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Abstract—There are many challenges when it comes to 

autonomous vehicle movement, one of which is developing an 

accurate and precise internal mapping system. Autonomous 

vehicles use internal maps to move from a starting point to des-

tination point. Many methods are used in creating these maps, but 

because they still display weaknesses, further development is 

required. This research combines the FastSLAM 2.0 algorithm 

with a fully convolutional neural network (FCNN) model using the 

road features recognized by the FCNN algorithm as the object of 

observation of the FastSLAM 2.0 algorithm. This method was 

tested to form a map of the environment around the Faculty of 

Engineering, Sriwijaya University, Inderalaya Campus. In the 

training, the Adam optimizer and Adam combined with batch 

normalization (BN) model showed good accuracy: 82.07% and 

78.08%, respectively. The application of this method succeeded in 

forming a map similar to Google Maps using the FCNN 

observation model. The map that was successfully formed had an 

IoU of 0.159 against the Google Maps map obtained with the Adam 

+ BN model. 
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I. INTRODUCTION 

NE of the fastest-growing technologies in transportation 

is autonomous vehicles, that is, vehicles that can move 

without drivers. These vehicles must have technology that can 

assist in their autonomous movement, including path planning, 

decision-making, localization, map building, and movement 

control[1][2]. Gaining knowledge is essential before achieving 

localization and perception. If a vehicle possesses all of these 

abilities, including information acquisition, it can be classified 

as an autonomous vehicle[3]. 

Path planning functions can be used to determine the optimal 

route that can be taken from the starting point to a predetermined 

destination point, such that the vehicle can save time and energy 

by traveling efficiently [4][5]. The optimal route to take will be 

determined by considering various constraints and conditions. 

This may involve factors such as finding the shortest distance 

between two points or minimizing the travel time by avoiding 

collisions. In some cases, constraints and goals may overlap, 

such as attempting to minimize energy usage without exceeding 

a specified threshold for travel time[6]. Maps and positions are 

required to show the position, direction, and route to the 

autonomous vehicle. The position of the autonomous vehicle is 

an important factor in determining the vehicle’s location on the 
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road or path that it traverses on the map. Many types of maps 

are used, one of which is the Google Maps API. However, with 

this type of map, not all necessary information is provided, and 

the road information that is provided may be inaccurate[7]. 

Furthermore, this type of map does not change direction and 

cannot directly synchronize the display if there is a change in 

environmental conditions [8]. Several purposes and applications 

require accurate and accurate maps [9]. The use of the Google 

Maps API is highly dependent on GPS. However, GPS has 

several weaknesses, including diminished indoor accuracy [10], 

lack of coverage over certain areas[11], and less precise 

coordinates and position readings[12]. Therefore, it is necessary 

to develop good mapping for autonomous vehicle navigation 

because it is likely that autonomous vehicles will move through 

environments with incomplete information and areas that are 

not covered by GPS. 

Apart from maps that are accurate and safe[13], navigation 

also requires the position of the vehicle and information about 

the vehicle’s environment. Researchers usually use an algorithm 

known as simultaneous localization and mapping (SLAM) to 

solve this problem[14]. The research on SLAM has been 

conducted using various methods, such as the extended Kalman 

filter (EKF-SLAM)[15]. This method uses state vectors to store 

a limited number of landmarks with complex computations. 

Thus, it is necessary to reduce the complex EKF-SLAM 

computations if the method is used in outdoor areas where there 

are many objects. To overcome these weaknesses, the 

FastSLAM 1.0 algorithm (a factored solution to SLAM) has 

been developed. However, the FastSLAM 1.0 algorithm is weak 

because the movement model receives a lot of interference from 

the exteroceptive sensor. As a result, an algorithm known as 

FastSLAM 2.0 has been developed. This algorithm uses a Rao-

Blackwellized method on the filter particles[16].  

