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Syndrome decoding with MRHS solver
Miloslav Smičı́k, and Pavol Zajac

Abstract—The syndrome decoding problem (SDP) is an NP-
complete problem that has important applications in the de-
velopment of post-quantum cryptography. Currently, the most
efficient algorithms for SDP are based on the Information Set
Decoding (ISD) approach that leverages efficiently time-memory
and probability trade-offs. In our contribution, we explore a
different approach based on transforming an instance of the
SDP problem into a so-called Multiple Right-Hand-Sides (MRHS)
Equation system. The MRHS system is then solved with a
specialized MRHS solver. We explore how difficult is to solve
(small) instances of SDP in MRHS form, and which trade-offs
and parametric selections lead to the best results. Although our
practical results are worse than those obtained by ISD, we believe
that they show a better understanding of the connection between
SDP and its MRHS representation, and can be a basis for future
improvements.

Keywords—Cryptography; Decoding problem; MRHS equa-
tion systems

I. INTRODUCTION

OONE of the oldest examples of public key cryptography
is the McEliece cryptosystem [1]. Unlike RSA and DLP-

based systems, the McEliece cryptosystem is believed to be
secure even against the quantum adversary [2]. A modernized
version, the Classic McEliece [3], is under consideration for
NIST standardization as a post-quantum KEM. A primary
difference between the new and old versions is the selec-
tion of parameters. The parameters originally proposed by
McEliece did not stand the test of time and currently do not
provide enough security even against classical adversaries.
This development is mainly due to the improvement of the
general decoding algorithms [4]. These algorithms try to solve
instances of the syndrome decoding problem (SDP), which
essentially requires finding a low-weight solution of a specific
linear equation system (with more variables than equations).
In Section II-A we provide more information about SDP and
decoding algorithms.

The most successful algorithms for solving the decoding
problem are from a family of information set decoding (ISD)
methods. They are highly optimized and use various time-
memory-probability trade-offs. It is not known whether these
types of algorithms can be improved further, but the research
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area is still very active. Recently, however, a new type of
distinguisher for McEliece cryptosystem based on syzygies
was published [5]. The distinguisher uses algebraic properties
of the underlying Goppa code and provides a substantial
improvement compared to generic ISD methods. Naturally, a
question arises as to whether some suitable algebraic methods
can be used even for solving general decoding problems.

In [6], [7] we have explored a connection between (regular)
decoding problems and the so-called MRHS problem. The
MRHS problem asks whether a solution of a set of formal
inclusions of type xMi ∈ Si (so-called Multiple Right-Hand
Sides equations, MRHS system) exists. MRHS systems were
defined in the context of algebraic cryptanalysis of symmetric
ciphers [8], but have many different uses in cryptography and
cryptanalysis (see survey paper [9]). For algebraic attacks,
Raddum and Zajac have developed a specialized MRHS solver
based on linear algebra and exhaustive search [10], which
we now call the RZ solver. We provide more background on
MRHS systems and the RZ solver in Sections II-B and II-C,
respectively.

In this paper, we focus on the following research problem:

• Can the MRHS solver, specifically the RZ solver, be
adapted to efficiently solve the syndrome decoding prob-
lem?

Our experiments indeed show that this is possible, although the
MRHS solver is less efficient than the existing ISD methods.
Still, the presented research can shed some light on the
connection between the MRHS problem and the SDP, as well
as provide new research directions for potential improvement
of the presented methods.

Our main results are presented in three sections. In Section
III we focus on the issue of representing the SDP via MRHS
equation systems. We present two solutions. The explicit
representation encodes the system along with weight constraint
into a standalone MRHS system that can be solved by any
MRHS solver. The implicit representation moves some work to
the RZ solver and encodes just the SDP. The weight constraints
must be checked by the modified solver during the search.

In Section IV we focus on experiments with random SDP
instances of the hardest difficulty (code rate 0.5 and weight
constraints set near Gilbert-Varshamov bound). The exper-
iments aimed to assess different parameters of the MRHS
representation (such as block size, and RHS order), and
specific time-probability trade-off (based on the removal of
some RHS vectors).
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Finally, in Section V we present the complexity evaluation
of the algorithm with the best settings and analyze also
instances with different code rates.

