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Differential properties of LRX-analogues
of small constant multiplication

Serhii Yakovliev

Abstract—In this work, we consider a class of mappings over
bit vectors which imitate the multiplication by small constants
with pure logic operations and non-cyclic shifts. Such mappings
can provide non-linearity and strengthen the design of LRX-
cryptosystems, which are widely used in lightweight cryptog-
raphy, due to their apparent benefits: a simple implementation
and the absence of internal rotational symmetry, which increases
security against rotational attacks. We examine the security of
these mappings against differential cryptanalysis. We provide an
explicit easy-to-calculate expression of differential probabilities
for several versions of LRX-analogues of small constant multi-
plication with different operations and shift values.

Keywords—symmetric cryptography, ARX-cryptosystems,
LRX-cryptosystems, differential cryptanalysis

I. INTRODUCTION

AN ARX-cryptosystem (from “Add-Rotation-XOR”) is a
system which uses only elementary operations within

its structure: additions modulo 2n, bitwise additions (XOR),
and rotations. Other elementary operations that can be easily
implemented, e.g. non-cyclic shifts and logical operations, are
also often used in ARX-cryptosystems. This approach allows
the construction of highly efficient lightweight algorithms
suitable for use in low-resource devices.

In certain instances, modular addition is substituted with
some purely logic nonlinear mappings to achieve even greater
efficiency. Such systems are often called LRX-cryptosystems,
where “L” means “Logic”. In instances where the sole nonlin-
ear operation is logical AND, the name “AND-RX” is used.
Among the most reputed LRX-cryptosystems are the ciphers
SIMON [1], NORX [2] and ASCON [3].

The traditional approach to constructing nonlinear layers in
ARX-cryptosystems involves the combination of nonlinear op-
erations with rotations. However, when a nonlinear operation
is bitwise, such constructions exhibit internal rotational sym-
metry. This may result some vulnerabilities and reduce the se-
curity of cryptosystems against rotational attacks — a specific
form of cryptanalysis, applicable to ARX-cryptosystems [4],
[5].

The use of multiplications by small constants represents
an alternative approach for elementary nonlinear mappings in
ARX-cryptosystems. We can select the hash function SHA-
BAL as the most notable construction [6]. Such multiplication

S. Yakovliev is with Institute of Physics and Technology, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Kyiv, Ukraine (e-mail: yasv@rl.kiev.ua).

can be considered as a combination of nonlinear operation
(modular addition) with non-cyclic shifts. This, among other
effects, breaks the rotational symmetry. However, in the case
of LRX-cryptosystems, where modular addition is not used,
we cannot define multiplication by constant as well.

In this paper, we examine a family of LRX-mappings
which imitate multiplications by small constants in different
ways. We derive analytical expressions for the differential
probabilities of these mappings, which are explicit and easy to
calculate. We demonstrate that such mappings are comparable
in terms of their cryptographic properties with better-known
constructions, such as SIMON’s internal function or Daemen’s
S-box. Consequently, they can be considered as an alternative
choice for the design of a secure LRX-cryptosystem.

The rest of the paper is organized as follows. Section II pro-
vides the necessary terms, notation, and definitions. Section III
describes several approaches to constructing nonlinear ARX-
and LRX-mappings and introduces the notion of the LRX-
analogue of small constant multiplication. In Section IV we
derive analytic expressions of differential probabilities for the
LRX-analogue based on the AND operation, prove their cor-
rectness, and compare the obtained results with known results
of SIMON’s internal function. Section V expands the results
of the previous section to other LRX-analogues with different
logical operations, and section VI — to LRX-analogues with
another form of non-cyclic shifts.

II. TERMS AND NOTATION

In this paper, we use the following notation.
Let Vn = {0, 1}n be the set of all binary vectors of length n.

An arbitrary n-bit binary vector x ∈ Vn is considered as
follows:

x = (xn−1, . . . , x1, x0),

where xi ∈ {0, 1}. Every binary vector is also treated as a
number modulo 2n in natural representation:

x = xn−12
n−1 + xn−22

n−2 + · · ·+ x12 + x0.

The symbol 0 is used to denote the zero vector (equivalent
to the number 0), and the symbol 1n — a vector (1, 1, . . . , 1)
(equivalent to the number −1 modulo 2n).

