∗ such that all its columns, except for
the column j0, are the same as E∗. Therefore, by definition
of E′∗, if

ϑ∗2 − ϑ̂∗2 −E∗(ϑ
∗
1 − ϑ̂∗1) = 0, (3)

QUANTUM-SAFE FORWARD SECURE PASSWORD AUTHENTICATED KEY LIFE-CYCLE MANAGEMENT SCHEME WITH KEY UPDATE MECHANISM 67

then

ϑ∗2 − ϑ̂∗2 −E′∗(ϑ
∗
1 − ϑ̂∗1) ̸= 0. (4)

It means that for every matrix E∗ satisfying (3), with probabil-
ity at least 1−2−101, it holds that there exists an another matrix
E′∗ which differs form E∗ only in column j0, and such that
(4) holds and that At∗E∗ = At∗E

′
∗. Since these matrices are

statistically indistinguishable to the adversaryA, the likelihood
of choosing between them is at least 1/2. Therefore, the
probability P2 that x0 ̸= 0 is P2 ≥ 1/2− 1/2101 ≈ 1/2

Having given x0, B constructs a vector x =

[x(1+2ℓ)m−1, . . . , x0] ∈ Z(1+2ℓ)m
q in the following way

xj =

x0,j , 2ℓm ≤ j < (1 + 2ℓ)m,
x0,j , j < 2ℓm and ⌊j/m⌋ (mod 2) = 1− t∗⌊j/(2m)⌋,

0 elsewhere.

Eventually B outputs the vector x. Note that

S · x = At∗x0 ≡ 0 (mod q),

where ∥x0∥ ≤ β = (2s2 + 2s0
√
r)
√
(ℓ+ 1)m. This implies

that the probability of solving SISq,n,(1+2ℓ)m,β problem is the
same as the probability of an event that x ̸= 0. To summarize,
the probability of B not aborting is equal to 2τl · T 2 · #S ,
and P1 · P2 ≈ Advfu-cpwda

Π,n (A)/2qh. Therefore, we obtain
Taking into account the values of P1 and P1, and the fact

that the probability of B not aborting is exactly equal to 1/T 2,
we have that

Pr [x ̸= 0] ≈ Advfu-cpwda
Π,n (A)/(qh2τl+1 · T 2 ·#S).

This finishes the proof. □

VI. SUMMARY OF PARAMETERS

In this section we summarize the parameters that are of
crucial importance for the security of the scheme (see Table
I). In addition, we give an example set of parameters that
provide 80 bits of security. The choice of this value is due
to the fact that it is assumed 80 bits represents a minimal
security requirement and draws a red line in gaining any sort
of cybersecurity. Since the number of periods T = 2ℓ does
not influence directly on the security level, we can skip it in
the Table I.

TABLE I
PAKMS PARAMETERS AND THE SET OF SAMPLES FOR ℓ = 8 PROVIDING

80B SECURITY

Parameter Definition Samples
n security parameter 512
q a prime ≥ 3 227 + 29
ηmin h’s min. entropy 101
k, r k ∈ Z>0, r ∈ [k]0,

∑r
i=0

(k
i

)
≥ 2ηmin 101, 101

α1, α2 ≥ 12 12, 12
m max {⌈6n lg q⌉ ,⌈

1
ℓ+1

·
(
24 +

(n lg q)
lg (2d+1)

)⌉}
82945

M1,M2 M1 = M2 = exp

(
24α1+1

2α2
1

)
2.7277

The role of the parameters is clearly explained in the text.
However, we feel compelled to add a few clarifying remarks.

Namely, the parameters ηmin, k, r defines the size of the
challenges so as to get correctness error of at most 2−101.
Furthermore, at first glance it appears that the value of m
in Table I can be derived only if d is known. However, the
condition

⌈
1

ℓ+1 ·
(
24 + (n lg q)

lg (2d+1)

)⌉
> ⌈6n lg q⌉ holds only

for relatively small n, q, d and, consequently, in practical
instantiates we always have m = ⌈6n lg q⌉.