II. PRELIMINARIES

Notation: We will work with row vectors over binary field
F2, denoted in bold type, such as x ∈ Fn

2 . Matrices are also
denoted in bold type, such as M ∈ Fn×m

2 . Hamming weight
of vector v is denoted by hw(v), and represents the number
of non-zero elements of v.

A. Syndrome decoding problem

Code-based cryptography is a branch of post-quantum cryp-
tography that relies on the difficulty of problems related to
coding theory. There are multiple definitions and variants of
problems related to codes, but we will restrict our attention to
the Syndrome Decoding Problem (SDP).

Let s ∈ Fn−k
2 , and H ∈ Fn×(n−k)

2 , with k < n. Let w ∈ Z,
0 ≤ w ≤ n. Syndrome decoding problem (SDP) is a problem
of finding x ∈ Fn

2 , such that x ·HT = s, and hw(x) = w.
It is known that the decision version of the SDP (origi-

nally: coset weights problem, question of existence of x with
hw(x) ≤ w) is an NP-complete problem [11]. In general, ran-
dom instances of the problem (in certain parametric regimes)
are believed to be difficult to solve. The most efficient class
of algorithms for solving SDP are based on the so-called
information set decoding (ISD) techniques [12]. An exact
computational complexity of ISD algorithms depends on all
parameters k, n, w, but in practice it can be approximated
by 2cw with c = − log2(1 − k/n) (for small w) [13]. The
syndrome decoding problem is also believed to be difficult to
solve on quantum computers and is thus the basis of security of
various post-quantum cryptographic systems, such as Classic
McEliece [14], BIKE [13], and others.

In our research, we will focus on random linear binary
codes. Given random H ∈ Fn×(n−k)

2 as a parity check
matrix, the corresponding linear binary code is a set of vectors
C = {c; cHT = 0}. It is known that with probability
approaching 1 as n → ∞, the minimum distance of a random
binary linear code of length n and rate R = k/n is at least
nδGV (R) [15]. Here, δGV (R) is relative Gilbert-Varshamov
distance, which is defined as the root δ < 1/2 of the equation
H(δ) = 1 − R, where H is the binary entropy function,
H(p) = −p log2 p − (1 − p) log2(1 − p). Setting R = 1/2,
and w ≈ nδGV provides the hardest instances of the SDP
(for random binary linear codes). The complexity of the SDP
in this regime can then be estimated as 2αn, with parameter
α depending on the concrete algorithm. Table I from [16]
summarizes complexity exponents of common ISD algorithms,
as well as references for these algorithms.

B. Multiple Right-Hand Sides equation systems

The aim of this article is to explore alternative avenues
for solving SDP. The idea is to convert instances of the SDP
to a specific algebraic notation called a Multiple Right-Hand
Sides (MRHS) equation system [8]. We then proceed to solve

TABLE I
ASYMPTOTIC TIME COMPLEXITY O(2αn) FOR MAJOR ISD ALGORITHMS

IN FULL-DISTANCE DECODING SETTING [16]

Prange Dumer MMT BJMM MO15 BM18 Sieving ISD
[17] [18] [19] [20] [21] [22] [23]

0.121 0.116 0.112 0.102 0.097 0.096 0.101

the MRHS system with a dedicated MRHS solver. In the
following, we summarize the definitions of MRHS systems
and provide the basic details of the RZ algorithm [10] that
can be used to solve MRHS systems.

Let M ∈ Fn×k
2 , and let S ⊂ Fk

2 . A Multiple Right-Hand
Sides equation (defined by the tuple (M, S)) is a formal
inclusion in the form

xM ∈ S.

Any vector x ∈ Fn
2 , for which the inclusion holds, is called a

solution of the MRHS equation.
A Multiple Right-Hand Sides equation system (MRHS

system) is a set of MRHS equations defined by tuples (Mi, Si)
for i = 1, 2, . . . ,m with common dimension n. Vector x ∈ Fn

2

is a solution of the MRHS system, if and only if it is a solution
of each MRHS equation in the system.

An MRHS system can also be written in a joint form [10]
by concatenating matrices on the left-hand side, and using a
Cartesian product on the right-hand side:

x (M1M2 · · ·Mm) ∈ S1 × S2 × · · · × Sm.