The symbol ⋆ is used to denote any bitwise operation on
Vn, so

x ⋆ y = (xn−1 ⋆ yn−1, . . . , x1 ⋆ y1, x0 ⋆ y0).
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As such operations we consider
• x⊕ y — bitwise addition (XOR),
• x ∼ y — logical equivalence,
• x& y — logical AND,
• x ∨ y — logical OR,
• x ↓ y — Peirce arrow (NOR),
• x ↑ y — Sheffer stroke (NAND),
• x ⇒ y, x ⇐ y — an implication and converse implication

correspondingly.1

The inversion of all bits in the vector x (logical NOT) is
denoted as x or as ¬x.

Note that all known identities involving bit operations are
also valid for bit vectors: x = x ⊕ 1n, x ∨ y = x ⊕ y ⊕ xy,
(x ∼ y) = (x⊕ y ⊕ 1n), (x ⇒ y) = x ∨ y etc.

The symbols x ≪ s and x ≪ s indicate non-cyclic shifts
and cyclic shifts (rotations) of vector x by s bit to the left,
whereas x ≫ s and x ≫ s indicate shifts to the right:

x ≪ s = (xn−s−1, xn−s−2, . . . , x1, x0, 0, . . . , 0),

x ≪ s = (xn−s−1, . . . , x0, xn−1, . . . , xn−s),

x ≫ s = (0, . . . , 0, xn−1, xn−2, . . . , xs+1, xs),

x ≫ s = (xs−1, . . . , x0, xn−1, . . . , xs).

wt(x) denotes the Hamming weight of a given vector x (i.e.
the number of non-zero bits).

Consider an arbitrary mapping f : Vn → Vn.
A differential (α → β) is defined as an arbitrary pair

of vectors α, β ∈ Vn, which are considered as differences
between the inputs (correspondingly, outputs) of mapping f .
The probability of a differential (α → β) for a given mapping
f is defined as [7]

xdpf (α → β) = Prx {f(x⊕ α) = f(x)⊕ β} .

The probabilities of differentials determine the security
against differential cryptanalysis.

III. LRX S-BOXES AND SMALL CONSTANT
MULTIPLICATION

Traditional approaches of introducing nonlinearity into the
encryption process rely on the use of precomputed S-boxes,
which can be randomly generated or implement a hard
Boolean and/or algebraic function. However, the fundamental
simplicity of ARX designs makes such approaches unsuitable.
Low-resource devices may lack sufficient memory to store
the S-box or enough computational resources to calculate its
values. In classic ARX-systems, all nonlinearity is provided by
modular additions; in LRX-systems, one has to use nonlinear
Boolean operations (like AND) instead.

One of the most popular LRX nonlinear mappings is the
so-called Daemen’s S-box, which is used in the SHA-3 hash
function [8] and (with certain modifications) in the ASCON
cipher [3]:

S(x) = x&(x ≪ 1)⊕ (x ≫ 1).

1 The traditional notation for bit implication is x → y. However, we use
the symbol “⇒” to avoid possible confusion with notation of differentials.

Originally based on cellular automata theory, this S-box can
also be represented with the implication operation as follows:

S(x) = ¬(x ⇒ (x ≪ 1))⊕ (x ≫ 1). (1)

Another example of the nonlinear LRX-mapping is an
internal function of the block cipher SIMON [1]:

F (x) = (x ≪ 1)& (x ≪ 8)⊕ (x ≪ 2).

These functions have been well studied and are widely used,
but they possess rotational symmetry. A function f : Vn → Vn

is said to be rotational invariant, if, for every r, 0 < r < n,

f(x ≪ r) = (f(x)) ≪ r.

Any bitwise operation is rotational invariant. Furthermore,
both Daemen’s S-box and SIMON’s internal function are
rotational invariant.

Rotation symmetry makes cryptosystem vulnerable to so-
called rotational cryptanalysis — specific form of analysis of
ARX-cryptosystems, first introduced by D. Khovratovich and
I. Nicolić [4], [5]. Additionally, rotational invariant functions
may exhibit other unfavorable properties. For example, it can
be demonstrated that for a rotational invariant function f and
every differential (α → β) holds

xdpf (α → β) = xdpf ((α ≪ r) → (β ≪ r));

therefore, differentials with non-zero probabilities are clus-
tered by rotations (see, e.g., [9] for SIMON-like functions).

