

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 1, PP. 277-284

Manuscript received December 23, 2023; revised March 2025. doi: 10.24425/ijet.2025.153571

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—There are many challenges when it comes to

autonomous vehicle movement, one of which is developing an

accurate and precise internal mapping system. Autonomous

vehicles use internal maps to move from a starting point to des-

tination point. Many methods are used in creating these maps, but

because they still display weaknesses, further development is

required. This research combines the FastSLAM 2.0 algorithm

with a fully convolutional neural network (FCNN) model using the

road features recognized by the FCNN algorithm as the object of

observation of the FastSLAM 2.0 algorithm. This method was

tested to form a map of the environment around the Faculty of

Engineering, Sriwijaya University, Inderalaya Campus. In the

training, the Adam optimizer and Adam combined with batch

normalization (BN) model showed good accuracy: 82.07% and

78.08%, respectively. The application of this method succeeded in

forming a map similar to Google Maps using the FCNN

observation model. The map that was successfully formed had an

IoU of 0.159 against the Google Maps map obtained with the Adam

+ BN model.

Keywords—autonomous vehicle; FastSLAM; FCNN; mapping

I. INTRODUCTION

NE of the fastest-growing technologies in transportation

is autonomous vehicles, that is, vehicles that can move

without drivers. These vehicles must have technology that can

assist in their autonomous movement, including path planning,

decision-making, localization, map building, and movement

control[1][2]. Gaining knowledge is essential before achieving

localization and perception. If a vehicle possesses all of these

abilities, including information acquisition, it can be classified

as an autonomous vehicle[3].

Path planning functions can be used to determine the optimal

route that can be taken from the starting point to a predetermined

destination point, such that the vehicle can save time and energy

by traveling efficiently [4][5]. The optimal route to take will be

determined by considering various constraints and conditions.

This may involve factors such as finding the shortest distance

between two points or minimizing the travel time by avoiding

collisions. In some cases, constraints and goals may overlap,

such as attempting to minimize energy usage without exceeding

a specified threshold for travel time[6]. Maps and positions are

required to show the position, direction, and route to the

autonomous vehicle. The position of the autonomous vehicle is

an important factor in determining the vehicle’s location on the

Authors are with Department of Electrical Engineering, Universitas

Sriwijaya, Indonesia (e-mail: bhakti@ft.unsri.ac.id, abeng.yogta01@gmail.

com, sucidwijayanti@ft.unsri.ac.id).

road or path that it traverses on the map. Many types of maps

are used, one of which is the Google Maps API. However, with

this type of map, not all necessary information is provided, and

the road information that is provided may be inaccurate[7].

Furthermore, this type of map does not change direction and

cannot directly synchronize the display if there is a change in

environmental conditions [8]. Several purposes and applications

require accurate and accurate maps [9]. The use of the Google

Maps API is highly dependent on GPS. However, GPS has

several weaknesses, including diminished indoor accuracy [10],

lack of coverage over certain areas[11], and less precise

coordinates and position readings[12]. Therefore, it is necessary

to develop good mapping for autonomous vehicle navigation

because it is likely that autonomous vehicles will move through

environments with incomplete information and areas that are

not covered by GPS.

Apart from maps that are accurate and safe[13], navigation

also requires the position of the vehicle and information about

the vehicle’s environment. Researchers usually use an algorithm

known as simultaneous localization and mapping (SLAM) to

solve this problem[14]. The research on SLAM has been

conducted using various methods, such as the extended Kalman

filter (EKF-SLAM)[15]. This method uses state vectors to store

a limited number of landmarks with complex computations.

Thus, it is necessary to reduce the complex EKF-SLAM

computations if the method is used in outdoor areas where there

are many objects. To overcome these weaknesses, the

FastSLAM 1.0 algorithm (a factored solution to SLAM) has

been developed. However, the FastSLAM 1.0 algorithm is weak

because the movement model receives a lot of interference from

the exteroceptive sensor. As a result, an algorithm known as

FastSLAM 2.0 has been developed. This algorithm uses a Rao-

Blackwellized method on the filter particles[16].