Another study has developed the FastSLAM 2.0 algorithm by 

using a hand-drawn image as an initial map for estimating 

building locations before then combining the FastSLAM 

algorithm and particle swarm optimization (PSO) to form a map 

[17]. However, in drawing a map, the accuracy of the scale of 

existing buildings and roads must receive attention. This 

problem is quite difficult to solve. To overcome this problem, in 

the present study, the principle of combining the FastSLAM 2.0 

algorithm with an intelligent algorithm is developed. The 

current paper discusses the use of fully convolutional neural 

networks (FCNN) combined with FastSLAM 2.0 in forming a 
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map to be traversed by autonomous vehicles. Because of the 

advantages of FCNN, many researchers use this algorithm in 

several applications, such as object detection[18] visual tracking 

[19], and brain tumor segmentation[20]. It is known that FCNN 

is included in the smart algorithm based on a neural network. 

Neural networks have been widely used in various applications, 

such as a hexacopter controller[21], energy consumption 

forecasting[22], and automatic correction of the depth map of 

the human body[23]. With FCNN, which has good accuracy and 

an optimum level when compared with ordinary multilayer 

perceptron, this FCNN will be able to form maps that have good 

accuracy when combined with the FastSLAM 2.0 algorithm. 

The present study focuses on the implementation of combining 

FCNN and the FastSLAM 2.0 algorithm to form a better 

mapping for autonomous vehicles. 

The current paper is structured as follows: Section 2 presents 

a brief overview of road recognition, which also contains the 

FastSLAM 2.0 and FCNN algorithms used. Section 3 discusses 

the research methods in detail. Section 4 presents and discusses 

the results. Section 5 outlines the conclusions and possible 

directions for future work. 

II. ROAD RECOGNITION 

Each road recognition is used to determine the position of 

the vehicle against the road that it traverses. When moving 

autonomously, the vehicle must be able to maintain its position 

so that it stays on the road and avoids accidents that would occur 

because of moving into the wrong lane. For a vehicle to maintain 

its position, it requires road recognition technology. Road 

recognition can be done using various methods, such as support 

vector machine [24], canny edge detection and Hough 

transformation [25][26], and FCNN [27]. 

A. Fast SLAM 2.0 

The FastSLAM 2.0 algorithm comes from the SLAM 

algorithm, which was initially used in robot navigation in 

unknown environments. The robot’s movement coincides with 

an estimate of the surrounding environment, and its position is 

based on sensory readings and existing landmarks. According 

to one study [28], the SLAM algorithm can be divided into two 

major groups: EKF-SLAM and FastSLAM. The EKF-SLAM 

algorithm typically uses an odometer and sensory measurements 

to obtain the mean and covariance of the EKF. However, 

creating maps, positions, and landmarks can interfere with their 

performance, so complex computations are required. To solve 

the problem of computational complexity in EKF-SLAM, the 

algorithm from the FastSLAM group is proposed for use with a 

Rao-Blackwellized particle filter. There are two types of 

FastSLAM algorithms: FastSLAM 1.0 and FastSLAM 2.0 [29]. 

Both of these methods use odometric readings based on 

measurements by the sensor to determine the position of a 

vehicle, but FastSLAM 1.0’s dependence on sensor reliability is 

very high, which results in unstable localization. The 

FastSLAM 2.0 algorithm has better performance because 

localization is based on sensor readings. Nevertheless, the 

drawback is that its runtime efficiency is longer, especially if 

there are many landmarks in the surrounding area. 

The FastSLAM 2.0 algorithm was developed by modifying 

the previous FastSLAM algorithm. The FastSLAM algorithm 

equation that estimates landmarks to be conditioned by the 

position estimation is as follows [28]. 

