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Abstract—In this paper, an adaptive event-triggered 

control approach for a class of unknown dynamics networked 

stringent feedback nonlinear systems is developed. The 

approximation of system uncertainties by a wavelet neural 

network (WNN) frequently presents a significant obstacle in 

the development of a precise control strategy. In order to 

guarantee the specified system performance and Zeno-free 

behaviour of networked control systems, we build an adaptive 

event triggering mechanism that is enhanced with WNN and 

outfitted with predetermined event triggering circumstances. 

In order to ensure the uniform ultimate boundedness (UUB) of 

all closed loop signals, the controller works to reduce the 

amount of information exchanged between the sensor and the 

controller. We offer numerical simulations to demonstrate the 

efficiency of the suggested plan. 

Keywords—Networked control systems; Event triggered 

control; Zeno behaviour; Wavelet neural network 

I. INTRODUCTION 

ETWORKED control systems can be considered as one 

of the notable dimensions of contemporary control 

systems. In network control systems information exchange 

between various components of the closed loop control 

system is carried out through a communication network. This 

realm of the control systems allows the control of various tele 

operated dynamical systems like mining robots etc. The 

extension of this idea can be viewed in terms of cooperative 

control systems, cyber physical systems, IIOT etc.  

Control over a communication network has enhanced the 

applicability areas of control systems but is also associated 

with issues like reliability, security, limited bandwidth, 

latency, and others. These issues of concern often demand 

modified control strategies instead of the classical control 

laws [1].  

Limited channel bandwidth often detunes the system 

performance and sometimes even leads to system instability. 
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Event triggered control schemes can be viewed as one 

effective strategy to deal with the constraints imposed by 

limited network resources such as channel bandwidth. In 

event control schemes, system dynamics-based event 

mechanisms are designed for the allocation of network 

resources and whenever the system conditions violate some 

prescribed performance criteria, event, command signals are 

updated by allowing the information exchange between the 

sensor and controller. Thus, the information is transmitted 

only discrete instants and between two consecutive instants 

the channel resources are free. This technique is particularly 

useful in the case of network resource sharing and optimum 

utilization of resources [2-6].  

Event triggering mechanisms are required to be carefully 

designed in order to avoid Zeno behaviour which denotes the 

infinite number of triggering in finite time. Zeno behaviour is 

a devastating phenomenon for practical systems as it requires 

the system components to undergo high frequency switching 

resulting in phenomenon like chattering and even device 

breakdown and so is required to be avoided. The presence of 

complicacies like unmodelled dynamics, external disturbances 

make the system dynamics highly sensitive to Zeno behaviour 

and triggering mechanisms for such systems are required to 

guarantee the avoidance of Zeno behaviour. [2-11]   

Effectiveness of the control law mainly relies on the 

accuracy of the mathematical model of system. However, it 

appears a non-trivial task to obtain mathematical model of a 

real time dynamical system with a prescribed level of 

accuracy when such systems are associated with complicated 

system dynamics which are difficult to be derived 

mathematically. There always exists a discrepancy between 

the real time system and a model developed under these 

conditions. These discrepancies are usually reflected in the 

performance of real time system controlled by using the 

control law developed by using the mathematical model. Semi 

generic approach of control law development has been proved 

highly effective under these circumstances, these control 

terms are augmented with approximation tools like neural 

networks, wavelet networks which are used to model the 

system uncertainties accurately. These tools work on the 

principle of Weierstrass approximation theorem which 

provides an analytical statement about the capability of 

polynomial families to approximate any continuous nonlinear 

function and can be considered as the truncated version of the 
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analytical functions. Wavelet families illustrate the accurate 

approximation capability due to distinguished characteristics 

of orthonormality and multiresolution. Wavelet networks 

have been successfully used as approximation tools in several 

adaptive control schemes by appropriately aggregating the 

baseline control with wavelet network. These adaptive control 

terms are not only useful under the conditions of 

uncertainties, but also expand the applicability of the control 

law for the systems with similar dynamics.  

Due to universal approximation capability and parsimonious 

structure, this work utilizes wavelet neural network for 

function approximation. [12-19].  

The major contribution of this paper is the Zeno free 

adaptive event triggered control scheme for effective control 

of networked nonlinear system with unmodelled dynamics 

and limited network resources.  

The rest of the paper is structured as follows: Section II 

presents the system preliminaries, mathematical model of the 

system, approximation aspects of wavelet networks are 

discussed in this section. Section III presents controller design 

along with event triggering mechanism designed to 

incorporate with control scheme. Section IV details the 

stability aspects of the closed loop system. Section V verifies 

the existence of lower bound between two consecutive 

triggering. Section VI illustrates a simulation study whereas 

section VII presents a conclusion. 

