
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 1, PP. 101-106

Manuscript received March 14, 2025; revised March, 2025. doi: 10.24425/ijet.2025.153548

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—This article analyzes XSS vulnerabilities in OJS

(Open Journal Systems) and develops a model for protecting

against these attacks. It discusses different types of XSS attacks,

vulnerabilities in OJS, methods of detecting them, and potential

consequences for system security. The article describes a specific

vulnerability that can be exploited to inject malicious code through

user input of specially generated data. Based on the analysis, a

protection model is developed, which includes the introduction of

restrictions for vulnerable fields, encoding, and filtering of data

before displaying it on the page. This article is essential for OJS

administrators and developers to ensure high security and

protection against potential XSS attacks.

Keywords—OJS (Open Journal System); vulnerabilities; XSS;

website; web applications; XSS attacks; detection of vulnerabilities

I. INTRODUCTION

SS (Cross-Site Scripting) attacks pose a significant

cybersecurity threat due to their widespread use and

serious consequences. Unlike phishing, which manipulates

individuals to disclose sensitive information through deception,

XSS attacks target web application vulnerabilities. These

attacks involve the injection of malicious scripts into legitimate

websites, which are then executed in users' browsers, resulting

in a variety of malicious activities such as cookie theft, session

hijacking, corruption of web pages, and the spread of malware.

The prevalence of XSS attacks is evident when attackers

exploit weaknesses in web forms, URLs, and input fields to

deliver malicious scripts. These scripts can manipulate user

sessions, steal sensitive data, or compromise the functionality of

the affected website. XSS attacks are particularly insidious

because they target unsuspecting users who visit compromised

or maliciously crafted web pages, often without their

knowledge.

The seriousness of XSS attacks is underscored by their

potential impact on user privacy, financial security, and the

reputation of affected websites. For companies, organizations,

and individuals, the consequences can range from financial

losses and regulatory sanctions to loss of brand credibility and

deterioration of customer relationships [1].

URL spoofing and following redirects to phishing pages are

particularly dangerous. The authors describe the detection of

phishing attacks in [2], and possible methods for determining

the degree of suspicion of a phishing address in [3], which is a

separate area but interrelated to the article's subject.

Eliminating XSS vulnerabilities requires a multifaceted

approach, including strict input validation, source coding,

secure coding methods, and regular security checks. By

First Author, Third Autor, and Forth Author are with the Taras Shevchenko

National University of Kyiv, Kyiv, Ukraine (e-mail: buchyk@knu.ua,

tetiana.yuzhakova@knu.ua, shabanovaa@knu.ua).

implementing these measures, web developers and

administrators can reduce the risk of XSS attacks and protect

their systems and users from malicious exploitation.

II. RESEARCH OBJECTIVES

This study aims to analyze and identify cross-site scripting

(XSS) vulnerabilities in the Open Journal Systems (OJS)

platform.

The research focuses on the process of detecting XSS

vulnerabilities, with particular emphasis on methodologies

employed for their identification. Accordingly, the primary

objective is to uncover previously unreported XSS

vulnerabilities within OJS and develop a comprehensive

protection model to mitigate XSS attacks.

III. EXPERIMENTAL EVALUATION

XSS attacks are divided into three main types. The first is Stored

XSS (Figure 1). This attack occurs when an attacker injects

malicious code into form fields on a website, and then the

malicious data is stored on the server. For example, the

comment form fields do not have validation, and the attacker

enters the script code into the field and submits the form. The

comment is then stored in the database and can be displayed on

the blog page in the list of all comments. When other users

browse the blog page, the malicious code contained in the

comment will run, and sensitive user data can be sent to the

attacker.

Fig. 1. Stored XSS

The following type of attack – Reflected XSS (Figure 2).

The Second Author is with the University of Bielsko-Biala, Bielsko-Biala,
Poland (e-mail: rziubina@ubb.edu.pl).