Note that the joint form of an MRHS system is an MRHS
equation with (typically) a large right-hand side set that is not
enumerated explicitly. We say that MRHS systems are poly-
nomially bounded if they are members of a family of MRHS
systems with the sizes of sets Si as well as dimensions ki
and m restricted polynomially in n. There exists a polynomial
time algorithm for verifying whether vector x is a solution of
a polynomially bounded MRHS system. On the other hand,
deciding whether some MRHS system has a solution is an
NP-complete problem [24] and finding a solution of an MRHS
system in general seems difficult.

MRHS systems have many applications in algebraic crypt-
analysis [9], and potential use in post-quantum cryptography
[25]. MRHS systems can be used as intermediate reductions
between various types of NP-complete problems [6]. Specif-
ically, after polynomial time reduction, we can use (regular)
decoding algorithms to solve MRHS systems (a specific ex-
perimental version was provided in [26]). In this article we are
interested in the opposite reduction: Is it possible to efficiently
transform syndrome decoding problem instances into MRHS
systems? How difficult is it to solve the resulting MRHS
systems in practice with known MRHS-solving algorithms?

C. RZ solver

There are multiple methods proposed to solve MRHS sys-
tems. Original methods from [8] include so-called Agreeing
and Gluing, which essentially rely on joining selected right-
hand side sets, potentially removing some conflicting vectors
in the process. Local reduction methods [27] generalize the
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Agreeing approach, and combine guessing (a substitution of
values of selected x components), and removing conflicts
within right-hand side sets (similar to DPLL-based SAT
solvers). Sparse MRHS systems can also be solved by heuristic
methods related to bit-flipping and hill climbing [28].

In [10], Raddum and Zajac have proposed a systematic
MRHS solver (we call it the RZ solver) that relies on linear
algebra and fast exhaustive search. This MRHS solver has been
actively developed and is available as an open-source tool at
https://github.com/zajacpa/mrhs-solver.

The RZ solver starts with an MRHS system in the joint
form. With linear algebra operations, the joint matrix is
transformed to a specific reduced row echelon form. Suppose
we have the following equation in block form:

(x1, . . . , xk, . . . , xk+p−1, . . . , xn)·

 A 0 T B1

0 I 0 B2

0 0 0 B3


∈ S1 × . . .× Sl × · · · × Sm.

(1)
Values up to xk−1 are known, and they satisfy the correspond-
ing partial MRHS system based on the joint matrix A and
right-hand side sets S1, . . . , Sl−1. The next MRHS equation
(called a block) has p pivot columns corresponding to I part
and some additional columns corresponding to T, with the
right-hand side set Sl. The rest of the system is given by joint
matrix B and the remaining right-hand side sets.

The RZ solver tries to find values of p unknowns
xk, . . . , xk+p−1. Firstly, we need to compute (x1, . . . , xk) ·T,
and restrict the set Sl to a subset of vectors compatible with
this value. The first part of any of the remaining vectors can be
substituted into xk, . . . , xk+p−1. If there is no option, we mark
the potential solution as incorrect and try to use backtracking
to find another one. On the other hand, if there are one
or more valid options, the algorithm uses depth-first search
(with backtracking) through the potential solution space, until
the whole vector x is constructed (or no solution is found).
Additional speedups are available by efficient pre-computation
and the use of look-up tables based on sets Si.

The algorithm complexity is exponential in general, but it
also depends on the exact form of the system (see analysis of
random MRHS systems in [10]). In practice, the number of
operations is influenced by the order of MRHS equations, as
well as the order in which the right-hand sides are investigated
during the depth-first search.

For the experiments with the decoding problem, we have
created a modified version of the RZ solver. This version
can keep track of the Hamming weight of the partial solu-
tion (x1, . . . , xk−1). If the Hamming weight rises above the
specified limit, we can mark the partial solution as incorrect.
This operation can cut off some branches of the search tree
that would be explored by an unmodified search procedure.

III. MRHS REPRESENTATION OF THE DECODING PROBLEM

Given a SDP instance e · HT = s, wh(x) ≤ w, we can
transform it into a problem of finding a short vector in a
specific code. Let G be a generator matrix of the binary linear

code C with the parity check matrix H. Let u be an arbitrary
solution of u ·HT = s (with any weight). If the SDP instance
has a solution e, the solution can be written as e = u + c,
where c = xG ∈ C. If w is lower than the minimum distance
of the code C, we can search for a low-weight codeword in a
code generated by G′, where G′ is G with the added vector
u.