TABLE II
PAKMS PARAMETERS THAT NOT INFLUENCE DIRECTLY ON THE

SECURITY LEVEL

Parameter Definition
T a number of periods T = 2ℓ, ℓ ∈ Z>0

Tmax maxi∈[ℓ−1]0{∥T
∗
A

(b)
i

∥ | b ̸= t∗i }

ε o(1)

s0 ≥ Tmax · (lg((ℓ+ 1)m))
1
2
+ε

s1 ≥ max
{
α1

√
r, (lg k)

1
2
+ε

}
s2 ≥ max

{
α2s0(1 + α1

√
k)
√

(ℓ+ 1)mr,

(lg ((ℓ+ 1)m))
1
2
+ε

}
d s0

√
(1 + ℓ)m

β (2s2 + 2s0
√
r)
√

(ℓ+ 1)m

The choice of n, k, q should guarantee the computational
infeasibility of SIS problem. To this end, an associated random
q-ary lattice L is defined in order to exploit some known
lattice reduction algorithms so as to find short vectors in
this lattice. Gama and Nguyen justify in [20] that the length
of the vector obtained by running the best known algo-
rithms on a random m-dimensional q-ary lattice L is close
to min

{
q,
(
(detL)1/m · δm

)}
= min

{
q, qn/m · δm

}
, with

overwhelming probability. The parameter δ, called a Hermite
factor, depends on the quality of the used lattice-reduction al-
gorithm. Further, Micciancio and Regev [21] notice that since
22·
√
n lg q lg δ is the minimum of a function m 7→ qn/m ·δm for

m =
√
n lg q/ lg δ, lattice reduction algorithms can output the

shortest vectors of L when m ≈
√
n lg q/ lg δ. For smaller m,

the lattice is too sparse and does not contain vectors that are
short enough. For larger m, the high dimension prevents lattice
reduction algorithms from finding short vectors. Eventually,
Micciancio and Regev conclude that the shortest vector one
can find in L⊥q (A) for a random A ∈ Zn×m

q using lattice re-

duction algorithms is of length at least min
{
q, 22·

√
n lg q lg δ

}
.

VII. CONCLUSIONS

We constructed a new password authenticated key life-cycle
management scheme with key update mechanism. Since the
construction is based on q-ary lattices, the scheme is secure
against known quantum attacks and, to the best of our knowl-
edge, is the first post-quantum scheme of this sort. In addition,
we formally proved that the scheme is existentially forward
unforgeable under a chosen password attack as long as SIS
problem is computationally hard. This is significant since it
meets the requirement that cryptographic constructions should
be proven secure with respect to clearly stated definitions of
security and relative to well-defined cryptographic assump-
tions. Such approach is the essence of modern cryptography.

68 M. JURKIEWICZ

It must be highlighted that the scheme’s keys are represented
by matrices of large dimensions, and their number grows as ℓ
increases. Storing such a huge amount of data is not feasible
for most practical applications. This drawback (inherently
related with lattice-based solutions) can be eliminated by
using a cryptographically secure deterministic pseudo random
number generator (PRNG) and storing only the seeds of that
PRNG.

We indicated the parameters and thoroughly explained their
influence on the scheme’s security. In particular, we derived the
set od samples that provides a cut-off level of 80-bits security.
This allows to conduct an introductory estimation regarding
the order of magnitude for parameters in therms of reaching
a desired security level in practical implementations. Further,
taking into account the size of these samples vs the complexity
of presented scheme, we get a good trade-off in comparison
with other lattice-based solutions.

REFERENCES

[1] D. Slamanig and C. Striecks, “Revisiting Updatable Encryption: Con-
trolled Forward Security, Constructions and a Puncturable Perspective,”
in Theory of Cryptography Conference. Springer, 2023, pp. 220–250.

[2] P. Miao, S. Patranabis, and G. Watson, “Unidirectional Updatable
Encryption and Proxy Re-Encryption from DDH,” in IACR International
Conference on Public-Key Cryptography. Springer, 2023, pp. 368–398.

[3] Y. J. Galteland and J. Pan, “Backward-leak UNI-directional Updatable
Encryption from (Homomorphic) Public Key Encryption,” Cryptology
ePrint Archive, 2022.

[4] M. Bellare and S. K. Miner, “A Forward-Secure Digital Signature
Scheme,” in Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, ser. Lecture Notes in Computer
Science, M. J. Wiener, Ed., vol. 1666. Springer, 1999, pp. 431–448.
[Online]. Available: https://doi.org/10.1007/3-540-48405-1 28

[5] M. Jurkiewicz, “Binary Tree Based Forward Secure Signature Scheme
in the Random Oracle Model,” International Journal of Electronics and
Telecommunications, pp. 717–726, 2021.