Another study has developed the FastSLAM 2.0 algorithm by

using a hand-drawn image as an initial map for estimating

building locations before then combining the FastSLAM

algorithm and particle swarm optimization (PSO) to form a map

[17]. However, in drawing a map, the accuracy of the scale of

existing buildings and roads must receive attention. This

problem is quite difficult to solve. To overcome this problem, in

the present study, the principle of combining the FastSLAM 2.0

algorithm with an intelligent algorithm is developed. The

current paper discusses the use of fully convolutional neural

networks (FCNN) combined with FastSLAM 2.0 in forming a

Development of a mapping system on an

autonomous vehicle using a Fully Convolutional

Neural Network and Fast SLAM Algorithm

Bhakti Yudho Suprapto, Abeng Yogta, and Suci Dwijayanti

O

https://creativecommons.org/licenses/by/4.0/

278 B.Y.SUPRAPTO, A. YOGTA, S. DWIJAYANTI

map to be traversed by autonomous vehicles. Because of the

advantages of FCNN, many researchers use this algorithm in

several applications, such as object detection[18] visual tracking

[19], and brain tumor segmentation[20]. It is known that FCNN

is included in the smart algorithm based on a neural network.

Neural networks have been widely used in various applications,

such as a hexacopter controller[21], energy consumption

forecasting[22], and automatic correction of the depth map of

the human body[23]. With FCNN, which has good accuracy and

an optimum level when compared with ordinary multilayer

perceptron, this FCNN will be able to form maps that have good

accuracy when combined with the FastSLAM 2.0 algorithm.

The present study focuses on the implementation of combining

FCNN and the FastSLAM 2.0 algorithm to form a better

mapping for autonomous vehicles.

The current paper is structured as follows: Section 2 presents

a brief overview of road recognition, which also contains the

FastSLAM 2.0 and FCNN algorithms used. Section 3 discusses

the research methods in detail. Section 4 presents and discusses

the results. Section 5 outlines the conclusions and possible

directions for future work.

II. ROAD RECOGNITION

Each road recognition is used to determine the position of

the vehicle against the road that it traverses. When moving

autonomously, the vehicle must be able to maintain its position

so that it stays on the road and avoids accidents that would occur

because of moving into the wrong lane. For a vehicle to maintain

its position, it requires road recognition technology. Road

recognition can be done using various methods, such as support

vector machine [24], canny edge detection and Hough

transformation [25][26], and FCNN [27].

A. Fast SLAM 2.0

The FastSLAM 2.0 algorithm comes from the SLAM

algorithm, which was initially used in robot navigation in

unknown environments. The robot’s movement coincides with

an estimate of the surrounding environment, and its position is

based on sensory readings and existing landmarks. According

to one study [28], the SLAM algorithm can be divided into two

major groups: EKF-SLAM and FastSLAM. The EKF-SLAM

algorithm typically uses an odometer and sensory measurements

to obtain the mean and covariance of the EKF. However,

creating maps, positions, and landmarks can interfere with their

performance, so complex computations are required. To solve

the problem of computational complexity in EKF-SLAM, the

algorithm from the FastSLAM group is proposed for use with a

Rao-Blackwellized particle filter. There are two types of

FastSLAM algorithms: FastSLAM 1.0 and FastSLAM 2.0 [29].

Both of these methods use odometric readings based on

measurements by the sensor to determine the position of a

vehicle, but FastSLAM 1.0’s dependence on sensor reliability is

very high, which results in unstable localization. The

FastSLAM 2.0 algorithm has better performance because

localization is based on sensor readings. Nevertheless, the

drawback is that its runtime efficiency is longer, especially if

there are many landmarks in the surrounding area.

The FastSLAM 2.0 algorithm was developed by modifying

the previous FastSLAM algorithm. The FastSLAM algorithm

equation that estimates landmarks to be conditioned by the

position estimation is as follows [28].