The most straightforward way of representing a problem of
finding a low-weight codeword in a binary linear code gener-
ated by matrix G with the MRHS system is the following:

xG ∈ {v;hw(v) ≤ w}. (2)

Here x is an input vector, matrix G is a generator matrix
of a given code, and the set {v;hw(v) <= w} is the set of
every possible vector with the required weight.

This representation, however, has a problem. The right-hand
side set is too big for practical use even for smaller instances.
An apparent solution in MRHS representation is to split the
system into multiple parts. The system split can look like the
following:

M =
(
G1 G2 · · · Gm

)
S =

m∏
i=1

{x ∈ Fn/m
2 ;hw(x) ≤ w}

where m is the total number of blocks. In the example, every
block is of equal size, but this is not required. If the system
is split into a sufficient amount of blocks, the right-hand side
sets become small enough to be practical.

However, the example system does not properly take into
account the constraint on the maximum weight of the vectors
on the right-hand side. In the example with one block, we
have constructed the RHS set directly to contain only vectors
with the correct weight. When we split the vector into multiple
blocks, we do not know the exact weight distribution between
blocks. Thus we need to fill each set with all possible vectors
(up to the maximal weight w, but this is typically higher than
the dimension of the block). However, the combination of a
sufficient number of partial vectors even of small weight can
produce a joint vector that has a larger weight than is sought.

To address this problem, we have identified two practical
ways of weight-constrained representation in MRHS systems.
We call them implicit and explicit weight representation.

Implicit representation has a simple MRHS construction and
relies on the solver to maintain a correct weight throughout
the calculation. The RZ solver had to be modified in order to
be able to calculate the weight, see Section II-C.

The second, so-called explicit representation, is a rather
complicated MRHS construction that is capable of maintaining
the correct weight within the MRHS system itself and can
be solved with the original (unmodified) RZ solver, as well
as any other type of MRHS solver. The representation relies
on additional variables and equations that represent partial
weights of current right-hand sides in a given block, and the
propagation of these weights when joining individual RHS
sets.

An MRHS system with explicit weight representation has
the following block form of the joint matrix:

https://github.com/zajacpa/mrhs-solver
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M =



0 G1 0 0 G2 0 0 G3 0 · · ·
I0 0 0 0 0 0 0 0 0 · · ·
0 0 I1 I1 0 0 0 0 0 · · ·
0 0 0 0 0 I2 I2 0 0 · · ·

0 0 0 0 0 0 0 0 I3
. . .

0 0 0 0 0 0 0 0 0
. . .


In the construction, each block contains initial weight part
Ii−1, part of the generator matrix Gi, and the cumulative
weight part Ii.

The right-hand side sets are constructed as follows:

Si =
⋃w

c=0

⋃w−i
d=0

⋃(|Gi|
d )

l=0 {(c,v, e);

c = bin(c);v = gen(|Gi|, d, l); e = bin(c+ d).}
(3)

The notation bin(i) represents fixed size binary encoding of
number i. The size of the encoded number should be ⌈log2 w⌉
(the number of bits of w). Function gen(i, j, k) creates the k-
th vector of length i and weight j. Each tuple (c,v, e) thus
represents: initial weight c (of the partial solution before the
i-th block), selected partial solution v (of the i-th block), and
the cumulative weight e = c+ hw(v) (of the partial solution
including the i-th block). In the initial S1, we only include
vectors with c = 0.

Note that the size of each Si is at most w22li , where li is the
dimension of Gi. Typically, we select some fixed dimension
l and then split the matrix into m = n/l blocks (if l does not
divide l, we create an extra block of smaller dimension). If we
keep l fixed with growing m, we have created a polynomially
bounded MRHS family (as w ≤ n).

Note that for larger block dimensions l, and code weights w
this system can still be quite large in practice. This is one of
the reasons why we prefer to use implicit weight representation
for the experiments. In the implicit representation, the system
is stored in the form of equation (2). We still use the weight
counters c, e, but they are only stored inside the RZ solver
in specific data structures associated with the current partial
solution.

IV. EXPERIMENTAL RESULTS: HARD INSTANCES WITH
FIXED CODE RATE 0.5

We have conducted several experiments to evaluate the
proposed methods. The measurements were realized by our
custom software tools. The whole technical solution consists
of multiple parts and is described in the following subsection.