𝑝(𝑥𝑡 , 𝜃|𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) = 𝑝(𝑥𝑡|𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) ∏ 𝑝(𝜃𝑘

𝑁

𝑘=1

|𝑥𝑡 , 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) 

where xt = {x1, x2, [… ]xt} is the set of estimated 

movements from time 1 to t, zt = {z1, z2, [… ]zt} is the set of all 

observations, and ut = {u1, u2, [… ]ut} is the set of all control 

inputs. The number of landmarks recorded from time 1 to t is 

denoted by nt = {n1, n2, [… ]nt} for each particle. u =
{θ1, θ2, … θN} is the set of N landmark positions. The 

FastSLAM algorithm estimates object poses, while landmarks 

are estimated using the EKF. Each particle has a pose xt,[m] and 

a state landmark represented by the mean and covariance of the 

Gaussian distribution, which is denoted by uN,t
[m]

 and ∑  
[m]
N,t , 

respectively, where m is the index of the particle. Hence, each 

particle can be described as follows: 

𝑋𝑡,[𝑚] =< 𝑥𝑡,[𝑚], 𝑢1,𝑡
𝑚 , ∑ … . ,

[𝑚]
1,𝑡 𝑢𝑁,𝑡

𝑚 , ∑ >
[𝑚]
1,𝑡               (2) 

 
Regarding FastSLAM 1.0, the equation is conditioned to the 

previous state and control input or by the motion model, as 
shown in the following: 

𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑥𝑡−1
[𝑚]

, 𝑢𝑡)                 (3) 

 
From equation (3), it can be seen that the vehicle estimate 

does not consider flow measurements from the sensor. 
However, odometric measurements experience uncertainty, 
causing inaccurate localization results when the vehicle moves 
to the next point. Therefore, the FastSLAM algorithm must be 
improved to the FastSLAM 2.0 algorithm, as described 
previously[28]. In the following FastSLAM 2.0 algorithm, 
conditioning is not only in the motion model, but also the current 
sensory measurement, namely zt, so that the sensory 
measurement will be able to correct the reading error on the 

odometer, as seen in [30]: 

𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑥𝑡−1,[𝑚], 𝑢𝑡 , 𝑧𝑡 , 𝑛𝑡)             (4) 

 

B. Fully Convolutional Neural Network 

FCNN is a neural network architecture that uses a 

convolutional layer like CNN, but it uses a fully connected layer 

so that the output from this architecture has the same dimensions 

as the input image (length, width, and channel). The architecture 

of the FCNN can be seen in Fig. 1 [31][32]. 

 
Fig.1. FCNN Architecture 

In Fig. 1, there are several types of layers, namely image, 

convolution, pool, and up sampled. The image layer is the first 

layer of the FCNN architecture that contains an input image that 

will be processed by the FCNN to produce a targeted road image 

segmentation. The convolutional layer is a layer that uses 
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convolution operations (*) between the image layer and filter. 

The output of this layer is a feature map that will be processed 

in the next layer, namely the pooling layer. The pooling layer 

has a function to reduce the feature map generated by the 

convolutional layer. Up sampling is done to increase the output 

of the FCNN. The convolutional layer is formulated in (5). This 

equation is commonly used in convolution layer equations. 

Apart from these operations, there are also other types of 

operations at the convolution layer, such as transpose 

convolution, dilated convolution, and sparse convolution. 

ℎ(𝑥) = 𝑓(𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦)                 (5) 

 

Transpose convolution, also known as up sampling or 

deconvolution, is a convolutional operation that restores the 

initial shape of the layer after experiencing operations on the 

convolutional layer. The result of the convolutional layer 

(feature map) is smaller in size than the input layer to the 

convolutional layer. The convolutional feature map can be 

resized to the size of the initial layer preceding the convolutional 

layer using the transpose operation. The activation functions in 

the FCNN architecture are placed in all convolution layers to 

prevent the output value of a neuron from being too large. There 

are several types of activation functions, such as sigmoid, 

SoftMax, rectified linear unit (ReLU), and others. However, the 

architecture used in this FCNN only uses two types of activation 

functions: ReLU and SoftMax. This FCNN requires an 

activation function to activate or deactivate neurons, and this 

function must have certain characteristics, such as continuous, 

differentiable, and monotonically nondecreasing. The activation 

function used in this FCNN is ReLU, which is used in each 

convolutional layer output before entering the pooling layer. 