𝑝(𝑥𝑡 , 𝜃|𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) = 𝑝(𝑥𝑡|𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) ∏ 𝑝(𝜃𝑘

𝑁

𝑘=1

|𝑥𝑡 , 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡)

where xt = {x1, x2, […]xt} is the set of estimated

movements from time 1 to t, zt = {z1, z2, […]zt} is the set of all

observations, and ut = {u1, u2, […]ut} is the set of all control

inputs. The number of landmarks recorded from time 1 to t is

denoted by nt = {n1, n2, […]nt} for each particle. u =
{θ1, θ2, … θN} is the set of N landmark positions. The

FastSLAM algorithm estimates object poses, while landmarks

are estimated using the EKF. Each particle has a pose xt,[m] and

a state landmark represented by the mean and covariance of the

Gaussian distribution, which is denoted by uN,t
[m]

 and ∑
[m]
N,t ,

respectively, where m is the index of the particle. Hence, each

particle can be described as follows:

𝑋𝑡,[𝑚] =< 𝑥𝑡,[𝑚], 𝑢1,𝑡
𝑚 , ∑ … . ,

[𝑚]
1,𝑡 𝑢𝑁,𝑡

𝑚 , ∑ >
[𝑚]
1,𝑡 (2)

Regarding FastSLAM 1.0, the equation is conditioned to the

previous state and control input or by the motion model, as
shown in the following:

𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑥𝑡−1
[𝑚]

, 𝑢𝑡) (3)

From equation (3), it can be seen that the vehicle estimate

does not consider flow measurements from the sensor.
However, odometric measurements experience uncertainty,
causing inaccurate localization results when the vehicle moves
to the next point. Therefore, the FastSLAM algorithm must be
improved to the FastSLAM 2.0 algorithm, as described
previously[28]. In the following FastSLAM 2.0 algorithm,
conditioning is not only in the motion model, but also the current
sensory measurement, namely zt, so that the sensory
measurement will be able to correct the reading error on the

odometer, as seen in [30]:

𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑥𝑡−1,[𝑚], 𝑢𝑡 , 𝑧𝑡 , 𝑛𝑡) (4)

B. Fully Convolutional Neural Network

FCNN is a neural network architecture that uses a

convolutional layer like CNN, but it uses a fully connected layer

so that the output from this architecture has the same dimensions

as the input image (length, width, and channel). The architecture

of the FCNN can be seen in Fig. 1 [31][32].

Fig.1. FCNN Architecture

In Fig. 1, there are several types of layers, namely image,

convolution, pool, and up sampled. The image layer is the first

layer of the FCNN architecture that contains an input image that

will be processed by the FCNN to produce a targeted road image

segmentation. The convolutional layer is a layer that uses

DEVELOPMENT OF A MAPPING SYSTEM ON AN AUTONOMOUS VEHICLE … 279

convolution operations (*) between the image layer and filter.

The output of this layer is a feature map that will be processed

in the next layer, namely the pooling layer. The pooling layer

has a function to reduce the feature map generated by the

convolutional layer. Up sampling is done to increase the output

of the FCNN. The convolutional layer is formulated in (5). This

equation is commonly used in convolution layer equations.

Apart from these operations, there are also other types of

operations at the convolution layer, such as transpose

convolution, dilated convolution, and sparse convolution.

ℎ(𝑥) = 𝑓(𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦) (5)

Transpose convolution, also known as up sampling or

deconvolution, is a convolutional operation that restores the

initial shape of the layer after experiencing operations on the

convolutional layer. The result of the convolutional layer

(feature map) is smaller in size than the input layer to the

convolutional layer. The convolutional feature map can be

resized to the size of the initial layer preceding the convolutional

layer using the transpose operation. The activation functions in

the FCNN architecture are placed in all convolution layers to

prevent the output value of a neuron from being too large. There

are several types of activation functions, such as sigmoid,

SoftMax, rectified linear unit (ReLU), and others. However, the

architecture used in this FCNN only uses two types of activation

functions: ReLU and SoftMax. This FCNN requires an

activation function to activate or deactivate neurons, and this

function must have certain characteristics, such as continuous,

differentiable, and monotonically nondecreasing. The activation

function used in this FCNN is ReLU, which is used in each

convolutional layer output before entering the pooling layer.

ReLU has several advantages, such as faster computation time

and the ability to overcome the vanishing gradient problem

found in the sigmoid activation function. The equation used for

this activation function can be seen in (6), where 𝑓𝑅𝑒𝐿𝑈(ℎ𝑖,𝑘) is

the output of this activation function in neurons h in row i and

column k. Another activation function of this FCNN is SoftMax.

𝑓𝑅𝑒𝐿𝑈(ℎ𝑖,𝑘) = max(0, ℎ𝑖,𝑘) (6)

The optimizer model is used to improve parameters to adjust the

expected target and minimize errors in the architectural output.