The block cipher FEAL [10] and the TEA cipher fam-
ily [11]–[13] implement non-cyclic shifts in their structure,
which are equivalent to multiplication by a power of 2:

f(x) = 2x mod 2n = (x ≪ 1) mod 2n,

f(x) = 2sx mod 2n = (x ≪ s) mod 2n.

These functions are linear w.r.t. ⊕, but disrupt the internal ro-
tational symmetry, which increases security against rotational
attacks.

One of the SHA-3 candidates, the hash function SHA-
BAL [6], uses multiplication by 3 and 5:

f3(x) = 3x mod 2n = (x+ (x ≪ 1)) mod 2n,

f5(x) = 5x mod 2n = (x+ (x ≪ 2)) mod 2n.

These are simple transformations, linear w.r.t. +, but nonlinear
w.r.t. ⊕, beginning with the second bit of the result. Addition-
ally, they don’t have rotational symmetry [14].

In this work, we consider LRX-analogues of small constant
multiplications, which are defined as mappings of the form

f⋆(x) = x ⋆ (x ≪ s),

where ⋆ is an arbitrary nonlinear bitwise operation, such as
logical AND. These mappings imitate the “multiplication” by
a small constant of the form 2s + 1 (3, 5 etc.), since

(2s + 1)x ≡ x+ 2sx ≡ x+ (x ≪ s) (mod 2n);

the modular addition is simply replaced by a bitwise logical
operation. Moreover, the introduced functions also disrupt
rotational symmetry.

We will restrict our consideration to the case s ≤ n
2 . While

the case s > n
2 is interesting from a mathematical point of

view, it seems to be of little practical use.
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IV. DIFFERENTIAL PROBABILITIES FOR LOGICAL AND
“MULTIPLICATION” BY A SMALL CONSTANT

At first, we will consider the probability of differentials for
the mapping f&. This mapping acts like the basic mapping for
other f⋆, as it will be demonstrated in the section V.

The main result of this section is presented in the following
theorem.

Theorem 1. The probability of differential (α → β) for the
mapping f&(x) = x&(x ≪ s) is described by the following
relations:

1) xdpf&(α → β) ̸= 0 iff

(β&(2s − 1))∨
∨ (α&(α ≪ s)&β)∨ (2)
∨ (α&(α ≪ s)& (α ≪ 2s)& (β ⊕ (β ≪ s))) = 0,

where 2s − 1 represents a vector with first n − s zeroes and
last s ones;

2) if xdpf&(α → β) ̸= 0, then xdpf&(α → β) = 2−w,
where

w = wt((α ≪ s)⊕ (α&(α ≪ s)& (α ≪ 2s))). (3)

Proof. Consider the equation f&(x⊕ α) = f&(x)⊕ β, or

(x⊕ α)& ((x⊕ α) ≪ s) = (x&(x ≪ s))⊕ β,

for each bit of vectors. After simple transformations we get

0 ≤ k ≤ s− 1: 0 = βk; (4)
k ≥ s : αkxk−s ⊕ αk−sxk = βk ⊕ αkαk−s. (5)

Denote the events (4) and (5), induced by random x, as
Ak, and their probabilities as pk. For k < s we have pk = 1
if βk = 0, and vice versa. For k ≥ s, the events Ak are
not pairwise independent in general; thus, formally, pk =
Pr{Ak |Ak−1, . . . , As} in this case. With this clarification,
we can state that

xdpf&(α → β) =

n−1∏
k=0

pk.

We have the following cases for Ak.
1) αk−s = 1: Ak transforms to

xk = αkxk−s ⊕ βk ⊕ αkαk−s.

Regardless of the value of the right side, xk will be equal to
this value with probability pk = 1

2 .

2) αk−s = 0, αk = 0: Ak becomes 0 = βk, so pk = 1 if
βk = 0 and pk = 0 if βk = 1.

3) αk−s = 0, αk = 1: Ak becomes xk−s = βk. As we
can see, Ak does not depend on xk, but depends on xk−s.
Consider the event Ak−s; in this case, Ak−s transforms to
αk−2sxk−s = βk−s.