ReLU has several advantages, such as faster computation time 

and the ability to overcome the vanishing gradient problem 

found in the sigmoid activation function. The equation used for 

this activation function can be seen in (6), where 𝑓𝑅𝑒𝐿𝑈(ℎ𝑖,𝑘) is 

the output of this activation function in neurons h in row i and 

column k. Another activation function of this FCNN is SoftMax. 

𝑓𝑅𝑒𝐿𝑈(ℎ𝑖,𝑘) = max(0, ℎ𝑖,𝑘)                (6) 

 

The optimizer model is used to improve parameters to adjust the 

expected target and minimize errors in the architectural output. 

These optimizers are stochastic gradient descent (SGD) with 

Nesterov momentum and Adam optimizers. Kingma and Ban 

[33] introduced Adam’s algorithm and tested it with the CNN 

algorithm with stable and fast results in eliminating errors. Each 

optimizer has different capabilities for minimizing errors in a 

model. The optimizer model requires a loss function to carry out 

the optimization process of calculating errors in the model. The 

loss function in FCNN is used to calculate the error of the FCNN 

model during the training process. Based on their functions, the 

loss function can be divided into two categories: regression loss 

functions and classification loss functions. Each of these has its 

advantages and disadvantages, as in the regression loss function 

based on research by Pavel Golik et al.[34]. 

III. RESEARCH METODOLOGY 

A. Mapping System 

The method proposed in the present study is a modification 

of the FastSLAM 2.0 algorithm, whose observation model 

typically uses distance measuring sensor data such as LIDAR. 

In the current study, however, a monocular camera (IP Cam) 

was used instead. The object measured in the observation stage 

was the side of the road that had been detected by the FCNN 

algorithm–based model. The flowchart of the mapping system 

setup is shown in Fig. 2. 

 

 
Fig.2. The Process of Map Formation Using the Proposed Method 

 

After the front camera obtains data, the data are then 

processed and produce an output in the form of a recognized 

road image. This image is then used as an observation for the 

FastSLAM algorithm, as shown in Fig. 3. This observation data 

are obtained by comparing pixels in the image with real-world 

measurements taken in the field. 

 
Fig.3. The Camera Performs Observations Similar to LIDAR 

 

Data collection for the map formation simulation consists 

of distance traveled data, front camera video data, and x, y, and 

z-axis data from the magnetometer. These data were recorded 

using a data logger with a sampling time of 1500 ms/sample 

when vehicles were run following the route shown in Fig. 4. 
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Fig.4. The Route of the Electric Vehicle when Collecting Data 
 

The yellow line illustrates the vehicle’s data collection route, 

starting from the Department of Electrical Engineering, 

Sriwijaya University. After the data had been successfully 

retrieved, training was carried out using FCNN. In this mapping 

system, the mileage data were obtained from the encoder, which 

came from the data logger; however, these data appeared 

anomalous because it looked up and down. The vehicle moved 

forward without going backward, as shown in Fig. 5a. This 

anomaly was because the data were stored in integer form, 

which limits its display. Therefore, the data encoder needed to 

be compensated. The pseudocode of the compensate algorithm 

is shown in Fig. 6. 

 
a. Data before compensation 

 
b. Data after compensation 

Fig.5. Data treatment 

 
Fig.6. The Encoder Data Compensation Pseudocode 

After the compensation for the encoder data was carried out, the 

encoder data was obtained following the facts that there was a 

continuous increase in data. Compensated data can be seen in 

Fig. 5b. In addition to the encoder data, there were data obtained 

from the front cameras of the electric vehicles. The camera 

recorded the electric vehicle’s journey for 25 minutes. The 

video was converted into an image using the Free Video to 

JPEG Converter software. The conversion produced 38,780 

images with a 1080p resolution, resulting in a total file size of 

12,607,762,453 bytes. The image was then uploaded to Google 

Drive so that it could be linked to Google Collaboration during 

the process of establishing a dataset for FCNN algorithm 

training. For training and performance testing, 38,780 pictures 

were made of ground truth, as shown in Fig. 7. Here, 2,633 data 

points were used as training data, while the remaining data were 

used to test the performance of the FCNN algorithm. The 

training data were considered sufficient to represent the real 

conditions of the road, including straight sections and both right 

and left turns. 