A. Tools and methods

The first step is the problem generation part. We have
used a freely available syndrome decoding problem generator
from the portal decodingchallenge.org [29], section Syndrome
decoding problem. The software generates hard instances of
the SDP based on random binary linear codes with fixed code
rate 0.5, and w slightly higher than the Gilbert-Varshamov
bound: w = ⌈1.05nδGV ⌉. Using this generator we have

generated 100 instances for every set of parameters. This was
a one-time process.

The generated instances of decoding problems were then
transformed into an MRHS instance with a custom Python
script. This script is able to generate instances with explicit or
implicit weight representation (parameter solve_metohod).
The generated MRHS instances are also parameterized by the
following parameters:

• block_length - Size of one block of the MRHS
system.

• rhs_reduction - Reduction of RHS set. This param-
eter tries to eliminate less probable vectors within each
RHS set.

• rhs_order - Ordering of RHS set. We can either
sort the (remaining) vectors by their Hamming weights
(ascending or descending) or shuffle them randomly.

We explore the effects of these parameters in the next
subsection.

The generated MRHS instances are ready to be fed into
the MRHS solver. We are using two versions of the MRHS
solver. The first solver for explicit weight representation is
the standard RZ solver. The second, modified solver, is the
RZ solver with the ability to calculate the weight of the se-
lected RHS during the calculation and to compute cumulative
weight during the search process, as well as to backtrack the
calculation process prematurely if the weight limit is reached.
Note that the modified solver is based on the same source
code. The weights are efficiently precomputed and stored
within the data structures used by the RZ solver. The only
extra operations within the main loop of the algorithm are
the addition of previous weight and selected weight, and the
weight comparison.

The transformation scripts and solvers are run by an automa-
tion script that handles the experiments. The script generates
an instance with specified parameters, calls the solver, and
stores the solver output into a corresponding result file. This
process is repeated 100 times for each specific set of parame-
ters. When not mentioned otherwise, we use the (logarithm of
the) number of iterations of the main loop of the (modified)
RZ algorithm (median value from 100 experiments) as our data
points for the visualizations. Note that the size of the matrix
also influences the total computation time, but this influence
is linear, while the expected number of iterations grows
exponentially. Thus, for small instances, the time statistic is too
noisy to be useful, and for larger instances, the influence of the
matrix size on computational time is negligible in comparison
to the impact of the number of iterations.

B. Explicit vs. Implicit representation

Qualitative comparison between implicit and explicit weight
representation is depicted in Figure 1. The experiments
strongly suggest that there is a constant difference in complex-
ity, with explicit representation requiring a smaller number of
iterations of the RZ algorithm. For the sake of comparison,
we also include an extra line method_ww that provides
the number of iterations required to find a solution for the
MRHS system without weight restrictions. This line represents
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Fig. 1. Complexity comparison between different representation types

TABLE II
MEDIAN ITERATIONS AND TIME OF 100 EXPERIMENTS, n = 60, RATIO OF

EXPLICIT VS. IMPLICIT REPRESENTATION

Implicit Explicit Ratio Ex/Im
Iterations [M] 11.5 6.7 58 %
Time [ms] 89.5 32.0 36 %

essentially a baseline complexity of solving the linear equation
system.

The explanation of the difference between
method_implicit and method_explicit lies in
the processing of weight computation. In the explicit case,
possible weight contributions are essentially precomputed in
the representation. On the other hand, the implicit method
requires that the solver explores additional branches before
it can discard them. For example, if w = 50, and we have
accumulated weight 49, explicit representation would only
branch to weight-1 vectors in the next iteration, while implicit
solver would explore vectors of every weight from the next
RHS set.

Table II presents the concrete number of iterations and
times obtained by implicit and explicit representation in the
basic setting (without further optimizations discussed in later
sections). The comparison of the total time of the explicit
method is even more favorable than the comparison of the
number of iterations. This further difference is caused by
weight counters and their management in the modified RZ
solver. In practical terms, however, the difference in the
number of iterations and time is negligible between the im-
plicit and explicit representations. In practice, if we include
precomputation and preparation of the system, it is more
efficient to work with the implicit representation (especially
with RHS sets of low dimension). Thus, all other experiments
use implicit representation with the modified RZ solver.