• If αk−2s = 0, then Ak−s doesn’t depend on xk−s,
therefore, Ak and Ak−s are independent and pk = 1

2 .
• If αk−2s = 1, then we have xk−s = βk and xk−s = βk−s

simultaneously:
– if βk = βk−s, then Ak is equal to Ak−s, so pk = 1;

– if βk ̸= βk−s, then Ak is opposite to Ak−s, so
pk = 0.

In summary, there are three possible cases in which
xdpf&(α → β) = 0:

(a) ∃k ≤ s− 1: βk = 1;

(b) ∃k ≥ s : αk = 0, αk−s = 0, βk = 1;

(c) ∃k ≥ s : αk = 1, αk−s = 0, αk−2s = 1, βk ̸= βk−s.

The given conditions are equivalent to

(a) β&(2s − 1) ̸= 0;

(b) α&(α ≪ s)&β ̸= 0;

(c) α&(α ≪ s)& (α ≪ 2s)& (β ⊕ (β ≪ s)) ̸= 0.

This implies the first statement of the theorem.
If xdpf&(α → β) ̸= 0 then all pk are equal to 1 or 1

2 only,
and pk = 1

2 when k ≥ s and one of two conditions is met:

(d) αk−s = 1;

(e) αk = 1, αk−s = 0, αk−2s = 0.

These conditions are mutually exclusive, given that αk−s

assumes opposing values. The number of cases (d) is equal
to a weight of (α ≪ s), and the number of cases (e) is equal
to the weight of α&(α ≪ s)& (α ≪ 2s). This implies the
second statement of the theorem and concludes the proof. □

Corollary 1. For each fixed α ∈ Vn the probability of
the differential (α → β) for any β ∈ Vn can be either 0 or
2−w, where w is defined in (3). Therefore, for each fixed α
there are precisely 2w possible β’s with non-zero (and equal)
differential probability.

Corollary 2. For each fixed α ∈ Vn all possible β with non-
zero probability of differential (α → β) can be constructed
with an algorithm below:

1) For every i = 0, 1, . . . , s− 1: βi := 0.
2) For every i = s, s+ 1, . . . , n− 1:

• if αi = 0 and αi−s = 0 then βi := 0
• else if αi = 1, αi−s = 0 and αi−2s = 1 then

βi := βi−s

• else βi ∈ {0, 1}.

Both Corollaries 1 and 2 directly follow from Theorem 1.

Note that in [15] Kölbl et al. considered mappings of the
form r&(x) = x&(x ≪ s) (as well as more generalized
forms). They derived an analytic expression for the differential
probabilities of such mappings, thereby clarifying the results of
Biryukov et al. [16]. Their main result is presented in adapted
notation in the following theorem.

Theorem 2 ([15]). For the function r&(x) = x&(x ≪ s),
where gcd(n, s) = 1, and arbitrary α, β ∈ Vn the probability
of the differential (α → β) can be expressed as follows:

1) if α = 1n and wt(β) is even, then

xdpr&(α → β) = 21−n;

2) if α ̸= 1n, β&µ = 0 and (β⊕(β ≪ s))& δ = 0, where
µ = α ∨ (α ≪ s) and δ = α&(α ≪ s)& (α ≪ 2s), then

xdpr&(α → β) = 2−w, where w = wt(µ⊕ δ).
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3) in all other cases xdpr&(α → β) = 0.

Vectors µ and δ are addressed in [15] as varibits
and doublebits, respectively. In the case gcd(n, s) > 1,
authors of [15] noted that it only makes expressions more
complex and cumbersome due to the partitioning of bits into
separate classes, and raises differential probabilities in general.

We can observe that

β&µ = β&(α ∨ (α ≪ s)) =

= β&α&(α ≪ s) = β&α&(α ≪ s).

Further, we can write

µ⊕ δ = (α ∨ (α ≪ s))⊕ α&(α ≪ s)& (α ≪ 2s) =

= (α ≪ s)⊕ α&(α ≪ s)⊕ α&(α ≪ s)& (α ≪ 2s) =

= (α ≪ s)⊕ α&(α ≪ s)& ((α ≪ 2s)⊕ 1n) =

= (α ≪ s)⊕ α&(α ≪ s)& (α ≪ 2s).

