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Abstract—The advanced Quantum Information Technologies
subject for Ph.D. students in Electronics Engineering and ICT
consists of three parts. A few review lectures concentrate on topics
which may be of interest for the students due to their fields of
research done individually in their theses. The lectures indicate
the diversity of the QIT field, resting on physics and applied
mathematics, but possessing wide application range in quantum
computing, communications and metrology. The individual IQT
seminars prepared by Ph.D. students are as closely related to
their real theses as possible. Important part of the seminar is a
discussion among the students. The task was to enrich, possibly
with a quantum layer, the current research efforts in ICT. And
to imagine, what value such a quantum enrichment adds to the
research. The result is sometimes astonishing, especially in such
cases when quantum layer may be functionally deeply embedded.
The final part was to write a short paragraph to a common
paper related to individual quantum layer addition to the own
research. The paper presents some results of such experiment
and is a continuation of previous papers of the same style.
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I. INTRODUCTION

ADVANCED lecture for a group of diverse Ph.D. students
is a demanding task. They are strongly concentrated on

their individual research efforts. Timing of their Ph.D. study
is demanding and they try to omit things which do not help
them to go forward with the research. The subject on the
Quantum Information Technology is designed in this way as
not to slow down their work but to help and perhaps shed
a new light on their research from a completely different
yet very modern and promising perspective, the quantum
one. The quantum perspective, especially when used against
your serious personal research effort, is really very useful in
the most of cases. Quantum integrated circuits are natural
extensions of photonic integrated circuits. Quantum methods
are used in simulations of large high energy experiments.
Quantum simulators and annealers are used for research on
molecular dynamics in material engineering and technology.
IQT is used in a number of security solutions. A lot of photonic
crystal technologies may be extended into quantum level.
Quantum sensors include also a new generation of ionizing
radiation devices and systems. Quantum dot dynamics is used
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in cancer diagnostics and therapy. IQT is used in automobiles
and in aeronautics. Artificial Neural Network are extended
successfully to quantum version. Power engineering start to
adapt some quantum methods. IQT promise for faster and
more precise genome sequencing and data analysis. Smart
quantum antennas may enter into operation in G6 technology.
Quantum batteries combine new materials and start to use
quantum supercapacitors. IQT will be indispensable in banking
and other security solutions.

II. NEURAL NETWORKS TRAINING WITH QUANTUM
SPEEDUP TO POWER BIOINFORMATICS

A. Genome sequencing

The cost to sequence a human genome fell multiple orders
of magnitude over the last decades [1] and this fueled the
explosive growth of data volumes from genome sequencing
available for various analyses. Data is available not only for
DNA sequences but also mRNA, proteins, DNA methylation
and other data types, for example obtained by filtering se-
quence parts bound to marker molecules, which in turn can
give information about DNA 3D structure [2] - a key to
understanding gene expression. One of the ways in which we
might use this data is for trying to understand genomic grounds
for various diseases. Genomic variant classification, as well as
other problems in genome sequencing data analysis, are perfect
fields for Machine Learning methods application and this is
currently happening at tremendous pace. The architecture that
eventually ,,ate” the vast majority of the ML field are neural
networks. We’ll now try to answer the question how quantum
computing could improve this excellent tool.

B. Quantum computing and Machine Learning

Quantum methods for Machine Learning are still in their
infancy. We have rigorous time complexity analysis and proofs
of quantum speedup only for a subset of quantum algorithms.
The fact that the Grover speedup, which is just quadratic, is the
best achievable one for oracle lookups [3] serves as a reminder
to tread carefully. We don’t have a proof that would tell us
how the BQP (bounded-error quantum polynomial) complexity
class is related to the NP class, all we know for sure as of know
is that P ⊆ BQP ⊆ PSPACE.

Quantum Neural Networks [4] [5] are the architectures that
were proposed to realize the neural networks on a quantum
computer. The key to classical NN capacity are the nonlinear-
ities that are applied as part of each neuron computation, as
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their activation functions. Without them the whole multilayer
network would be equivalent to a set of linear equations.
Quantum circuits are composed of unitary transformations,
so they are linear. Fortunately the measurement operation
is nonlinear and we can carefully apply it to introduce the
nonlinearities needed for the computation. However, there are
several problems with QNN, one of them is the Barren plateaus
problem [6], which arises from the vanishing of the loss
function gradient in the exponential Hilbert space. Another
one is the mentioned lack of proofs for a possible quantum
speedup for some of proposed methods. The problem is not
just in building a fault tolerant quantum computer with a lot
of qubits, it’s also the immaturity of quantum algorithms.