 
 

Fig.7. The Process of Determining the Ground Truth 

B. Road Recognition using the FCNN Algorithm 

The training process was carried out to obtain an FCNN 

model with good training graphics and a high degree of 

accuracy. The road recognition process is shown in Fig. 8, in 

which the process consists of two paths based on the color of the 

arrows. The black arrows indicate the training process flow, and 

the green arrows represent the testing process flow. In the 

training, the original image or images (obtained from the road 

recording process on the vehicle’s front camera) were resized to 

320 × 320 following the FCNN architecture used to make the 

training time more efficient. After resizing, the data were 

formed into a dataset that was used in the training process. One 

by one, the images in the dataset underwent a feedforward 

process through the network of the FCNN architecture used. 

After going through the network, the FCNN architecture 

provided a prediction of the expected road area. This prediction 

was then compared with the ground truth that had previously 

been made using the VGG Image Annotator application. This 

comparison process uses cross-entropy loss to obtain the error 

value prediction of the model for ground truth. The error value 

in the cross-entropy loss is used to optimize the model so that it 

has a better predictive ability. This process is carried out with 

an optimizer model, which is improved by giving new weights 

to each network. The optimizers used consist of Adam, SGD, 

SGD Nesterov’s accelerated gradient (NAG), and SGD 

momentum. Meanwhile, the training is done in 100 epochs. The 

flow of the evaluation process is marked with a green arrow, as 

shown in Fig. 8, in which the original image has been resized to 

match the input size in the FCNN architecture. The resized 

image was input into the FCNN model, which contained the 

FCNN architecture and the weights that had been trained on 

each network. The FCNN model provided a prediction of the 

recognized road area. The FCNN prediction output was then 
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resized back to its original size of 1920 × 1080. After resizing, 

the image was compared with the ground truth to evaluate the 

performance of FCNN by using a confusion metric. After 

evaluation with the confusion metric, several parameters were 

obtained, namely tp, tn, fp, and fn. These could then be used to 

calculate the accuracy value and the area under the curve 

(AUC). 

 
Fig. 8. Road Recognition Process Flow 

The evaluation process was carried out using the confusion 

metric, as shown in Table I. 

 

The equation for finding accuracy can be seen in (7), as follows 

𝐴𝑈𝐶 =
1

2
(

𝑡𝑝

𝑡𝑝+𝑓𝑛
+

𝑡𝑛

𝑡𝑛+𝑡𝑝
)                 (7) 

The AUC is the classifier’s ability to avoid misclassification. To 

find a measure of the similarity and diversity between the 

predicted image of the model and target image, an equation 

known as the intersection over union (IoU) / Jaccard index was 

used, as follows: 

𝐼𝑜𝑈 =
𝑡𝑝

𝑡𝑝+𝑓𝑝+𝑓𝑛
                 (8) 

IV. RESULT AND DISCUSSION 

At the beginning, the optimizers used consisted of Adam, 

SGD, SGD NAG, and SGD momentum. At this point, the 

training was done in 100 epochs. The errors of all optimizers 

can be seen in Fig. 9. 

 
Fig. 9. (a) Error Graph of Each Optimizer and (b) the Accuracy of Each 

Optimizer 

 

As shown in Fig. 9, the Adam optimizer had the most stable 

ability in optimizing the model compared with other optimizers. 