Therefore, case 2) of Theorem 2 can be expressed as follow:
for α ̸= 1n the probability xdpr&(α → β) ̸= 0 iff

(α&(α ≪ s)&β)∨ (6)
∨ (α&(α ≪ s)& (α ≪ 2s)& (β ⊕ (β ≪ s))) = 0,

and if xdpr&(α → β) ̸= 0, then xdpr&(α → β) = 2−w,
where

w = wt((α ≪ s)⊕ (α&(α ≪ s)& (α ≪ 2s))). (7)

Formulas (6) and (7) are evidently analogous with (2)
and (3), which emphases the resemblance of statements of
Theorem 1 and Theorem 2. But the dissimilarities are also
important.

• Theorem 1 is valid for any appropriate value of s, not only
for mutually prime values with n. There are no separate
classes of bits and possible probability rising for specific
values of s.

• The function r&(x) always possesses a special class of
differentials with α = 1n and arbitrary β of even weight.
The probability of these differentials is equal to 2

2n and
is therefore fixed (thus very small). The function f&(x)
does not possess any special classes of differentials.

• Since w in (7) calculated over all bits of α and in (3) —
only over first n− s bits, the differential probabilities of
f& are expected to be slightly higher than the probabil-
ities of r&. However, exact comparison requires a more
rigorous analysis.

The aforementioned differences can be explained as conse-
quences of the disruption of rotational symmetry in f&(x).

At last, we should note that the results of Theorems 1 and 2
were obtained through disparate methodologies: Kölbl et al.
used linear algebra techniques, while our analysis is based on
discrete probabilities over Boolean equations.

V. DIFFERENTIAL PROBABILITIES FOR OTHER LOGICAL
“MULTIPLICATION” ANALOGUES

For every other nonlinear bitwise logical operation ⋆ it is
possible to express the differential probabilities of f⋆ through

xdpf& (in this sense f& acts like a “basic” mapping). These
results are summarized in the following theorem.

Theorem 3. For every differential (α → β) the next equities
are hold:

xdpf∨(α → β) = xdpf&(α → β ⊕ α⊕ (α ≪ s));

xdpf↑(α → β) = xdpf&(α → β);

xdpf↓(α → β) = xdpf&(α → β ⊕ α⊕ (α ≪ s));

xdpf⇒(α → β) = xdpf&(α → β ⊕ α);

xdpf⇐(α → β) = xdpf&(α → β ⊕ (α ≪ s)).

The proof of Theorem 3 requires some auxiliary statements,
which are given in the following lemmas.

Lemma 1. Let f : Vn → Vn be an arbitrary mapping and
∆x,∆y ∈ Vn be arbitrary vectors. Define the function

h(x) = f(x⊕∆x)⊕∆y.

Then the probabilities of each differential (α → β) for f(x)
and h(x) are equal:

xdph(α → β) = xdpf (α → β).

Proof. From the definition we have

xdph(α → β) = Prx {h(x⊕ α) = h(x)⊕ β} =

= Prx {f(x⊕ α⊕∆x)⊕∆y = f(x⊕∆x)⊕∆y ⊕ β} =

= Prx {f(x⊕ α⊕∆x) = f(x⊕∆x)⊕ β} ;

define substitution u := x⊕∆x, then

xdph(α → β) = Pru {f(u⊕ α) = f(u)⊕ β} =

= xdpf (α → β),

which concludes the proof. □

Corollary 3. If h(x) has one of the following form:
1) h(x) = f(x),
2) h(x) = ¬f(x),
3) h(x) = ¬f(x) — dual function of f ,

then for each differential (α → β)

xdph(α → β) = xdpf (α → β).

Proof. Since a = a ⊕ 1n for every a ∈ Vn, this corollary
follows directly from Lemma 1 by setting values:

1) ∆x = 1n, ∆y = 0;
2) ∆x = 0, ∆y = 1n;
3) ∆x = 1n, ∆y = 1n.