C. Influence of the RHS order

Our experiments have shown that the order of vectors in
the RHS sets is significant to the algorithm’s performance.
The main results are shown in Figure 2. The most efficient
order of RHS is reverse. This means that right-hand sides
are ordered from the least probable to the most probable

Fig. 2. Influence of the order of RHS elements on the complexity of the
algorithm. Instances with block size 2 (implicit representation) are used.

(probability depends on the Hamming weight of the RHS and
the block size). However, the solver uses a LIFO queue to
process the potential RHSs, thus processing the RHS set in
this case from the most probable RHS to the least probable.
ordered by probability in reverse order is most efficient. Thus,
the results are as expected. What is less expected is that using
the norm (the least probable RHS first), and random order
was giving orders of magnitude worse results.

Note that RHS sets were in the same fixed order during
the whole experiment instance. It might be interesting to
also explore dynamic RHS selection (calculating conditional
probabilities based on already accumulated weight), which we
suspect would provide the best results. However, the current
optimized architecture of the RZ solver implementation unfor-
tunately does not support this kind of RHS processing.

D. Partial RHS sets

The currently best methods for solving the decoding prob-
lem are based on ISD methods. These methods are based
on efficient algorithms that have a small chance of success.
The complexity is then computed as the expected number of
repetitions required to succeed with some specified probability.
We can think of the setup of the ISD-based algorithm as a
trade-off between computational probability and complexity.

In our base algorithm, we essentially search through the (po-
tentially whole) space of low-weight vectors. As the previous
experiments show, the selection of the path through the search
tree is important to the expected complexity. We can however
optimize the search further by cutting some branches, which
seem to be less probable than the remaining ones. We again do
the probability-complexity trade-off: there is a smaller space
to search, but we have some probability that the algorithm
fails to find a solution.

In practice, we reduce the search space by removing some
vectors from RHS sets (each vector becomes one branch in
the search tree). Firstly, we compute the probability that each
RHS vector is a solution (based on Hamming weight) and
then remove some fixed fraction of the RHS vectors (starting
from the least probable ones and using random selection where
probability is equal).
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Fig. 3. Complexity (and success rate) depending on RHS reduction. The
first number in the legend is the reduction rate and the second number is the
success percentage. Data are obtained from instances with block size 10. On
the left: norm order (the worst case). On the right: reverse order (the best
case).

In Figure 3 we demonstrate the results of this method
with blocksize 10 (each RHS has initially 210 vectors). The
experiments were fully successful until 4% of the original size
(41 vectors in RHS, all vectors of weight 0, and 1, and most
of the weight 2 vectors). Further decrease in RHS size caused
the algorithm to fail in some cases.

The influence that the RHS reduction has is diminished if
the RHS sets are explored in the correct order (from the most
probable to the least probable), which is demonstrated by a
difference in Figure 3. Even though the advantage of RHS
reduction is lower in the case of correct RHS order, the best
results are still obtained by combining both methods.

V. OVERALL COMPLEXITY EVALUATION

In order to compare our MRHS representation of the syn-
drome decoding problem to current state-of-the-art decoding
algorithms, we have combined the best sets of parameters and
approximated their complexity coefficient α by least square
metric. As a reminder, the asymptotic complexity estimate is
2αn, with the parameter regime of random linear code and
weight chosen according to the GV bound. Figure 4 depicts the
results. The red straight line is the complexity approximation
(numbers for small n are skewed due to trivial solutions).
The calculated parameter α ≈ 0.295 is similar for different
parametric settings of our algorithm (different block size, with
optimal RHS order, and possible RHS reduction).

Fig. 4. Different combinations of parameters with an approximation

Fig. 5. Scatter graph of the best result

When using the implicit solver, the best results were
achieved for block size 1 (no RHS reduction possible). Note
that smaller block sizes lead to better performance (in terms of
constants, not α), but with larger variance in results. Figure 5
contains a scatter plot for the best result and serves as an
example of the dispersion of the results. Note that the y-
axis is logarithmic, so the dispersion is quite large. The red
line is the median of 100 runs (with the same size n). The
main source of the dispersion is the fact that we stop the
computation after the first valid vector, and the first vector can
be anywhere in the solution space. This leads to essentially a
log-normal distribution of results. In the graph, however, we
can see that there are significant outliers and variances even
in median values. This effect is suppressed for larger block
sizes, where the selection of the partial vector contains more
local information.