C. Neural Ordinary Differential Equations

We’ll now explore other possible routes of obtaining a
speedup in neural networks training and to do that we’ll review
one of well known papers in the ML field. The Neural ODE
paper [7], which proposes an architecture generalizing the
ResNet architecture. ResNets introduced the so called residual
connections, which are just skip connections - they were one
of the enablers of very deep learning, fighting the vanishing
gradient problem1. It turns out that such residual connection
can be viewed as a realization of the Euler method for numeri-
cally computing an ordinary differential equation. Neural ODE
architecture replaces the multiple layers of ResNet network
with a black-box ODE solver and then applies a clever trick
to be able to propagate the loss function gradient without
,,opening” the black box solver. It was shown that such NN
can work just as well as normal neural networks.

D. Quantum methods for solving ODEs

What does the Neural ODE concept has in common to
the topic of quantum speedup of neural networks training?
The answer is that there are known quantum methods for
solving ODEs and it was shown that such methods may
give an exponential speedup over classical methods. In 2014
[8] it was shown how to solve linear ODEs, basing on
the HHL algorithm [9] for numerically solving systems of
linear equations and in 2020 and 2021 it was shown how to
solve nonlinear ODE with exponential speedup on a quantum
computer [10] [11].

E. Quantum Neural ODE

My main contribution is to propose to use a quantum
solver for ordinary differential equations in the Neural ODE
architecture, and through this potentially obtain an exponential
speedup in training neural networks. To the best of my
knowledge this article is the first one to propose such idea.

There are however several problems with this idea:

1which is also a problem in classical neural networks although growing
with the number of layers, as opposed to Barren plateaus in QNN which gets
worse with every additional qubit

First issue: The quantum speedup of the HHL algorithm
is not a speedup from O(exp(N)) to O(poly(N)) but rather
from O(poly(N)) to O(log(N)). This is problematic because
while we can solve the differential equation exponentially
faster the operation of reading the result, of size N , into
classical bits must necessarily take O(N) time, thus nullifying
the whole speedup. This is mentioned in the HHL paper and
also quantum ODE papers and a solution to this problem given
is to compute some reduction of the result on the quantum
computer or treat these algorithms as a subroutine of a larger
quantum algorithm. The result must be processed further on
the quantum computer.

Second issue: The authors of the [11] paper proved the
exponential speedup for the case when the nonlinearity of
the ODE is quadratic and also is further limited - they
parametrized it by parameter R and provided a proof valid for
R < 1. In the experiments they managed to obtain exponential
speedup for larger values of R, as high as 44, but they did
not consider non-quadratic equations. In the paper by the
second group [10] a more general case of a nonlinear ODE is
considered but still the paper introduces a condition limiting
the nonlinearity of the equation.

This is a serious problem, the nonlinearities used in NN
today almost always involve either exponential terms or non-
smooth, abrupt changes, as is the case with ReLU, and it is
not entirely clear if a viable NN could be constructed without
them. Paper [10] specifically mentions that:

,,The approximations leading to the quantum so-
lution, equation (17) of the nonlinear equation (1),
must necessarily break down if the nonlinearity leads
to large exponential growth [. . .] Indeed, if they did
not break down, one could use the method to amplify
exponentially small differences in the initial wave
function, which would allow the solution of NP-
complete problems on a quantum computer!”

It is worth mentioning that in 1988 it was proven that
training a 3 neuron, 2 layer neural network is NP-complete
[12], although this was done only for a specific case of
an activation function. On the other hand following decades
showed that it is not necessary to reach a global minimum in
order to end up with a useful neural network and also that
increasing the dimensionality of the network likely brings the
local minima closer to the global minimum [13].

F. Identified solutions

I considered following possible routes to explore regarding
the listed problems:

First issue:

• Since P ⊆ BQP and we can implement all classical
logical gates using the quantum Toffoli gates we should
be able to effectively implement the classical neural
network along with the backpropagation algorithm on a
quantum computer (this would not be the same as QNN,
which try to utilize the quantumness of qubits). If we
do that then it might be possible to keep the exponential
speedup of the ODE computation.
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Fig. 1. MNIST ReLU vs x+1
x2+2

• Maybe we could apply some clever reduction of the ODE
solution on the quantum computer, measure it and further
proceed on a classical computer - more work would be
needed to determine if this is a viable route.

Second issue: I performed experiments using x+1
x2+2 as an

activation function2 and this network was able to learn the
XOR function, which famously require at least two layer
neural network with non linear activation function, as well as
obtain comparable results on the MNIST digit classification
(see figure 1). On the other hand x+1

x2+2 is still not a quadratic
polynomial. More analysis would be needed to determine if
nonlinear differential equations containing functions of this
form would benefit from exponential speedup.