Thus, negating the input and/or output of the function will not
affect the differential probabilities. □

Lemma 2. Let f : Vn → Vn be an arbitrary mapping and
ℓ : Vn → Vn be a linear mapping (not necessarily bijective).
Then the following equality holds for the function g(x) =
f(x)⊕ ℓ(x) and any differential (α → β):

xdpg(α → β) = xdpf (α → β ⊕ ℓ(α)).
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Proof. Again, from the definition we have

xdpg(α → β) =

= Prx {g(x⊕ α) = g(x)⊕ β} =

= Prx {f(x⊕ α)⊕ ℓ(x⊕ α) = f(x)⊕ ℓ(x)⊕ β} =

= Prx {f(x⊕ α)⊕ ℓ(x)⊕ ℓ(α) = f(x)⊕ ℓ(x)⊕ β} =

= Prx {f(x⊕ α) = f(x)⊕ β ⊕ ℓ(α)} =

= xdpf (α → β ⊕ ℓ(α)),

which concludes the proof. □
Now we can proceed with the proof of Theorem 3.
Proof. We will proceed each operation individually.
1) f∨(x): since a ∨ b = a⊕ b⊕ (a& b), we have

f∨(x) = x ∨ (x ≪ s) = x⊕ (x ≪ s)⊕ f&(x).

The function ℓ1(x) = x⊕ (x ≪ s) is linear, so from
Lemma 2 it follows that

xdpf∨(α → β) = xdpf&(α → β ⊕ ℓ1(α)).

2) f↑(x): since a ↑ b = ¬(a& b), we have f↑(x) = ¬f&(x)
and the statement follows from Corollary 3.

3) f↓(x): since a ↓ b = ¬(a∨ b), we have f↓(x) = ¬f∨(x)
and the statement follows from Corollary 3 and the first point
of this proof.

4) f⇒(x): since (a ⇒ b) = a ∨ b = a ⊕ b ⊕ (a& b), and
a = a⊕ 1n, we can write

f⇒(x) = (x ⇒ (x ≪ s)) =

= (x⊕ 1n)⊕ (x ≪ s)⊕ (x⊕ 1n)& (x ≪ s) =

= 1n ⊕ x⊕ (x ≪ s)⊕ x&(x ≪ s)⊕ 1n&(x ≪ s),

and, hence a&1n = a for each a ∈ Vn,

f⇒(x) = 1n ⊕ x⊕ x&(x ≪ s) = ¬f&(x)⊕ x.

Since ℓ2(x) = x is obviously linear, from Lemma 2 and
Corollary 3 follows

xdpf⇒(α → β) = xdpf&(α → β ⊕ ℓ2(α)).

5) f⇐(x): similarly to previous point, we have (a ⇐ b) =
a ∨ b = a⊕ b⊕ (a& b), and

f⇐(x) = (x ⇐ (x ≪ s)) =

= x⊕ ((x ≪ s)⊕ 1n)⊕ x&((x ≪ s)⊕ 1n) =

= 1n ⊕ x⊕ (x ≪ s)⊕ x&(x ≪ s)⊕ 1n &x,

and, finally,

f⇐(x) = 1n ⊕ (x ≪ s)⊕ x&(x ≪ s) =

= ¬f&(x)⊕ (x ≪ s).

Since ℓ3(x) = (x ≪ s) is also linear, from Lemma 2 and
Corollary 3 follows

xdpf⇐(α → β) = xdpf&(α → β ⊕ ℓ3(α)).

This concludes the proof of theorem. □

Interestingly, the function f⇒(x) allows another represen-
tation, namely f⇒(x) = f&(x)⊕ x, which implies

xdpf⇒(α → β) = xdpf&(α → β⊕α) = xdpf&(α → β⊕α),

and, therefore,

xdpf⇒(α → β) = xdpf⇒(α → β).

Finally, as a side effect, the same approach can be
used to express the differential probabilities of functions
r⋆(x) = x ⋆ (x ≪ s) through the differential probabilities of
r&(x), which are given by Theorem 2.

Theorem 4. For each differential (α → β), the following
equations are satisfied:

xdpr∨(α → β) = xdpr&(α → β ⊕ α⊕ (α ≪ s));

xdpr↑(α → β) = xdpr&(α → β);

xdpr↓(α → β) = xdpr&(α → β ⊕ α⊕ (α ≪ s));

xdpr⇒(α → β) = xdpr&(α → β ⊕ α);

xdpr⇐(α → β) = xdpr&(α → β ⊕ (α ≪ s)).