[6] V. Lyubashevsky, “Lattice Signatures without Trapdoors,” in Annual
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2012, pp. 738–755. [Online].
Available: https://doi.org/10.1007/978-3-642-29011-4 43

[7] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “Crystals-dilithium: A Lattice-based Digital
Signature Scheme,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 238–268, 2018. [Online]. Available:
https://doi.org/10.13154/tches.v2018.i1.238-268

[8] P. Zhang, H. Jiang, Z. Zheng, P. Hu, and Q. Xu, “A New
Post-quantum Blind Signature from Lattice Assumptions,” IEEE
Access, vol. 6, pp. 27 251–27 258, 2018. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2018.2833103

[9] M. Jurkiewicz, “Quantum-resistant forward-secure digital signature
scheme based on q-ary lattices,” Journal of Telecommunications
and Information Technology, pp. 90–103, 2024. [Online]. Available:
https://doi.org/10.26636/jtit.2024.2.1581

[10] O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, 2003.

[11] J. Alwen and C. Peikert, “Generating Shorter Bases for Hard Random
Lattices,” Theory of Computing Systems, vol. 48, pp. 535–553, 2011.
[Online]. Available: https://doi.org/10.1007/s00224-010-9278-3

[12] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for Hard
Lattices and New Cryptographic Constructions,” in Proceedings of the
fortieth annual ACM symposium on Theory of computing, 2008, pp.
197–206.

[13] D. Micciancio and O. Regev, “Worst-Case to Average-Case Reductions
Based on Gaussian Measures,” SIAM Journal on Computing,
vol. 37, no. 1, pp. 267–302, 2007. [Online]. Available: https:
//doi.org/10.1109/FOCS.2004.72

[14] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, “Bonsai Trees, or How to
Delegate a Lattice Basis,” Journal of Cryptology, vol. 25, pp. 601–639,
2012.

[15] C. Peikert and A. Rosen, “Efficient Collision-Resistant Hashing from
Worst-Case Assumptions on Cyclic Lattices,” in Theory of Cryptogra-
phy: Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006. Proceedings 3. Springer, 2006, pp. 145–
166.

[16] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–
40, 2009. [Online]. Available: https://doi.org/10.1145/1568318.1568324

[17] S. Agrawal, D. Boneh, and X. Boyen, “Efficient Lattice (H) IBE in
the Standard Model,” in Advances in Cryptology–EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, French Riviera, May 30–June 3, 2010.
Proceedings 29. Springer, 2010, pp. 553–572.

[18] C. Peikert, “An Efficient and Parallel Gaussian Sampler for Lattices,”
in Annual Cryptology Conference. Springer, 2010, pp. 80–97.

[19] M. Bellare and G. Neven, “Multi-signatures in the Plain Public-key
Model and a General Forking Lemma,” in Proceedings of the 13th
ACM conference on Computer and communications security, 2006, pp.
390–399. [Online]. Available: https://doi.org/10.1145/1180405.1180453

[20] N. Gama and P. Q. Nguyen, “Predicting Lattice Reduction,” in
Advances in Cryptology–EUROCRYPT 2008: 27th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings 27.
Springer, 2008, pp. 31–51. [Online]. Available: https://doi.org/10.1007/
978-3-540-78967-3 3

[21] D. Micciancio and O. Regev, “Lattice-based Cryptography,” in Post-
quantum Cryptography. Springer, 2009, pp. 147–191.

https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1109/ACCESS.2018.2833103
https://doi.org/10.1109/ACCESS.2018.2833103
https://doi.org/10.26636/jtit.2024.2.1581
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3

	Introduction
	Preliminaries
	Notation
	Lattices
	Discrete Gaussian
	Small integer solution problems

	Forward Security of Password Authenticated Key Life-cycle Management Schemes with Key Update Mechanism
	Construction of the Scheme
	System parameters generation
	Global Verification Parameters Generation
	User Initial Master Key Generation
	Service Key-material Generation
	Master Secret Key Update
	Credentials Verification
	Correctness of the verification process

	Justification of the Scheme Security
	Summary of parameters
	Conclusions
	References