G. Summary

1) Advancements in ML through the use of quantum algo-
rithms should benefit the analysis of data obtained from
genome sequencing

2) It is not currently known whether quantum comput-
ers could deliver exponential speedup for NP-complete
problems

3) Using quantum computers as ODE solvers might be a
possible route to train certain types of neural networks,
although this requires further research

III. QIT IN FAST MACHINE LEARNING SIMULATIONS

At the European Organization for Nuclear Research
(CERN), scientists investigate the fundamental properties of
matter using the Large Hadron Collider (LHC). This advanced
particle accelerator enables High Energy Physics (HEP) ex-
periments by recreating the extreme conditions that existed
shortly after the Big Bang through particle collisions. The
immense energy densities generated during these collisions
allow for the emergence of rare physical phenomena, including
the production of exotic particles and unusual states of matter.

Analyzing the results of these collisions requires detailed
simulations that model the responses of individual detectors

2the function was rescaled and shifted to have [0, 1] codomain

within the LHC. These simulations are crucial for both advanc-
ing scientific research and optimizing detector calibration. The
current standard approach relies on Monte Carlo simulations
that statistically model physical interactions between colliding
particles. Newly generated particles are propagated through the
detectors in a step-by-step manner using specialized transport
frameworks such as GEANT [14].

Despite their effectiveness, Monte Carlo-based simulations
face significant limitations. They are computationally inten-
sive, challenging to parallelize, and exhibit linear scalability
relative to the number of simulated events. Additionally, they
require highly specific implementations of interaction models
tailored for these transport packages.

A. Fast Machine Learning Simulations for High Energy
Physics

To overcome the limitations of Monte Carlo-based simula-
tions, a promising alternative based on machine learning has
been proposed recently [15]–[18], where traditional simulation
frameworks are replaced by generative models. CERN’s vast
data resources provide a unique environment for advancing
generative machine learning techniques aimed at producing
high-fidelity synthetic data that closely mirror the statistical
properties of real data. This approach bypasses the need for
computationally expensive step-by-step particle propagation
inherent in Monte Carlo methods by directly generating sim-
ulation outcomes based on input conditional data.

Existing efforts in this field leverage various state-of-the-
art approaches to generative modeling, including autoen-
coders [19], Generative Adversarial Networks [20] (GANs),
diffusion models [21], and normalizing flows [22]. Each
approach has demonstrated distinct advantages in simulation
accuracy, scalability, and efficiency.

Autoencoders [19] offer a powerful approach for com-
pressing and reconstructing complex data distributions. They
excel in learning efficient, low-dimensional representations of
high-dimensional data, which makes them particularly suitable
to apply in the fast simulation context [23]–[25]. However,
autoencoders struggle with generating diverse or high-quality
samples due to limitations imposed on the latent space in the
training process. To mitigate this, one approach is to avoid
imposing arbitrary regularizations on the latent space, allowing
the autoencoder to learn representations driven solely by the
data’s inherent structure [26]. Another strategy is to introduce
a physically motivated regularization based on theoretical
models, ensuring that the learned representations align with
known scientific principles [27].

GANs [20] are well-known for generating high-quality, re-
alistic data samples through adversarial training. Their ability
to learn complex data distributions makes them particularly
suitable for tasks in HEP simulations [16], [28], [29]. However,
GANs can suffer from mode collapse, where certain data
modes are underrepresented. To address this limitation, re-
search efforts have focused on introducing regularization tech-
niques that encourage the exploration of diverse data modes
while maintaining fidelity [30]. Additional strategies such as
incorporating auxiliary tasks and refining loss functions have
been shown to further improved the generation process [31].
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Diffusion models [21] generate data through iterative de-
noising processes, which ensures high sample quality but
often comes at the cost of extended inference times. Despite
that inherent limitation, diffusion models have also gained
traction in the HEP simulations domain [32], [33]. In this
context, a critical area of research involves accelerating the
inference process to enhance computational efficiency. Efforts
have focused on optimizing the sampling methods, enabling
greater speed-ups compared to traditional Monte Carlo-based
approaches [34], [35].

Recently, flow-based models [22] have also proven to con-
stitute an effective approach for HEP simulations [36]–[38].
Such models provide exact likelihood estimation, enabling
highly accurate density modelling and data generation. How-
ever, their primary limitation is the relatively high computa-
tional cost of training and inference on large-scale datasets.

In summary, fast machine learning-based simulations consti-
tute a viable alternative to traditional Monte Carlo methods in
HEP. Existing research in that field leverages a variety of state-
of-the-art generative models to generate high-fidelity synthetic
data. Results in multiple HEP applications demonstrate the
advantages of this approach, offering a considerable reduction
of inference time and required computational resources.