These optimizers are stochastic gradient descent (SGD) with

Nesterov momentum and Adam optimizers. Kingma and Ban

[33] introduced Adam’s algorithm and tested it with the CNN

algorithm with stable and fast results in eliminating errors. Each

optimizer has different capabilities for minimizing errors in a

model. The optimizer model requires a loss function to carry out

the optimization process of calculating errors in the model. The

loss function in FCNN is used to calculate the error of the FCNN

model during the training process. Based on their functions, the

loss function can be divided into two categories: regression loss

functions and classification loss functions. Each of these has its

advantages and disadvantages, as in the regression loss function

based on research by Pavel Golik et al.[34].

III. RESEARCH METODOLOGY

A. Mapping System

The method proposed in the present study is a modification

of the FastSLAM 2.0 algorithm, whose observation model

typically uses distance measuring sensor data such as LIDAR.

In the current study, however, a monocular camera (IP Cam)

was used instead. The object measured in the observation stage

was the side of the road that had been detected by the FCNN

algorithm–based model. The flowchart of the mapping system

setup is shown in Fig. 2.

Fig.2. The Process of Map Formation Using the Proposed Method

After the front camera obtains data, the data are then

processed and produce an output in the form of a recognized

road image. This image is then used as an observation for the

FastSLAM algorithm, as shown in Fig. 3. This observation data

are obtained by comparing pixels in the image with real-world

measurements taken in the field.

Fig.3. The Camera Performs Observations Similar to LIDAR

Data collection for the map formation simulation consists

of distance traveled data, front camera video data, and x, y, and

z-axis data from the magnetometer. These data were recorded

using a data logger with a sampling time of 1500 ms/sample

when vehicles were run following the route shown in Fig. 4.

280 B.Y.SUPRAPTO, A. YOGTA, S. DWIJAYANTI

Fig.4. The Route of the Electric Vehicle when Collecting Data

The yellow line illustrates the vehicle’s data collection route,

starting from the Department of Electrical Engineering,

Sriwijaya University. After the data had been successfully

retrieved, training was carried out using FCNN. In this mapping

system, the mileage data were obtained from the encoder, which

came from the data logger; however, these data appeared

anomalous because it looked up and down. The vehicle moved

forward without going backward, as shown in Fig. 5a. This

anomaly was because the data were stored in integer form,

which limits its display. Therefore, the data encoder needed to

be compensated. The pseudocode of the compensate algorithm

is shown in Fig. 6.

a. Data before compensation

b. Data after compensation

Fig.5. Data treatment

Fig.6. The Encoder Data Compensation Pseudocode

After the compensation for the encoder data was carried out, the

encoder data was obtained following the facts that there was a

continuous increase in data. Compensated data can be seen in

Fig. 5b. In addition to the encoder data, there were data obtained

from the front cameras of the electric vehicles. The camera

recorded the electric vehicle’s journey for 25 minutes. The

video was converted into an image using the Free Video to

JPEG Converter software. The conversion produced 38,780

images with a 1080p resolution, resulting in a total file size of

12,607,762,453 bytes. The image was then uploaded to Google

Drive so that it could be linked to Google Collaboration during

the process of establishing a dataset for FCNN algorithm

training. For training and performance testing, 38,780 pictures

were made of ground truth, as shown in Fig. 7. Here, 2,633 data

points were used as training data, while the remaining data were

used to test the performance of the FCNN algorithm. The

training data were considered sufficient to represent the real

conditions of the road, including straight sections and both right

and left turns.

Fig.7. The Process of Determining the Ground Truth

B. Road Recognition using the FCNN Algorithm

The training process was carried out to obtain an FCNN

model with good training graphics and a high degree of

accuracy. The road recognition process is shown in Fig. 8, in

which the process consists of two paths based on the color of the

arrows. The black arrows indicate the training process flow, and

the green arrows represent the testing process flow. In the

training, the original image or images (obtained from the road

recording process on the vehicle’s front camera) were resized to

320 × 320 following the FCNN architecture used to make the

training time more efficient. After resizing, the data were

formed into a dataset that was used in the training process. One

by one, the images in the dataset underwent a feedforward

process through the network of the FCNN architecture used.