The Adam algorithm was capable of quickly overcoming error 

fluctuations in the model and improving it rapidly. To overcome 

these fluctuations, BN was performed with an architecture, as 

shown in Fig. 10.  

 

 
Fig. 10. FCNN Architecture with Batch Normalization. 

 

In addition to the architecture of Fig. 10, the experiments 

were also done by modifying the position of the layer for batch 

normalization after the ReLU layer (Adam+BN2) and before the 

ReLU layer (Adam +BN3). The results can be seen in Fig. 11. 

 

 
Fig. 11. (a) Training Error with Modifying Position of Layer Batch 

Normalization and (b) Accuracy of Training FCNN 

 

The errors for the Adam + BN2 and Adam + BN3 architectures 
were 0.0270 and 0.0268, respectively. The Adam + BN3 
configuration performed better than the Adam + BN2 
configuration but was not superior to architectures without 
batch normalization or with only one batch normalization. With 

one BN, the error value was 0.0264. This indicates that adding 
more BNs led to larger error values. Thus, the architecture of 
Adam with BN was later com-pared with Adam and SGD. 
Meanwhile, the accuracy for each condition was almost equal, 
which was 0.9825, 0.9873, 0.9872, and 0.9873 for Adam, Ad-
am+BN, Adam+BN2, and Adam + BN3, respectively. To 

evaluate the proposed architecture, an accuracy metric was 
used. In the present study, three optimizer models were used for 
road recognition: Adam, SGD, and Adam with batch 
normalization (Adam + BN). The accuracy test results are 
shown in Fig. 12. The accuracy was calculated using the 
confusion matrix, as shown in (7). 

  
(a) (b) 

 

  
(a) (b) 

 

TABLE I  

CONFUSION METRIC 

Ground Truth 

Classifier 

Label Positive Negative 

Positive   

Negative   
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Fig. 12. Accuracy of Path Recognition per Frame on Test Data 

 

Furthermore, road recognition testing can be carried out using 

Adam, SGD, and the Adam + BN optimizer. Table II shows 

road testing using the Adam optimizer. Table II shows that the 

accuracy of the Adam optimizer was quite good, with an 

average rate of 0.8207 or 82.07%. The introduction of the road 

using the SGD optimizer is shown in Table III. Table III shows 

that the accuracy of the SGD optimizer remained below that of 

the Adam optimizer, with an average rate of 0.6121 or 61.21%. 

Furthermore, Table IV shows an introduction to the road using 

the Adam + BN optimizer. 

Table III shows that the accuracy of the SGD optimizer 

remained below that of the Adam optimizer, with an average 

rate of 0.6121 or 61.21%. 

 

Furthermore, Table IV shows an introduction to the road using 

the Adam + BN optimizer Table IV shows that the accuracy in 

using the Adam + BN optimizer had a rate of 0.7808 or 78.08%. 

When viewed based on the accuracy shown in Fig. 6, the 

comparison with the SGD model (with an accuracy of 0.6121) 

with the Adam model (with an accuracy of 0.8207) and the 

Adam + BN model obtained an accuracy of 0.7808, whereas the 

performance of the Adam model was higher than that of SGD 

and Adam + BN model. Likewise, with the accuracy interval, 

the Adam optimizer model was far from SGD and Adam + BN, 

as shown on the interval graph in Fig. 13. The Adam optimizer 

accuracy value distribution was also collected at greater 

accuracy points than SGD. This can also be seen in the AUC 

values, as shown in Table V. 