B. Quantum Generative Models for High Energy Physics
Simulation

Recently, Quantum Neural Networks (QNNs) have garnered
significant attention for their capacity to represent and ma-
nipulate information with efficiency impossible to achieve
for classical neural networks. This capability is particularly
essential to CERN’s computational challenges, where the sheer
volume and complexity of data necessitate more efficient
processing techniques. Crucially in this context, QNN-based
alternatives have already been proposed for autoencoders [39],
GANs [40], diffusion models [41] and normalizing flows [42].

In this vein, quantum generative models are slowly emerg-
ing as a transformative approach in HEP simulations [43]–
[51]. These methods could deliver exponential speed-ups in
simulation processes, addressing CERN’s most significant
computational bottlenecks and potentially replacing the clas-
sical machine learning methods in the future.

Among the various quantum generative models, Quantum
Generative Adversarial Networks (QGANs) have shown re-
markable promise. Rehm et al. [44] demonstrated a full
quantum GAN model capable of generating simplified eight-
pixel calorimeter shower images, marking a step toward more
complex simulations. This model generates individual images
with pixel energy values, contrasting with previous models
that produced averaged probability distributions. The study
also compared the full quantum GAN with hybrid quantum-
classical models, highlighting the potential advantages of fully
quantum approaches in terms of accuracy and efficiency.

In this field, Bravo-Prieto et al. [46] introduced style-
based QGAN designed for generating high-energy particle
collision data. This approach combines advanced quantum
circuit designs with style-based GAN architectures. The pro-
posed quantum generator model does not follow the traditional

approach where the prior noise distribution is provided to the
quantum generator through its initial layer. Instead, the prior
noise is embedded into every single-qubit and entangling gate
within the network.

In the realm of autoencoders, another advancement in-
volves Quantum Variational Autoencoders (QVAE). Hoque et
al. introduced CaloQVAE [43], a hybrid quantum-classical
generative model designed to simulate high-energy particle
interactions within calorimeters. This model combines quan-
tum annealing with classical machine learning techniques to
efficiently generate realistic simulation data.

For Quantum Diffusion Models (QDM), Cacioppo et al. [47]
explored the concept of applying such methods to simu-
late high-energy physics processes, namely parton showers,
which are challenging to model using classical models. Their
approach leverages parameterized quantum circuits (PQCs)
to iteratively construct quantum states, encoding complex
particle interaction patterns. By embedding quantum diffusion
steps within PQCs, they effectively bridge classical generative
models and quantum state learning.

Overall, the discussed applications of quantum generative
models in the HEP simulation domain highlight the promising
potential of this technology. The growing research in this field
underscores the transformative impact of Quantum Informa-
tion Technologies within this particular context.

C. Challenges in Quantum Generative Models

Despite these promising advances, quantum generative mod-
els face several challenges. One of the most pressing issues
is the limited availability of high-quality quantum hardware,
which constrains the scale of simulations that can be per-
formed [52]. Moreover, current quantum computing devices
suffer from decoherence, leading to reduced model fidelity
and reliability [53]. Additionally, designing quantum circuits
for complex generative tasks remains a highly specialized
problem requiring domain-specific knowledge [54], which
slows down the advancements in this field. Another chal-
lenge is the integration of quantum models with classical
systems, where hybrid architectures introduce additional com-
plexity [54]. Furthermore, efficient training of quantum models
involves optimizing non-convex loss functions across a high-
dimensional parameter space, posing significant computational
hurdles [55], in particular for more challenging generative
problems at a realistic scale.

IV. QUANTUM TECHNOLOGIES IN DOSIMETRY

A. Optically Stimulated Luminescence Dosimetry

Optically stimulated luminescence (OSL) is a widely used
technique for measuring the accumulated radiation dose in
natural and synthetic materials, with applications in medicine
[56], dosimetry [57], and many others. OSL is a process
in which material that was exposed to ionizing radiation,
after being subjected to certain optical stimulation, begins
to emit light, the intensity of which is proportional to the
absorbed dose of radiation. Despite its widespread applications
and remarkable advances, the practical deployment of OSL
technology remains constrained by the size and complexity of
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existing instrumentation. To overcome these limitations, there
is growing interest in the miniaturization of this technology,
with particular focus on leveraging quantum detectors.