After going through the network, the FCNN architecture

provided a prediction of the expected road area. This prediction

was then compared with the ground truth that had previously

been made using the VGG Image Annotator application. This

comparison process uses cross-entropy loss to obtain the error

value prediction of the model for ground truth. The error value

in the cross-entropy loss is used to optimize the model so that it

has a better predictive ability. This process is carried out with

an optimizer model, which is improved by giving new weights

to each network. The optimizers used consist of Adam, SGD,

SGD Nesterov’s accelerated gradient (NAG), and SGD

momentum. Meanwhile, the training is done in 100 epochs. The

flow of the evaluation process is marked with a green arrow, as

shown in Fig. 8, in which the original image has been resized to

match the input size in the FCNN architecture. The resized

image was input into the FCNN model, which contained the

FCNN architecture and the weights that had been trained on

each network. The FCNN model provided a prediction of the

recognized road area. The FCNN prediction output was then

DEVELOPMENT OF A MAPPING SYSTEM ON AN AUTONOMOUS VEHICLE … 281

resized back to its original size of 1920 × 1080. After resizing,

the image was compared with the ground truth to evaluate the

performance of FCNN by using a confusion metric. After

evaluation with the confusion metric, several parameters were

obtained, namely tp, tn, fp, and fn. These could then be used to

calculate the accuracy value and the area under the curve

(AUC).

Fig. 8. Road Recognition Process Flow

The evaluation process was carried out using the confusion

metric, as shown in Table I.

The equation for finding accuracy can be seen in (7), as follows

𝐴𝑈𝐶 =
1

2
(

𝑡𝑝

𝑡𝑝+𝑓𝑛
+

𝑡𝑛

𝑡𝑛+𝑡𝑝
) (7)

The AUC is the classifier’s ability to avoid misclassification. To

find a measure of the similarity and diversity between the

predicted image of the model and target image, an equation

known as the intersection over union (IoU) / Jaccard index was

used, as follows:

𝐼𝑜𝑈 =
𝑡𝑝

𝑡𝑝+𝑓𝑝+𝑓𝑛
 (8)

IV. RESULT AND DISCUSSION

At the beginning, the optimizers used consisted of Adam,

SGD, SGD NAG, and SGD momentum. At this point, the

training was done in 100 epochs. The errors of all optimizers

can be seen in Fig. 9.

Fig. 9. (a) Error Graph of Each Optimizer and (b) the Accuracy of Each

Optimizer

As shown in Fig. 9, the Adam optimizer had the most stable

ability in optimizing the model compared with other optimizers.

The Adam algorithm was capable of quickly overcoming error

fluctuations in the model and improving it rapidly. To overcome

these fluctuations, BN was performed with an architecture, as

shown in Fig. 10.

Fig. 10. FCNN Architecture with Batch Normalization.

In addition to the architecture of Fig. 10, the experiments

were also done by modifying the position of the layer for batch

normalization after the ReLU layer (Adam+BN2) and before the

ReLU layer (Adam +BN3). The results can be seen in Fig. 11.

Fig. 11. (a) Training Error with Modifying Position of Layer Batch

Normalization and (b) Accuracy of Training FCNN

The errors for the Adam + BN2 and Adam + BN3 architectures
were 0.0270 and 0.0268, respectively. The Adam + BN3
configuration performed better than the Adam + BN2
configuration but was not superior to architectures without
batch normalization or with only one batch normalization. With

one BN, the error value was 0.0264. This indicates that adding
more BNs led to larger error values. Thus, the architecture of
Adam with BN was later com-pared with Adam and SGD.
Meanwhile, the accuracy for each condition was almost equal,
which was 0.9825, 0.9873, 0.9872, and 0.9873 for Adam, Ad-
am+BN, Adam+BN2, and Adam + BN3, respectively. To

evaluate the proposed architecture, an accuracy metric was
used. In the present study, three optimizer models were used for
road recognition: Adam, SGD, and Adam with batch
normalization (Adam + BN). The accuracy test results are
shown in Fig. 12. The accuracy was calculated using the
confusion matrix, as shown in (7).