Detection of XSS vulnerabilities in OJS
Serhii Buchyk, Ruslana Ziubina, Tetiana Yuzhakova, and Anastasiia Shabanova

X

https://creativecommons.org/licenses/by/4.0/

102 S. BUCHYK, R. ZIUBINA, T. YUZHAKOVA, A. SHABANOVA

Fig.2. Reflected XSS

Such an attack occurs when an attacker sends a link to a user

that contains additional data in the URL that will allow

malicious actions to be performed as soon as the user opens the

link. For example, a website has a search form and when

entering data into the search field, a search parameter

(?search=example_text) is added to the page URL. Instead of

the search text, an attacker can add a script to perform a specific

malicious action when the user clicks on the link. Attackers

usually add such links on social networks, forums, and emails,

so do not click on unknown links.

The next type of attack is DOM XSS (Figure 3). This attack

occurs when an attacker uses existing layout elements on a page

to change the DOM structure of the page, while simultaneously

executing malicious code. For example, an attacker analyses the

code of a web page and notices that when entering text into a

search, the text "You are searching" is displayed, as well as the

search text in the form of code. Thus, the user fills out the search

form on the page, adds a script containing malicious actions, and

when clicking on the search, the search text is displayed in the

form of code, and the malicious script is launched.

Fig. 3. DOM XSS

In recent years, many tools have been developed to detect

XSS vulnerabilities in web applications — for example, XSS

Hunter, XSStrike, XSSER, and others. However, DOM XSS

vulnerabilities remain the most difficult to detect, as the DOM

structure of a website is usually not static, and some elements

can be changed, added, or deleted dynamically. JavaScript code

can be very large, which means that it takes a lot of time to

analyze it. Also, DOM XSS is difficult to detect because these

attacks are performed only on the client side, and the results of

malicious code execution are not transmitted to the server.

Let's look at some examples of large-scale XSS attacks and

the consequences they caused.

An XSS worm (cross-site scripting virus) infected more than

1 million MySpace user profiles in just 1 day. The worm spread

exponentially. In 2018, British Airways was subjected to an

XSS attack from the Megacart hacker group. Using the website,

hackers tried to steal confidential customer data. In 2008, during

Barack Obama's election campaign, a hacker found an XSS

vulnerability on the politician's website. Using this

vulnerability, he made sure that everyone who visited the

website was redirected to Hillary Clinton's page. However, the

politician's team eliminated this vulnerability, which was

contained in one of the forms on the website, in a few hours [4].

In 2011, the CIA (US Central Intelligence Agency) suffered

an XSS attack on their website. The attack was carried out by

an Indian hacker who penetrated the website and damaged it. In

2020, Amazon Alexa was attacked due to incorrect CORS

configurations. When the attacker exploited this vulnerability,

he gained access to CSRF tokens, which allowed him to use

these tokens as user accounts and act on their behalf in the

system [4].

In 2019, the North Carolina healthcare system detected a

customer data leak due to an XSS attack. White hackers have

discovered XSS vulnerabilities in many Internet companies,

such as Google and Amazon, but the companies have already

fixed them. Also, Tesla had a Stored XSS vulnerability, which

was discovered by a white hacker who received a $10k reward.

He used the XSS Hunter tool, which proves that if hackers use

similar tools, they can quickly find vulnerabilities in the right

web applications and use them for their own purposes [4].

The next few paragraphs of the article will focus on discussing

methods for detecting XSS vulnerabilities in websites that

contain a large amount of JavaScript code. The methods shown

in Figure 4 can simplify the process of vulnerability detection.

Fig. 4. Methods of detection XSS vulnerabilities

DETECTION OF XSS VULNERABILITIES IN OJS 103

Many studies, for example [5], focus on XSS detection using

artificial intelligence, but this work focuses on manual XSS

vulnerability detection, which will allow website developers to

easily identify vulnerabilities in a web application.

Let's start with XSS vulnerability scanners. As mentioned

earlier, there are many programs for scanning a web application

for XSS vulnerabilities. XSS Hunter [6] is a tool that can be used

either in a web version or installed on Linux-like systems to run

through a console. To use this tool, you need to specify the

domain name of your web application, specify the email address

to which you will receive notifications about the vulnerabilities

found, and wait for the scan results. What are the features of this

utility? In the control panel, you can see all the payloads that are

sent to your website for testing. Also, when vulnerabilities are

detected, a notification is sent to the email about the page where

the vulnerability was detected, the HTTP request that was sent,

the entire HTML code of the page, and a screenshot of the web

page where the XSS attack was performed.