B. Quantum dots in dosimetry
Quantum dots (QD’s) are nanoscale to microscale semi-

conductor particles. QD’s exhibit quantum confinement, and
because of that can be precisely tuned in manner of their
optical and electrical properties [58]. One of the features of
quantum dots is that with smaller size, they tend to emit
light at shorter wavelengths of visible light (they are blue-
shifted) and larger quantum dots emit at longer wavelengths
(red-shifted). One of many materials that are used for creating
such complex devices as QD’s is carbon, which allows for
their usage in the fields of chemical sensing, biosensing,
bioimaging, nanomedicine, photocatalysis and electrocatalysis
[59]. Among all those applications, it is not surprise, that it
is possible to find an usage for QD’s in ionizing radiation
sensing. In one of the works [60] authors have investigated the
influence of gamma radiation of intensity 0.034 Gy per minute
from cadmium-60 on three different quantum dots. Those dots
were of sizes 2.5, 3.3 and 6.3 nm, with central wavelength
emitted on 480, 530 and 640 nm respectively. Quantum
dots were produced from CdSe/ZnS material, obtained from
company Sigma-Aldritch. It was shown, that with increasing
concentration of QD’s their resistance to the irradiation in-
creases. Moreover, quantum dots with greater size are more
resilient to the radiation than the smaller ones - the green
dots are damaged more than red ones after being irradiated
with the same dose. Another technique regarding measurement
of radiation is by colloidal quantum dots (cQD’s) - quantum
dots synthesized and suspended in a liquid solution, forming
a stable colloid. For one of the performed researches [61]
authors used QD’s consisting of core made of CdSe and shell
of CdS/ZnS. The QD’s were spherical, with size raging from 3
to 4 nm and emission peak in 610 nm. In this case, QD’s were
used only as a material, which was susceptible to radiation,
with two different setups for measurement - first composed
of additional plastic fiber, that guided light emitted from the
cQD’s into the CCD camera. In the second setup, cQD’s
were prepared in the form of liquid dispersions contained
in glass recipients. In both cases, the elements containing
cQDs were irradiated by Clinac iX linear accelerator with
MV irradiation, and the CCD camera for signal collecting
was placed away from the beam. The collected data showed,
that signal obtained from cQD’s was linear up to 400 kGy of
irradiation, with mean R-test greater than 0.9999. With this
research, it was deemed possible for setups with QDs to be
used as a scintillating dosimeters – wide range of linearity of
signal which is modeled by Gaussian curve. Although authors
have met with some obstacles, in the form of Cherenkov
component, that was created in the plastic fiber at 6 MV
of radiation. This one however, can be removed during post-
irradiation data analysis.

C. Conclusions
In conclusion, there exist promising potential for QDs as

innovative dosimetry devices for ionizing radiation. Properties

of QDs, including their size-dependent optical and electronic
characteristics, and ability to generate measurable lumines-
cent or electrical responses to radiation exposure, underscore
their suitability for this application. Extensive experimental
evidence demonstrates that QD-based systems can achieve
accurate radiation detection making them a valuable tool for
a wide range of fields requiring constant monitoring of the
absorbed dose, for the health and safety of personnel. Although
the technology comes with many advancements, it is important
to note that many different challenges are yet to be met in order
to integrate QD’s - based systems in everyday use technology.

V. QIT IN DIGITAL TWINS

In today’s fast-evolving field of digital simulation and
predictive modeling, the concept of a digital twin is breaking
new ground as a transformative technology that finds use
across many sectors. At its heart, a digital twin serves as
a virtual mirror of a physical system or process, capturing
its real-world counterpart with remarkable fidelity inside a
digital structure [62], [63]. This technology facilitates real-
time monitoring, simulation, and control, which are essential in
areas such as manufacturing, healthcare, and especially in pre-
cision agriculture through the deployment of Unmanned Aerial
Vehicles (UAVs) [63], [64], [65]. The introduction of quantum
computing adds a new layer to digital twins, known as Quan-
tum Digital Twins (QDTs), integrating quantum algorithms to
improve the processing and analytical abilities of these virtual
models [66], [67], [68]. For UAVs employed in precision
agriculture, QDTs hold the promise of substantially enhancing
flight paths and navigation systems, crucial for activities like
crop monitoring, spraying, and data collection. This chap-
ter explores the fusion of quantum computing with digital
twin technology, emphasizing its impact on UAV dynamics
modeling, particularly in improving operational efficiency and
predictive accuracy in complex and dynamic settings.