Our final experiment assessed the effect of code rate on the
complexity of our algorithm, similar to the evaluation of ISD
methods. Figure 6 summarizes an experiment with instances
with different code rates (rather than the fixed code rate 0.5
used in previous experiments). Again, the codes were random,
with weight expected near the GV bound. The size of the code
was fixed to n = 60, block size 2 (no optimizations applied).
The results are similar to the ISD algorithm, with the hardest
instances localized around the code rate of 0.5 (maximum is
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Fig. 6. Dependence of the computation complexity on the code rate

reached at k/n = 0.533), with a decreasing trend in both
directions (both low and high code rates).

To conclude, our method is less efficient than the modern
ISD algorithms but provides qualitatively similar results (with
respect to code rate). To improve the complexity constant, we
would need to improve the base algorithm used to solve the
MRHS problem to include some of the time-memory trade-
offs, or to be able to somehow exploit the collisions and
birthday paradox. Another possibility is to use some more ad-
vanced probability-complexity trade-offs and advanced search
algorithms. We believe that this study provides sufficient basis
on which to study further algorithms and improvements of this
method.

REFERENCES

[1] R. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” Jet Propulsion Laboratory DSN Progress Report, Tech. Rep.,
1978. [Online]. Available: http://ipnpr.jpl.nasa.gov/progress report2/
42-44/44N.PDF

[2] M. Repka and P. Zajac, “Overview of the McEliece cryptosystem and
its security,” Tatra Mountains Mathematical Publications, vol. 60, no. 1,
pp. 57–83, 2014.

[3] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange,
V. Maram, I. Von Maurich, R. Misoczki, R. Niederhagen et al., “Classic
McEliece: conservative code-based cryptography,” 2022, round 4 Sub-
mission.

[4] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defending
the mceliece cryptosystem,” in Post-Quantum Cryptography: Second
International Workshop, PQCrypto 2008 Cincinnati, OH, USA, October
17-19, 2008 Proceedings 2. Springer, 2008, pp. 31–46.

[5] H. Randriambololona, “The syzygy distinguisher,” Cryptology ePrint
Archive, Paper 2024/1193, 2024. [Online]. Available: https://eprint.iacr.
org/2024/1193

[6] P. Zajac, “Connecting the complexity of MQ-and code-based
cryptosystems,” Tatra Mountains Mathematical Publications, vol. 70,
no. 1, pp. 163–177, 2017. [Online]. Available: https://doi.org/10.1515/
tmmp-2017-0025

[7] ——, “Polynomial reduction from syndrome decoding problem to
regular decoding problem,” manuscript.

[8] H. Raddum and I. Semaev, “Solving multiple right hand sides linear
equations,” Designs, Codes and Cryptography, vol. 49, pp. 147–160,
2008.

[9] P. Zajac, “Algebraic cryptanalysis with MRHS equations,” Cryptogra-
phy, vol. 7, no. 2, p. 19, 2023.

[10] H. Raddum and P. Zajac, “MRHS solver based on linear algebra
and exhaustive search,” Journal of Mathematical Cryptology, vol. 12,
no. 3, pp. 143–157, 2018. [Online]. Available: https://doi.org/10.1515/
jmc-2017-0005

[11] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems (corresp.),” IEEE Transactions
on Information Theory, vol. 24, no. 3, pp. 384–386, 1978. [Online].
Available: https://doi.org/10.1109/TIT.1978.1055873

[12] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“A finite regime analysis of information set decoding algorithms,”
Algorithms, vol. 12, no. 10, 2019. [Online]. Available: https:
//www.mdpi.com/1999-4893/12/10/209

[13] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Ghosh, S. Gueron, T. Güneysu et al., “BIKE:
Bit Flipping Key Encapsulation,” INRIA, Tech. Rep., 2022. [Online].
Available: https://inria.hal.science/hal-04278509

[14] D. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier,
J. Szefer, and W. Wang, “Classic mceliece,” 2017. [Online]. Available:
https://research.tue.nl/en/publications/classic-mceliece

[15] A. Barg and G. D. Forney, “Random codes: Minimum distances and
error exponents,” IEEE Transactions on Information Theory, vol. 48,
no. 9, pp. 2568–2573, 2002.