(a) (b)

(a) (b)

TABLE I

CONFUSION METRIC

Ground Truth

Classifier

Label Positive Negative

Positive

Negative

282 B.Y.SUPRAPTO, A. YOGTA, S. DWIJAYANTI

Fig. 12. Accuracy of Path Recognition per Frame on Test Data

Furthermore, road recognition testing can be carried out using

Adam, SGD, and the Adam + BN optimizer. Table II shows

road testing using the Adam optimizer. Table II shows that the

accuracy of the Adam optimizer was quite good, with an

average rate of 0.8207 or 82.07%. The introduction of the road

using the SGD optimizer is shown in Table III. Table III shows

that the accuracy of the SGD optimizer remained below that of

the Adam optimizer, with an average rate of 0.6121 or 61.21%.

Furthermore, Table IV shows an introduction to the road using

the Adam + BN optimizer.

Table III shows that the accuracy of the SGD optimizer

remained below that of the Adam optimizer, with an average

rate of 0.6121 or 61.21%.

Furthermore, Table IV shows an introduction to the road using

the Adam + BN optimizer Table IV shows that the accuracy in

using the Adam + BN optimizer had a rate of 0.7808 or 78.08%.

When viewed based on the accuracy shown in Fig. 6, the

comparison with the SGD model (with an accuracy of 0.6121)

with the Adam model (with an accuracy of 0.8207) and the

Adam + BN model obtained an accuracy of 0.7808, whereas the

performance of the Adam model was higher than that of SGD

and Adam + BN model. Likewise, with the accuracy interval,

the Adam optimizer model was far from SGD and Adam + BN,

as shown on the interval graph in Fig. 13. The Adam optimizer

accuracy value distribution was also collected at greater

accuracy points than SGD. This can also be seen in the AUC

values, as shown in Table V.

Fig. 13. Graph of Adam and SGD Testing Accuracy Intervals

TABLE II

ROAD RECOGNITION TESTING WITH ADAM

Frame Input Output
Ground

Truth
Accuracy

1

0.821269

2

0.82138

3

0.821328

4

0.820930

5

0.816804

6

0.822006

7

0.822126

8

0.819515

9

0.819595

10

0.822564

TABLE III

ROAD RECOGNITION TESTING WITH SGD

Frame Input Output
Ground

Truth
Accuracy

1

0.613821

2

0.614082

3

0.615135

4

0.61503

5

0.608452

6

0.609921

7

0.609539

8

0.611584

9

0.609429

10

0.61392

DEVELOPMENT OF A MAPPING SYSTEM ON AN AUTONOMOUS VEHICLE … 283

The model that successfully recognized the road features

(model from the Adam optimizer) was then used as the

observation object in the FastSLAM 2.0 algorithm, resulting in

a map, as shown in Fig. 14. The map formed with the proposed

algorithm was then compared with the map from Google Maps,

which showed several additional elements, such as buildings

and trees. The map formed by the proposed algorithm only

recognized road objects, so Google Maps needed to be

reconstructed to form a path that only showed the road on a

predetermined route. This reconstruction was carried out to

obtain a ground truth image showing the similarity of the map

formed by the proposed algorithm to Google Maps. The

reconstructed image and Google Maps are shown in Fig. 15.

 (a) Adam Model (b) Adam + BN Model (c) Ground Truth

Fig. 14. Formed Map Results

Fig. 15. Ground Truth and Google Maps

The map that was successfully formed was then compared with

the ground truth map using the confusion metric to obtain the

data shown in Table VI.

Based on the confusion matrix table, the IoU/Jaccard index

value could be calculated. The amount of IoU from the map

formed is 0.149. For maps formed with the Adam + BN model,

the IoU value is 0.159, which was better than the previous

model. This value was still not sufficient; however, in terms of

the route formed by the map, the proposed algorithm succeeded

in forming a map according to the specified route. This

weakness was because of the rel-atively low accuracy and wide

interval of the model used, which created noise in the

observation process of the FastSLAM 2.0 algorithm.

Nevertheless, this map obtained from the proposed method can

still be useful for determining the path planning for an

autonomous vehicle.

CONCLUSION

The FastSLAM 2.0 method combined with the FCNN model

succeeded in set-ting up a map similar to GPS-based Google

Maps. The performance of the algorithm proposed in the

formation of this map was still low, with an IoU value of 0.159

in the Adam + BN model. However, the best average rate of

accuracy during testing of the FCNN model was 82.07% and

78.08%, found in the Ad-am and Adam + BN models,

respectively. Further research will be carried out on the

application of this method to an autonomous vehicle on the same

route. In addition, further research should be done to consider

another algorithm, such as the smooth variable structure filter

(SVSF), which makes no assumptions on the noise’s properties

and face modeling errors and parameter uncertainties.