A. Quantum Computing Fundamentals

Quantum computing fundamentally differs from classical
computing because it utilizes principles of quantum mechan-
ics to process information [62], [68]. The primary unit of
information is known as the quantum bit, or qubit, contrary
to traditional binary bits, a qubit can exist in several states
simultaneously due to a quantum characteristic known as
superposition. This unique ability allows quantum computers
to process numerous possibilities at once, significantly boost-
ing their capacity for certain types of computational tasks.
Another vital aspect of quantum computing is entanglement,
a phenomenon where pairs or groups of qubits become so
interconnected that the condition of one qubit can instantly
affect the condition of others, no matter the physical distance
separating them [69].This property is harnessed in quantum
computing to link qubits in a way that enhances information
processing capabilities. Moreover, quantum interference al-
lows quantum computers to amplify correct paths or solutions
while cancelling out paths that lead to incorrect answers. These
capabilities make quantum computing particularly suited to
solving optimization and simulation problems much more
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efficiently than classical computers. In the context of UAVs,
the application of quantum computing could revolutionize how
data from various sensors and real-time inputs are processed.
Quantum algorithms can dramatically reduce the time required
to compute optimal flight paths, navigate complex weather
patterns, or avoid obstacles, thereby enhancing the UAV’s
autonomy and responsiveness.

B. Digital Twins in the Context of Quantum Computing

Digital twins, which are contemporary virtual representa-
tions of physical systems, have transformed predictive an-
alytics, system monitoring, and optimization in numerous
industries [64], [70]. At their essence, digital twins combine
real-time data from sensors and various data sources with
cutting-edge simulation technologies to construct dynamic,
current models of physical objects or processes. These mod-
els facilitate accurate predictions and simulations, essential
for enhancing operational efficiency and advancing product
development [62]. Digital twins have revolutionized complex
systems, ranging from small components like engines to large-
scale infrastructures such as factories or entire cities. It also
provide the ability to monitor and simulate production lines in
real time, making possible to respond to disruptions or inef-
ficiencies. For instance, in aerospace, digital twins of aircraft
engines play a crucial role in predicting wear and tear, en-
abling better maintenance scheduling and reducing downtime
effectively [71]. However, the complexity and computational
demands of these simulations increase exponentially with
the scale and intricacy of the systems involved. Traditional
computing systems, while capable, often face limitations in
processing power and speed, particularly with large-scale or
highly detailed simulations [72].

C. Integrating Quantum Technology with Digital Twins

Quantum computing offers a transformative potential in
handling the computational challenges faced by traditional
digital twins. Quantum technologies utilize principles such
as superposition and entanglement to perform calculations
at speeds unattainable by classical computers, particularly
for tasks involving optimization, simulation, and machine
learning. In the realm of digital twins, the integration of quan-
tum computing—forming what are referred to as Quantum
Digital Twins (QDTs)—promises to enhance the capability
of digital twins significantly. Quantum-enhanced digital twins
can perform more complex simulations faster, manage larger
datasets, and provide more accurate predictions in real-time
[68]. For instance, in UAV dynamics modelling, a QDT could
simulate numerous potential flight scenarios in a fraction of the
time required by traditional methods. This capability is crucial
for precision agriculture, where UAVs must adapt to constantly
changing environmental conditions. Quantum computing could
enable these UAVs to dynamically optimize flight paths and
operational strategies, enhancing efficiency and effectiveness.

D. Practical Implementations

The integration of Quantum Digital Twins (QDTs) for UAV
dynamics exemplifies the capability of quantum algorithms

Fig. 2. Comparison of Classical and Quantum Optimization

in refining complex tasks within the digital twin framework.
These examples illustrate the application of quantum comput-
ing to intricate challenges in UAV operations, such as min-
imizing error in flight path predictions and solving ordinary
differential equations (ODEs) that model UAV dynamics.

1) Minimizing Error in Flight Path Predictions: The first
case study employs the Quadratic Unconstrained Binary Opti-
mization (QUBO) framework to enhance UAV control param-
eters, aiming to minimize prediction errors in flight paths [73].
The Quantum Approximate Optimization Algorithm (QAOA),
implemented using Qiskit, optimizes settings that align with
operational constraints to reduce prediction errors [74]. The
QUBO problem formulation optimizes variables representing
changes in speed, angle, and attack angle, with each assigned
a specific weight reflecting its impact on the overall flight path
error. The mathematical formulation for this optimization is:

E =

3∑
i=1

wixi, (1)

where xi represents the control parameters (changes in speed,
angle, and attack angle) and wi are the weights assigned to
each parameter. Solving this QUBO problem allows for the
determination of the optimal adjustments to the UAV’s control
parameters, thereby enhancing the accuracy and reliability of
the UAV’s navigation systems. As an example on figure 2, it
can be seen a simulation performed in QisKit, to demonstrate
the applicability to optimize the angle of pitch based on
elevator deflection.