The next tool is XSStrike. Unlike the previous scanner, this

scanner can only be run on Linux-like systems via the console.

This scanner can show the status of the WAF (Web application

firewall), the entire page scan, along the parameters that were

checked. If the WAF is enabled, information is additionally

added about whether the firewall has blocked the sending of

payloads to a form field or page URL. If you do not have a WAF

configured on your website, it is worth enabling it, as it will

additionally protect your site from some XSS attacks. For

example, if your website has a search field and an attacker enters

a script into the search field and sends a request to search for

such data, the WAF will block this request, and the attacker will

not be able to use the search field to perform an XSS attack.

At the very least, if web application developers scan their

applications with scanners, they will receive information about

some of the XSS vulnerabilities found. However, you shouldn't

assume that the site has only these vulnerabilities found by the

scanners, as scanners cannot find all vulnerabilities, especially

if it is DOM XSS. Scanning is only the first method for detecting

vulnerabilities.

The next method is to check all input fields on the website.

Input fields include contact form fields (name, phone number,

email, etc.), search field, registration and login form fields,

feedback or comment field, and other various forms that a user

may fill out. According to OWASP [7], a tester should go

through three stages of field testing. The first one is to search

for all the places where the user can enter data, in our case, these

are the fields of all the forms on the website. The input data can

include various HTTP request parameters, POST data, and

various hidden form fields that are invisible to the user but pass

this data to other places. Usually, Developer Tools are used for

this stage, which are available in every browser. Thanks to this

tool, the tester can see the entire existing DOM structure, and

determine how a particular form is processed on the site. In the

second stage, the tester must check the vulnerability of the web

application to common XSS attack vectors by filling in the form

fields with a special code that will show immediately whether

the field is vulnerable. Special code is code that is not malicious,

for example, <script>alert('test')</script>. Vulnerability testing

code can be generated by online resources (web application

fuzzer). OWASP describes how to test and what code to use for

testing. In the third stage, it is necessary to assess the impact of

the found vulnerabilities on the security of the web application.

To do this, the tester checks the HTML code for incorrectly

coded, modified special characters. It is very important that all

special characters, such as < > " &, are encoded with sequences

that are written in the HTML documentation In JavaScript code,

line feeds, apostrophes, double quotes, backslashes, and others

must be encoded and escaped.

To test fields, you usually use JavaScript code that includes

the alert() function to see the result immediately. That is, if you

enter a script with the alert function in the field and send this

data to the form, then if this data is displayed immediately on

the page and a pop-up window with the alert message is

launched, it means that the field is vulnerable and validation is

not applied to it to remove all tags that indicate scripts.

Examples of payloads for validating input fields are described

in [8]. This paper describes that three variants of the input data

need to be tested. The first is the basic option, which involves

entering the script tag with the code to be executed, for example,

<script>alert(1)</script>. The next option is to analyse the

HTML code for attributes that can be used to exploit

vulnerabilities. For example, if HTML markup is allowed in the

comment field, then for tags that display headings or

paragraphs, you can add the onclick attribute and add code that

should be executed when you click on this text, for example,

alert('xss'). When the comment is published, an alert window

will be displayed when you click on the text for which the

onclick attribute has been set.

The next step is to check all attributes for links to third-party

services. For example, if you add a third-party script connection

to a comment using the script tag, a script from a third-party

service can run when you click on the text where the script was

connected. That is, it is worth checking the entire site for links

to unknown services.

Also, [8] discusses potentially dangerous constructions in

HTML code. These include the href, src, content, data attributes,

and attributes that allow you to run javascript code (onclick,

onerror, and others). These attributes are dangerous, especially

when the data entered by the user is automatically transferred to

the site. Thus, if the data is not validated, the user's malicious

code can be executed.

In addition to potentially dangerous attributes, you need to

test as many variants of entering code into form fields on your

website as possible. For example, if the developer sets up a

check for the <script> tag, then if an attacker enters the same tag

but with uppercase and lowercase letters, for example,

<ScRiPt>, the code that filters the entered data may not remove

this tag, and thus the malicious code may be executed.