TABLE IV

ROAD RECOGNITION TESTING WITH THE ADAM + BN OPTIMIZER

Frame Input Output
Ground

Truth
Accuracy

1

0.799843

2

0.784479

3

0.792277

4

0.762074

5

0.782425

6

0.778963

7

0.753361

8

0.757267

9

0.797731

10

0.799843

TABLE V

EVALUATION OF THE FCNN ALGORITHM FOR ROAD RECOGNITION

Metric Adam Optimizer SGD

Optimizer

Adam + BN

Average

accuracy for

each frame

71.082% 60.641%

77.5847%

AUC 0.719781 0.694611783 0.803014072

TABLE VI

CONFUSION MATRIX MAP FORMED (ADAM MODEL)

Ground Truth

Label
Map of the proposed method

Positive Negative

Positive 1260 3567

Negative 3606 268467

284 B.Y.SUPRAPTO, A. YOGTA, S. DWIJAYANTI

REFERENCES

[1] H. Cheng, Autonomous intelligent vehicles: theory, algorithms, and

implementation. Springer Science & Business Media, 2011.

[2] H. Zhu, K.-V. Yuen, L. Mihaylova, and H. Leung, “Overview of

environment perception for intelligent vehicles,” IEEE Trans. Intell.

Transp. Syst., vol. 18, no. 10, pp. 2584–2601, 2017.

[3] A. Faisal, T. Yigitcanlar, M. Kamruzzaman, and G. Currie,
“Understanding autonomous vehicles: A systematic literature review on

capability, impact, planning and policy,” J. Transp. Land Use, vol. 12,

no. 1, pp. 45–72, 2019, doi: 10.5198/jtlu.2019.1405.

[4] Y. Yang, J. Xu, J. Zheng, and S. Lin, “Design and implementation of
campus spatial information service based on google maps,” in 2009

International Conference on Management and Service Science, 2009, pp.

1–4.

[5] G. Gramajo and P. Shankar, “Path-planning for an unmanned aerial
vehicle with energy constraint in a search and coverage mission,” in 2016

IEEE Green Energy and Systems Conference (IGSEC), 2016, pp. 1–6.

[6] M. M. Costa and M. F. Silva, “A Survey on Path Planning Algorithms

for Mobile Robots,” 19th IEEE Int. Conf. Auton. Robot Syst. Compet.

ICARSC 2019, pp. 448–468, 2019, doi: 10.1109/ICARSC.2019.8733623.

[7] H. Li and L. Zhijian, “The study and implementation of mobile GPS

navigation system based on Google Maps,” in 2010 International

Conference on Computer and Information Application, 2010, pp. 87–90.

[8] S. Li, “A method for building thematic map of GIS based on Google
Maps API,” in 2011 19th International Conference on Geoinformatics,

2011, pp. 1–4.

[9] Y.-C. Lee, S.-H. Park, W. Yu, and S.-H. Kim, “Topological map building

for mobile robots based on GIS in urban environments,” in 2011 8th
International Conference on Ubiquitous Robots and Ambient Intelligence

(URAI), 2011, pp. 790–791.

[10] S. Ambareesh, “Indoor navigation using QR code based on google maps

for ios,” in 2017 International Conference on Communication and Signal

Processing (ICCSP), 2017, pp. 1700–1705.

[11] H. Qin et al., “Autonomous Exploration and Mapping System Using

Heterogeneous UAVs and UGVs in GPS-Denied Environments,” IEEE

Trans. Veh. Technol., vol. 68, no. 2, pp. 1339–1350, 2019, doi:

10.1109/TVT.2018.2890416.

[12] X.-Y. Lin, L. Liu, and H.-Z. Luo, “Research on the Method of

Eliminating Gross Error of GPS Output Information,” in 2011 Fourth
International Conference on Information and Computing, 2011, pp. 46–

49.

[13] G. Li, H. Bao, B. Wang, and T. Wu, “Kernelised Rényi Distance for

Localization and Mapping of Autonomous Vehicle,” in 2017 13th
International Conference on Computational Intelligence and Security

(CIS), 2017, pp. 69–72.