The proof is similar to the proof of Theorem 3.
To illustrate the application of Theorem 4, consider Dae-

men’s S-box (1):

S(x) = ¬r⇒(x)⊕ (x ≫ 1),

with s = 1. From Lemma 2, Corollary 3 and Theorem 4 we
obtain the formula for the probability of arbitrary differential
(α → β):

xdpS(α → β) = xdpr&(α → β ⊕ α⊕ (α ≫ 1)),

where xdpr& is calculated as in Theorem 2.

VI. DIFFERENTIAL PROBABILITIES OF SMALL CONSTANT
“DIVISION” ANALOGUES

In the context of this research, it is also natural to consider
mappings of the form g⋆(x) = x ⋆ (x ≫ s). These mappings
can be seen as imitations of “division” by a small constant (or,
more precisely, “multiplication” by a rational number), since(

1 +
1

2s

)
x ≡ x+

x

2s
≡ x+ (x ≫ s) (mod 2n);

but first of all, g⋆ is simply an alternative version of f⋆ with
expectedly similar properties.

Let ρ(x) be the reverse of the bits of x:

x = (xn−1, . . . , x1, x0),

ρ(x) = (x0, x1, . . . , xn−1).

The most important properties of ρ(x) are listed below:
• ρ(x) is linear w.r.t. XOR: ρ(x⊕ y) = ρ(x)⊕ ρ(y);
• more generally, ρ(x) is automorphic w.r.t. any bitwise

operation ⋆: ρ(x ⋆ y) = ρ(x) ⋆ ρ(y);
• ρ(x) is involutive: ρ(ρ(x)) = x, or ρ−1 ≡ ρ.

Lemma 3. For every bitwise operation ⋆, the mapping
g⋆(x) can be expressed as

g⋆(x) = ρ(f⋆(ρ(x))).
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Proof. From the definition it follows that

ρ(x ≫ s) = ρ(x) ≪ s.

Therefore,

ρ(g⋆(x)) = ρ(x ⋆ (x ≫ s)) = ρ(x) ⋆ ρ(x ≫ s) =

= ρ(x) ⋆ (ρ(x) ≪ s) = f⋆(ρ(x)),

and, finally,

g⋆(x) = ρ(ρ(g⋆(x))) = ρ(f⋆(ρ(x))),

which concludes the proof. □

Theorem 5. For each α, β ∈ Vn, the probability of the
differential (α → β) of g⋆ is equal to

xdpg⋆(α → β) = xdpf⋆(ρ(α) → ρ(β)).

Proof. From the definition of xdp, Lemma 3 and properties
of ρ(x) we have

xdpg⋆(α → β) =

= Prx {g⋆(x⊕ α) = g⋆(x)⊕ β} =

= Prx {ρ(f⋆(ρ(x⊕ α))) = ρ(f⋆(ρ(x)))⊕ β} =

= Prx {f⋆(ρ(x)⊕ ρ(α)) = f⋆(ρ(x))⊕ ρ(β)} ,

and, with substitution u := ρ(x),

xdpg⋆(α → β) =

= Pru {f⋆(u⊕ ρ(α)) = f⋆(u)⊕ ρ(β)} =

= xdpf⋆(ρ(α) → ρ(β)),

which concludes the proof. □

In this way we can express the differential probabilities of
g⋆ in terms of the differential probabilities of f⋆, which are
fully described in Theorems 1 and 3.

VII. CONCLUSION

In this paper, we consider a family of LRX-analogues of
multiplication by small constants, constructed using various
logical operations and non-cyclic shifts. These mappings have
no rotational symmetry and are therefore less vulnerable to
rotational cryptanalysis. We have obtained analytic expressions
for the differential probabilities of LRX-analogues. Replacing
multiplication by logical AND gives the basic LRX-analogue,
which is comparable (but not identical) to the internal function
of SIMON in terms of structure and security against differential
cryptanalysis. The differential probabilities of all the other ana-
logues are expressed in terms of the probabilities of the basic
AND analogue, so they can all be considered as alternatives
with roughly the same level of security.

The obtained results can be used to construct efficient LRX-
cryptosystems and to evaluate their security against differential
cryptanalysis.
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