2) Solving Ordinary Differential Equations Using Quantum
Computing: The second case addresses the challenge of
solving ODEs that describe UAV dynamics using a quantum
computing approach. The dynamics are encoded into a Hamil-
tonian, represented by:

H = (X ⊗ I) + (Y ⊗ Y ) + (Z ⊗ Z), (2)

where X , Y , and Z are the Pauli matrices, which are
fundamental components in defining quantum operations. A
quantum circuit is constructed to simulate this Hamiltonian,
enabling the modelling of UAV behaviour under various
flight conditions [69]. The circuit begins with an initial state
representing the UAV’s current state and evolves according to
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the specified Hamiltonian through quantum simulation tech-
niques. This evolution facilitates the observation of potential
flight behaviours and supports real-time adjustments to control
strategies, essential for improving UAV operational efficiency
and safety.

E. Conclusion

Quantum digital twins represent a transformative develop-
ment in the digital and physical modelling of UAVs, offering
enhanced capabilities for handling the complexities of real-
time data and decision-making processes. As quantum hard-
ware and algorithms continue to evolve, the potential for QDTs
to significantly improve the efficiency and performance of
UAVs in precision agriculture and beyond is immense. The
practical implementations explored in this chapter underscore
the transformative potential of quantum computing in revo-
lutionizing traditional digital twin technologies for UAV dy-
namics. By enabling faster and more accurate simulations and
solutions to complex optimization problems, quantum com-
puting significantly enhances the capabilities of digital twins.
As quantum hardware and algorithms continue to advance, the
scope for Quantum Digital Twins (QDTs) to improve complex
systems like UAVs in precision agriculture and beyond will
expand, leading to greater operational efficiencies and more
sophisticated applications. Future research should focus on
developing robust quantum algorithms tailored for digital twin
applications, improving quantum error correction techniques to
enhance system reliability, and expanding quantum computing
infrastructure to support larger-scale implementations, setting
the stage for widespread adoption and technological evolution
in this promising field.

VI. QUANTUM-ENHANCED OPTICAL BIOSENSING

Quantum-enhanced optical biosensing represents a highly
interdisciplinary field that integrates the principles of optics,
optoelectronics, nanotechnology, nanomaterials and biotech-
nology to enable the study of biological systems at the
nanoscale. This field focuses on the development, advance-
ment and application of optical sensing platforms meant for
investigation of biological entities — such as molecules, cells
or tissues — with high sensitivity and in real time. The addi-
tion of quantum technologies offers the potential to overcome
limitations of traditional sensing tools by leveraging various
quantum effects to obtain more in-depth information. The
need for novel, highly sensitive, and sustainable biodetection
methods has become increasingly critical in light of global
health challenges such as persistent environmental pollutants,
the emergence of drug-resistant pathogens, and pandemics
like the recent COVID-19 outbreak. Modern optical sensors
typically rely on physical phenomena such as interference,
refraction, photon scattering, and resonance to enhance sen-
sitivity and specificity when analysing external media [75].
However, biological information in such media can be con-
fined to small volumes, exists in low concentrations or even
occur as interactions between single molecules. For optical
systems to detect changes at sub-wavelength scales, labelled
detection is often required. Labelled detection is a way of

introducing signal transducers to the observed system that can
be optically identified. At this point the integration of quan-
tum technologies can significantly advance the capabilities of
biodetection. By employing quantum tools such as quantum
dots (QDs), nitrogen-vacancy centres in nanodiamonds (NV-
NDs), and Förster Resonance Energy Transfer (FRET) is
possible for quantum-enhanced optical biosensing systems to
address key limitations of conventional techniques.

A. Quantum Dots

QDs are nanoscale semiconductor particles whose unique
size-dependent fluorescence occurs from quantum confinement
effects. Recent advancements have focused on the develop-
ment of heavy-metal free QDs such as carbon quantum dots
(CQDs). CQDs that exhibit reduced cytotoxicity compared
to traditional QDs, which results in high biocompatibility.
For instance, recent studies demonstrated the application of
CQDs in rapid disease detection [76], as well as in miRNA-
222 biosensing, where with the use of CQDs, the biosensor
achieved a detection limit of 1.9 fM - an order of magnitude
lower than that of conventional colorimetric approaches [77].

B. NDs

NV centres in nanodiamonds represent another promising
quantum tool for biosensing. NV centres are atomic-scale
defects in the diamond lattice that exhibit stable fluorescence
emission. Changes to the charge state of these centres—from
neutral to negatively charged—affect their spin state, which
in turn affect fluorescence emission. This phenomenon allows
NDs to act as highly sensitive quantum sensors, where their
great magneto-optical properties and biocompatibility make
them ideal for biosensing. A recent study demonstrated the
NV-ND-based biosensor that has been developed for the ultra-
rapid and selective detection and quantification of viral RNA
of SARS-CoV-2 [78].