[16] S. Narisada, S. Uemura, H. Okada, H. Furue, Y. Aikawa, and
K. Fukushima, “Solving McEliece-1409 in one day — cryptanalysis
with the improved BJMM algorithm,” Cryptology ePrint Archive, Paper
2024/393, 2024, https://eprint.iacr.org/2024/393. [Online]. Available:
https://eprint.iacr.org/2024/393

[17] E. Prange, “The use of information sets in decoding cyclic codes,” IRE
Transactions on Information Theory, vol. 8, no. 5, pp. 5–9, 1962.

[18] I. Dumer, “On minimum distance decoding of linear codes,” in Proc.
5th Joint Soviet-Swedish Int. Workshop Inform. Theory. Moscow, 1991,
pp. 50–52.

[19] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes in
o(20.054n),” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2011, pp. 107–124.

[20] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random
binary linear codes in 2n/20: How 1+ 1= 0 improves information set
decoding,” in Advances in Cryptology–EUROCRYPT 2012: 31st Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings
31. Springer, 2012, pp. 520–536.

[21] A. May and I. Ozerov, “On computing nearest neighbors with applica-
tions to decoding of binary linear codes,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2015, pp. 203–228.

[22] L. Both and A. May, “Decoding linear codes with high error rate and its
impact for lpn security,” in International Conference on Post-Quantum
Cryptography. Springer, 2018, pp. 25–46.

[23] Q. Guo, T. Johansson, and V. Nguyen, “A new sieving-style
information-set decoding algorithm,” Cryptology ePrint Archive, Paper
2023/247, 2023, https://eprint.iacr.org/2023/247. [Online]. Available:
https://eprint.iacr.org/2023/247

[24] P. Zajac, “MRHS equation systems that can be solved in
polynomial time,” Tatra Mountains Mathematical Publications,
vol. 67, no. 1, pp. 205–219, 2016. [Online]. Available:
https://doi.org/10.1515/tmmp-2016-0040

[25] P. Zajac and P. Spacek, “A new type of signature scheme derived from
a MRHS representation of a symmetric cipher,” INFOCOMMUNICA-
TIONS JOURNAL, vol. 11, no. 4, pp. 23–30, 2019.

[26] P. Zajac, “Upper bounds on the complexity of algebraic cryptanalysis
of ciphers with a low multiplicative complexity,” Designs, Codes and
Cryptography, vol. 82, pp. 43–56, 2017.

[27] ——, “Using local reduction for the experimental evaluation of the
cipher security,” Computing and Informatics, vol. 37, no. 2, pp. 349–366,
2018.

[28] ——, “On solving sparse MRHS equations with bit-flipping,”
Publ.Math.Debrecen, vol. 100 / Supplementum, pp. 683–700, 2022.

[29] M. L. Julien Lavauzelle, Matthieu Lequesne, “Challenges for code-based
problems,” 2023. [Online]. Available: https://decodingchallenge.org/

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://eprint.iacr.org/2024/1193
https://eprint.iacr.org/2024/1193
https://doi.org/10.1515/tmmp-2017-0025
https://doi.org/10.1515/tmmp-2017-0025
https://doi.org/10.1515/jmc-2017-0005
https://doi.org/10.1515/jmc-2017-0005
https://doi.org/10.1109/TIT.1978.1055873
https://www.mdpi.com/1999-4893/12/10/209
https://www.mdpi.com/1999-4893/12/10/209
https://inria.hal.science/hal-04278509
https://research.tue.nl/en/publications/classic-mceliece
https://eprint.iacr.org/2024/393
https://eprint.iacr.org/2024/393
https://eprint.iacr.org/2023/247
https://eprint.iacr.org/2023/247
https://doi.org/10.1515/tmmp-2016-0040
https://decodingchallenge.org/

	Introduction
	Preliminaries
	Syndrome decoding problem
	Multiple Right-Hand Sides equation systems
	RZ solver

	MRHS representation of the decoding problem
	Experimental results: hard instances with fixed code rate 0.5
	Tools and methods
	Explicit vs. Implicit representation
	Influence of the RHS order
	Partial RHS sets

	Overall complexity evaluation
	References