Therefore, you should pay attention to such variants of the

entered data.

Let's consider the next method of detecting XSS attacks -

detecting suspicious activity on the website. If a WAF is

installed, it can block all suspicious activity, which includes the

introduction of potentially dangerous constructs on the site. A

WAF is usually installed on a server and contains a file with

logs that can be used to track the activity that has been blocked.

Therefore, if a WAF is installed, it is worth reviewing how often

104 S. BUCHYK, R. ZIUBINA, T. YUZHAKOVA, A. SHABANOVA

and what kind of activity it blocks, so you can find out whether

this activity is widespread and which elements of the site it is

directed at.

If you don't have a WAF that automatically blocks suspicious

activity, you should periodically check the database for html and

script tags that may be stored after users fill out forms on the

site, especially if these forms are not properly validated. If you

find tags in the database, you should pay attention to the

validation of the data entry fields in the form, as well as check

the functions that will display this data on the user's screen so

that you do not accidentally run a script that is already stored in

the database. That is, you need to filter and validate data when

sending form data to the database, as well as when displaying

data on the user's screen.

The next method of detecting XSS vulnerabilities is to check

the security headers set. XSS attacks are often aimed at stealing

user session cookies. To get this data, you need to execute the

document.cookie JavaScript code. However, since access to

cookies via JavaScript is not always necessary for a website, a

security method has been developed to prevent cookie

hijacking. To do this, you need to check the HttpOnly box.

Content-Type header - used as an indicator of the original type

of media file, before any encoding is applied to it. If you set the

header value incorrectly, for example, an image can be

interpreted as HTML code, which will make your web resource

vulnerable to an XSS attack [9, 10]. That is why it is important

to check whether these headers are configured on the server to

prevent some XSS attacks.

The last method is to check the code for potentially dangerous

functions that can be used by an attacker to inject his code. Such

JavaScript functions include the innerHTML, alert,

document.write, document.location, and other functions that

can display the HTML layout on the page or redirect to the page

that is passed to the function as a parameter. It's also important

to check the HTML markup, which may contain attributes that

allow you to execute a script when you click on an element or

when an error occurs. For example, the onclick, onerror, and

onfocus attributes. It is advisable not to use these attributes in

the layout of the site, it is better to run functions through a

separate JavaScript code, so an attacker will have fewer ways to

inject malicious code [11].

To search for vulnerabilities in OJS, we installed Ubuntu

22.04 LTS and installed OJS (version 3.3.0-14). The OJS

settings set a list of tags that are not allowed to be used

(a[href|target|title], em, strong, cite, code, ul, ol, li[class], dl, dd,

b, i, u, img[src|alt], sup, sub, br, p), but not all fields are checked

for these tags. Only the fields with an editor are checked, i.e.

those that allow you to add additional text formatting. This was

found out by entering tags in the fields of various forms in the

web application.

While checking the web application for XSS vulnerabilities,

we found the following vulnerability in the Issue section, which

was not mentioned on the OJS website. The essence of the XSS

vulnerability is that when creating an Issue in OJS, you can enter

any data into the fields, so for testing purposes, the text

<script>alert();</script> was entered into almost all fields

where there was no validation, and then the Issue was saved

(Figure 5).

Fig. 5. Filling the fields with the text <script>alert();</script>

After saving, the created Issue was displayed on the page with

other created records (Figure 6).

Fig. 6. List of created Issues

If you click on the name of the created Issue, the alert()

script is run several times, indicating that the system has a

vulnerability stored XSS (Figure 7).

Fig. 7. Executing the alert() script

To check which fields have a vulnerability, we added text to

the alert() function for each field, for example, for the number

field we added alert('number'), and for the title field we added

alert('title'). Accordingly, after creating a new Issue and clicking

on the Issue name, a pop-up window with the text 'number' was

launched, and then a pop-up window with the text 'title' was

launched, but no other alert pop-ups were displayed. That is, it

DETECTION OF XSS VULNERABILITIES IN OJS 105

is the Number and Title fields that have an XSS vulnerability.