[14] D. Kumiawan, A. N. Jati, and U. Sunarya, “A study of 2D indoor

localization and mapping using FastSLAM 2.0,” in 2016 International
Conference on Control, Electronics, Renewable Energy and

Communications (ICCEREC), 2016, pp. 152–156.

[15] X. Xie, Y. Yu, X. Lin, and C. Sun, “An EKF SLAM algorithm for mobile

robot with sensor bias estimation,” in 2017 32nd Youth Academic Annual
Conference of Chinese Association of Automation (YAC), 2017, pp. 281–

285.

[16] Z. Kurt-Yavuz and S. Yavuz, “A comparison of EKF, UKF, FastSLAM2.

0, and UKF-based FastSLAM algorithms,” in 2012 IEEE 16th
International Conference on Intelligent Engineering Systems (INES),

2012, pp. 37–43.

[17] K. Matsuo and J. Miura, “Outdoor visual localization with a hand-drawn

line drawing map using fastslam with pso-based mapping,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,

2012, pp. 202–207.

[18] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based

fully convolutional networks,” in Advances in neural information

processing systems, 2016, pp. 379–387.

[19] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with fully

convolutional networks,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 3119–3127.

[20] H. Li, A. Li, and M. Wang, “A novel end-to-end brain tumor
segmentation method using improved fully convolutional networks,”

Comput. Biol. Med., vol. 108, pp. 150–160, 2019.

[21] B. Y. Suprapto and B. Kusumoputro, “Optimized neural network-direct
inverse control for attitude control of heavy-lift hexacopter,” J.

Telecommun. Electron. Comput. Eng., vol. 9, no. 2–5, 2017.

[22] E. Yuniarti, N. Nurmaini, B. Y. Suprapto, and M. N. Rachmatullah,

“Short Term Electrical Energy Consumption Forecasting using RNN-

LSTM,” in 2019 International Conference on Electrical Engineering and

Computer Science (ICECOS), 2019, pp. 287–292.

[23] G. Gojić, R. Turović, D. Dragan, D. Gajić, and V. Petrović, “Automatic

Corrections of Human Body Depth Maps using Deep Neural Networks,”
SERBIAN J. Electr. Eng., vol. 17, no. 3, pp. 285–296, 2020, doi:

https://doi.org/10.2298/SJEE2003285G.

[24] S. Zhou, J. Gong, G. Xiong, H. Chen, and K. Iagnemma, “Road detection

using support vector machine based on online learning and evaluation,”

in 2010 IEEE intelligent vehicles symposium, 2010, pp. 256–261.

[25] M. V. G. Aziz, A. S. Prihatmanto, and H. Hindersah, “Implementation of

lane detection algorithm for self-driving car on toll road cipularang using

Python language,” in 2017 4th International Conference on Electric

Vehicular Technology (ICEVT), 2017, pp. 144–148.

[26] H. Park, “Implementation of lane detection algorithm for self-driving

vehicles using tensor flow,” in International conference on innovative

mobile and internet services in ubiquitous computing, 2018, pp. 438–447.

[27] J. Zang, W. Zhou, G. Zhang, and Z. Duan, “Traffic lane detection using

fully convolutional neural network,” in 2018 Asia-Pacific Signal and

Information Processing Association Annual Summit and Conference

(APSIPA ASC), 2018, pp. 305–311.

[28] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping problem,”

Aaai/iaai, vol. 593598, 2002.

[29] C.-C. Hsu, C.-K. Yang, Y.-H. Chien, Y.-T. Wang, W.-Y. Wang, and C.-

H. Chien, “Computationally efficient algorithm for vision-based
simultaneous localization and mapping of mobile robots,” Eng. Comput.,

2017.

[30] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization

and mapping that provably converges,” in IJCAI, 2003, pp. 1151–1156.

[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 3431–3440.

[32] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

39, no. 4, pp. 640–651, 2016.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv Prepr. arXiv1412.6980, 2014.

[34] P. Golik, P. Doetsch, and H. Ney, “Cross-entropy vs. squared error
training: a theoretical and experimental comparison.,” in Interspeech,

2013, vol. 13, pp. 1756–1760.