 
Fig. 13. Graph of Adam and SGD Testing Accuracy Intervals 

 

TABLE II  

ROAD RECOGNITION TESTING WITH ADAM 

Frame Input Output 
Ground 

Truth 
Accuracy 

1 
   

0.821269 

2 

   

0.82138 

3 

   

0.821328 

4 

   

0.820930 

5 

   

0.816804 

6 

   

0.822006 

7 

   

0.822126 

8 

   

0.819515 

9 

   

0.819595 

10 

   

0.822564 

 
 

 
 

TABLE III 

ROAD RECOGNITION TESTING WITH SGD 

Frame Input Output 
Ground 

Truth 
Accuracy 

1 

   

0.613821 

2 

   

0.614082 

3 

   

0.615135 

4 

   

0.61503 

5 

   

0.608452 

6 

   

0.609921 

7 

   

0.609539 

8 

   

0.611584 

9 

   

0.609429 

10 

   

0.61392 
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The model that successfully recognized the road features 

(model from the Adam optimizer) was then used as the 

observation object in the FastSLAM 2.0 algorithm, resulting in 

a map, as shown in Fig. 14. The map formed with the proposed 

algorithm was then compared with the map from Google Maps, 

which showed several additional elements, such as buildings 

and trees. The map formed by the proposed algorithm only 

recognized road objects, so Google Maps needed to be 

reconstructed to form a path that only showed the road on a 

predetermined route. This reconstruction was carried out to 

obtain a ground truth image showing the similarity of the map 

formed by the proposed algorithm to Google Maps. The 

reconstructed image and Google Maps are shown in Fig. 15.  

 

 
     (a) Adam Model   (b) Adam + BN Model   (c) Ground Truth 

Fig. 14. Formed Map Results 

 

 
Fig. 15. Ground Truth and Google Maps 

 

The map that was successfully formed was then compared with 

the ground truth map using the confusion metric to obtain the 

data shown in Table VI. 

 

Based on the confusion matrix table, the IoU/Jaccard index 

value could be calculated. The amount of IoU from the map 

formed is 0.149. For maps formed with the Adam + BN model, 

the IoU value is 0.159, which was better than the previous 

model. This value was still not sufficient; however, in terms of 

the route formed by the map, the proposed algorithm succeeded 

in forming a map according to the specified route. This 

weakness was because of the rel-atively low accuracy and wide 

interval of the model used, which created noise in the 

observation process of the FastSLAM 2.0 algorithm. 

Nevertheless, this map obtained from the proposed method can 

still be useful for determining the path planning for an 

autonomous vehicle. 

CONCLUSION 

The FastSLAM 2.0 method combined with the FCNN model 

succeeded in set-ting up a map similar to GPS-based Google 

Maps. The performance of the algorithm proposed in the 

formation of this map was still low, with an IoU value of 0.159 

in the Adam + BN model. However, the best average rate of 

accuracy during testing of the FCNN model was 82.07% and 

78.08%, found in the Ad-am and Adam + BN models, 

respectively. Further research will be carried out on the 

application of this method to an autonomous vehicle on the same 

route. In addition, further research should be done to consider 

another algorithm, such as the smooth variable structure filter 

(SVSF), which makes no assumptions on the noise’s properties 

and face modeling errors and parameter uncertainties. 

TABLE IV  

ROAD RECOGNITION TESTING WITH THE ADAM + BN OPTIMIZER 

Frame Input Output 
Ground 

Truth 
Accuracy 

1 

   

0.799843 

2 

   

0.784479 

3 

   

0.792277 

4 

   

0.762074 

5 

   

0.782425 

6 

   

0.778963 

7 

   

0.753361 

8 

   

0.757267 

9 

   

0.797731 

10 

   

0.799843 

 

 
 

 

 
 

TABLE V  

EVALUATION OF THE FCNN ALGORITHM FOR ROAD RECOGNITION 

Metric Adam Optimizer SGD 

Optimizer 

Adam + BN 

Average 

accuracy for 

each frame 

71.082% 60.641% 

 

77.5847% 

AUC 0.719781 0.694611783 0.803014072 

 

 

 
 

 
 

TABLE VI 

CONFUSION MATRIX MAP FORMED (ADAM MODEL) 

Ground Truth 

Label 
Map of the proposed method 

Positive Negative 

Positive 1260 3567 

Negative 3606 268467 
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