The Number field has a character limit of 40 characters.

However, although this field must contain a number, you can

write both letters and numbers into it. An error message is not

displayed if you enter the characters > < and others. That is, you

can enter the text of the script, as long as it is up to 40 characters

in size. For the Title field, there are no restrictions on the number

of characters or the type of data entered, and there is no check

for scripts or prohibited characters.

After clicking the Save button, the data is transferred via a

POST request. If you look at the form in which the data is

transmitted in the POST request (Figure 8), you can see that in

some fields the < > characters are encoded, and in some, they

are not. These characters are encoded only in the Description

field, which is made in the form of an iframe and has validation

of the entered data. If the characters were encoded in all fields,

there would be no XSS vulnerabilities.

Fig. 8. The content of the POST request

In addition to the Stored XSS vulnerability, a DOM XSS

vulnerability was also found. If you enter the text

"><script>alert('in number')</script> in the Number field, it will

lead to another XSS attack, since the value attribute records the

value of the field, using double brackets you can close the value

and the input tag, and insert the script outside the input field so

that the input field code and script will look like this:

<input type="text" maxlength="40" class="field text"

name="number" value="”><script>alert('in

number')</script>">

In this case, the script that was inserted outside the input tag

will execute first and open the alert window with the text "in

number", and the next script will execute alert('title'), which will

open the alert window with the text "title".

The main problem, in addition to the lack of validation of the

entered data, is the dynamic output of the Number and Title

fields in the form of HTML code. That is, when you click on the

name of the created Issue, a new element is dynamically added

(a pop-up window in which you can edit the Issue), in which the

Number and Title data are inserted in the form of HTML code.

If the output of this data in the form of text had been

implemented, or at least filtering of this data and removal of

HTML tags had been performed, these vulnerabilities would not

have existed.

According to the testing, the following OJS flaws were

identified:

• DOM XSS vulnerability;

• Stored XSS vulnerability;

• lack of validation of tags and text entered into the input

fields, although the OJS settings specify the allowed tags.

Security measures that are available in OJS:

• password hashing (sha1), but you need to add a secret key;

• most input fields have validation of the entered data and

are displayed on the page in the form of text, not in the form of

code, which blocks possible attacks;

• ordinary authors do not have access to the admin panel;

• you can add an SSL certificate.

To fix the found vulnerabilities and prevent possible XSS

attacks, you need to build a security model. A security model is

a set of measures and methods that can be used to build reliable

OJS system protection.

For the "Number" field, you need to enter the following

checks/restrictions (Figure 9):

• enter a check for the presence of the characters "< " ">",

which are not usually used to indicate a number;

• introduce the encoding of the characters ">" "<" to avoid the

inclusion of script tags in the page code if it is impossible to

completely remove these characters from the title;

• prohibit entering letters, as the "Number" field should

contain only numbers and possibly separating characters

such as hyphens and dashes;

• if you want to leave the permission to enter letters in this

field, then you need to introduce a check for dangerous

JavaScript constructs, such as "alert()", "script", onclick and

others, which can cause malicious code to run when you

click on the Issue number.

Fig. 9. General protection model of the “Number” field

For the "Title" field, you need to enter the following

restrictions/checks (Figure 10):

input data

output data

106 S. BUCHYK, R. ZIUBINA, T. YUZHAKOVA, A. SHABANOVA

• introduce a check for malicious JavaScript code constructs

that may contain "script" tags, alert, innerHTML, and other

JavaScript functions;

• introduce the encoding of the characters ">" "<" to avoid the

introduction of script tags into the page code if it is

impossible to completely remove these characters from the

header.

Fig. 10. General protection model of the “Title” field

CONCLUSIONS

Protection against XSS attacks is extremely important for

both businesses in general and OJS systems in particular. It

ensures that the reputation and trust of users are preserved, as

XSS vulnerabilities can lead to the leakage of confidential

information and disruption of the system. In addition, XSS

protection helps to ensure data security, which is a critical aspect

in today's digital world, where data loss can have serious

business consequences. Legal requirements and security

standards also emphasize the importance of protecting against

XSS attacks, as breaches of these requirements can lead to fines

and legal issues for organizations.