C. FRET

FRET is another powerful quantum-enhanced biosensing
technique. It involves non-radiative energy transfer between
an excited donor molecule and an acceptor molecule. Both
of witch are positioned within 10 nm distance. Energy tran-
fer mechanism, resulting in radiative emission, enables the
detection of previously unmeasurable molecular interactions
in real time by using optical detection platforms. Recently, a
novel two-step FRET biosensor was introduced for ratiometric
detection of S. aureus bacteria in food samples, achieving an
ultra-low detection limit of 1 CFU/mL. This two-step approach
utilised two dyes to eliminate concerns of false-positive results
that are common in single-donor FRET systems.

VII. EXAMPLE OF QUANTUM TECHNOLOGIES IN SPACE
SEGMENT

The space segment is usually a great opportunity and has
many possibilities for research in any field. This time, quantum
technology comes in front. Nowadays, quantum technology is
used in many research cases and in many areas. There is still
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much to explore and learn. Some of the most popular, regard-
ing space, are quantum communication, quantum sensing, and
quantum computers. The development of these cases is still
ongoing despite many challenges, such as cosmic radiation,
size, energy and resource requirements, and costs.

A. Quantum Key Distribution [79] [80]

Constant growth in technology requires more efficient and
more secure ways of communication. By efficiency, people
can see the time to deliver the transmission to the destination
or the bandwidth needed to take a message. As the research
is expanding all over the Earth, the idea is to go beyond
and include space objects in the transmissions. Quantum
communications are also used in the space segment and now
have positive perspectives. Quantum Key Distribution is a
communication method that assures the security of transmis-
sions. It uses the principles of quantum mechanics to transmit
cryptographic keys securely. The communication is similar to
the classical encrypted way, so there is a sender, receiver,
encryptor, decryptor, message, and the key required to decode
the message. The key is distributed in public channels but with
the involvement of quantum technology. By quantum domain,
the key is distributed from source to destination. This ensures
the speed and security of the key’s transmission. Security is
provided by a simple quantum principle – whoever eavesdrops
on the quantum channel changes its internal states. In this
way, any attempt to look at the transmission would not provide
information from the original message. Many agencies are now
at the end of their research to launch the first prototypes in
the near future.

B. Quantum sensing [81] [82] [83]

A constant need for knowledge about the Earth is required
to provide health and compatibility with natural life. From
space, people can have an inside view of the globe and
constantly examine it. In space research regarding Earth, many
sensors could be used. These sensors use quantum phenomena
such as superposition and entanglement to achieve extremely
high precision in measuring physical quantities. They can be
divided into types:

• Quantum magnetometers – measurement of the magnetic
field of the Earth and space

• Quantum accelerometers – measurement of accelerations,
which is important in GPS-free navigation

• Quantum gravimeters – mapping Earth’s gravitational
field

These sensors have many possible applications:
• Monitoring climate change (tracking changes in the

masses of glaciers and ocean waters, studying sea levels)
• Geodesy and mapping (creating precise gravity maps,

locating natural resources)
• Studying gravitational waves (quantum sensors on satel-

lites can increase the sensitivity of gravitational waves
from deep space)

• Navigation (precise navigation systems without the need
for GPS communication)

The last case is quite interesting since the aviation sector re-
cently suffered from GPS jamming and spoofing [84]. Typical
usage of these sensors onboard airplanes could be reliving in
such cases.

C. Quantum computers

The constant growth of collected data from any kind of re-
ceiver requires huge computing potential to process this infor-
mation. The space segment is nothing different. On satellites,
quantum computers would enable fast data processing, for
example, processing data from space telescopes or optimizing
satellite trajectories. Quantum computers would also accelerate
simulations conducted in space.

D. Conclusion on the quantum space segment

Many use cases of quantum technology in the space segment
were discussed. The use of QKD technology on satellites
would provide a better level of data security. Quantum sen-
sors will enable precise studies of climate, geology, and
gravitational waves, allowing for a better understanding of
Earth. Quantum computing has the potential to revolutionize
the analysis of scientific data and the optimization of space
missions.

VIII. DISCUSSION, CONCLUSIONS

Quantum Computing has the potential to deeply affect mul-
tiple domains. In this paper the authors, who are PhD students
in diverse fields, tried to take a fresh look at the possible
applications of Quantum Technologies in their research areas.
This resulted in multiple views on the subject as well as some
ideas which may lead to further research work.
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increasing the diversity of gan-generated samples,” in International
Conference on Neural Information Processing. Springer, 2020, pp.
260–270.
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