For the OJS system, which publishes scientific materials,

XSS protection is particularly important as it affects the trust of

authors and readers in the platform, as well as the overall status

and professionalism of the journal. Therefore, the development

and implementation of effective XSS protection measures is a

critical task to ensure the security and stability of the OJS

system.

The XSS protection model for the OJS system focuses on

preventing vulnerabilities associated with dynamic data output

in the HTML code format. For the "Number" field, we suggest

checking for the presence of the characters "<", ">", encoding

the characters ">", "<", prohibiting the input of letters, and

checking for unsafe JavaScript constructs. For the "Title" field,

it is recommended to introduce a check for malicious JavaScript

constructs and the encoding of the ">" and "<" characters. Such

measures will help prevent DOM XSS and Stored XSS

vulnerabilities while maintaining data security in the OJS

system.

REFERENCES

[1] A survey of detection methods for XSS attacks. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S108480451830204

2

[2] 35+ Cross-Site Scripting Statistics That Will Baffle You. [Online].
Available: https://securityescape.com/cross-site-scripting-statistics/

[3] B. Gogoi, T. Ahmed, and H. K. Saikia, "Detection of XSS Attacks in Web

Applications: A Machine Learning Approach." [Online]. Available:
https://www.ijircst.org/DOC/1-detection-of-xss-attacks-in-web-

applications-a-machine-learning-approach.pdf

[4] What is XSS Hunter? [Online]. Available: https://www.hispa.eu/features
[5] Testing for Reflected Cross Site Scripting. [Online]. Available:

https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/07-Input_Validation_Testing/01-
Testing_for_Reflected_Cross_Site_Scripting

[6] C. R. Pardomuan, A. Kurniawan, M. Y. Darus, M. A. M. Ariffin, and Y.

Muliono, "Server-Side Cross-Site Scripting Detection Powered by HTML
Semantic Parsing Inspired by XSS Auditor." [Online]. Available:

http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/

JST%20Vol.%2031%20(3)%20Apr.%202023/14%20JST-3458-2022.pdf
[7] HTTP Security Response Headers Cheat Sheet. [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_She

et.html
[8] The HttpOnly Flag – Protecting Cookies against XSS. [Online]. Available:

https://www.acunetix.com/blog/web-security-zone/httponly-flag-

protecting-cookies/
[9] DOM Based Cross Site Scripting or XSS of the Third Kind. [Online].

Available: http://www.webappsec.org/projects/articles/071105.shtml

[10] S. Buchyk, D. Shutenko, and S. Toliupa, "Phishing Attacks Detection," in
IX International Scientific Conference “Information Technology and

Implementation" (IT&I-2022), Workshop Proceedings, Kyiv, Ukraine,

Nov. 30 - Dec. 02, 2022, pp. 193–201.
[11] S. Toliupa, S. Buchyk, A. Shabanova, and O. Buchyk, "The Method for

Determining the Degree of Suspiciousness of a Phishing URL," in X

International Scientific Conference "Information Technology and
Implementation" (IT&I-2023), Workshop Proceedings (IT&I-WS 2023),

Kyiv, Ukraine, Nov. 20-21, 2023, pp. 239-247.

input data

output data

https://www.sciencedirect.com/science/article/abs/pii/S1084804518302042
https://www.sciencedirect.com/science/article/abs/pii/S1084804518302042
https://securityescape.com/cross-site-scripting-statistics/
https://www.ijircst.org/DOC/1-detection-of-xss-attacks-in-web-applications-a-machine-learning-approach.pdf
https://www.ijircst.org/DOC/1-detection-of-xss-attacks-in-web-applications-a-machine-learning-approach.pdf
https://www.hispa.eu/features
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting
http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2031%20(3)%20Apr.%202023/14%20JST-3458-2022.pdf
http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2031%20(3)%20Apr.%202023/14%20JST-3458-2022.pdf
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://www.acunetix.com/blog/web-security-zone/httponly-flag-protecting-cookies/
https://www.acunetix.com/blog/web-security-zone/httponly-flag-protecting-cookies/
http://www.webappsec.org/projects/articles/071105.shtml