II. SYSTEM PRELIMINARIES 

A. Mathematical model of the System 

Consider the following form of strict feedback nonlinear 

system with uncertain dynamics  

{

�̇�𝑖 = 𝑥𝑖+1      ; 𝑖 = 1, 𝑛 − 1

�̇�𝑛 = 𝑓(𝑥) + 𝑢
𝑦 = 𝑥1

   (1) 

    where 𝑥 = [𝑥1 ⋯ 𝑥𝑛]𝑇 ∈ 𝑅𝑛  are the system states, 

𝑢 ∈ 𝑅is the control input, 𝑦 ∈ 𝑅 is the system output while 

the nonlinear function  𝑓(𝑥): 𝑅𝑛 → 𝑅  represents the system 

uncertainty satisfying Assumption 1.  

Strict feedback nonlinear model is an effective way of 

nonlinear system modelling, several nonlinear systems like 

flexible link robots, inverted pendulum, ball and beam can be 

modelled in this form. A remarkable feature of this modelling 

is the insurance of input to state stabilizability and existence 

of stabilizing feedback control law.  

Objective is to design an adaptive event triggered control 

with event triggering conditions so that the system error 

dynamics converge to a compact set 𝛺𝑟 ⊂  𝑅  including origin 

and at the same time system behaviour is Zeno free.    

Assumption 1: System uncertainty is Lipschitz 
continuous on every compact set 𝑆𝑥 ⊂  𝑅𝑛  satisfying the 

following property 

|𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘))| ≤ 𝐿{∑ |𝑥𝑖(𝑡) − 𝑥𝑖(𝑡𝑘)|𝑛
𝑖=1 } (2) 

where 𝐿 > 0 is the Lipschitz constant. 

Assumption 2: Reference signal 𝑦𝑑(𝑡) ∈ 𝑅  and its 

derivatives up to (𝑛 − 1)𝑡ℎ order {𝑦𝑑(𝑡), 𝑦�̇�(𝑡), 𝑦�̈�(𝑡), … } are 

bounded and known. 

B. Wavelet Network 

Wavelet networks can be viewed as effective and 

parsimonious network structures for function approximation. 

One of the appealing features of wavelet networks is the use 

of orthonormal wavelet functions which satisfy the norms of 

multiresolution analysis as activation functions.  In this work, 

wavelet neural network is used to estimate the uncertain 

square integrable functions 𝑓(𝑥) ∈ 𝐿2(𝑅)  defined on a 

compact set of state trajectories 𝑆𝑥 ⊂  𝑅𝑛 . Wavelet network 

representation of any signal 𝑓(𝑥) can be expressed as 

𝑓(𝑥) = ∑ 𝛼𝐽0,𝑘

𝐾𝐽𝑜
𝑘=1,2,… 𝜑𝐽0,𝑘

(𝑥) + ∑ ∑ 𝛽𝑗,𝑘𝜓𝑗,𝑘(𝑥)
𝐾𝑗

𝑘=1,2…
𝐽
𝑗=𝐽0,

  

 (3) 

where [𝐽0 , 𝐽] ∈ 𝑍2  represent the coarsest and finest 

resolution level, 𝐾𝑗 ∈ 𝑍 is the number of translates at a given 

resolution level.  

While 𝛼𝐽0,𝑘
and 𝛽𝑗,𝑘  are the weights of scaling function  

𝜑𝐽0,𝑘
(𝑥)  and wavelet function  𝜓𝑗,𝑘(𝑥)  respectively. Any 

wavelet function satisfying the norms of multiresolution 

analysis and its associated scaling function can be used.   

Lemma1:  There exist an unknown but finite value of 𝐽 

and 𝐾𝑗  such that any unknown nonlinear function 𝑓(𝑥) ∈

𝐿2(𝑅 )   defined on a compact set 𝑆𝑥 ⊂  𝑅𝑛 can be 

approximated with prescribed accuracy.  

 Thus, for a given constant 0 < 𝜖 < |𝜖𝑚|  there exist 

optimum weight values 𝛼𝐽0,𝑘
∗  and 𝛽𝑗,𝑘

∗ such that 

𝑠𝑢𝑝
𝑆𝑥⊂ 𝑅𝑛 |𝑓(𝑥) − {∑ 𝛼𝐽0,𝑘

∗𝐾𝐽𝑜
𝑘=1,2,… 𝜑𝐽0,𝑘

(𝑥) +

             ∑ ∑ 𝛽𝑗,𝑘
∗ 𝜓𝑗,𝑘(𝑥)

𝐾𝑗

𝑘=1,2…
𝐽
𝑗=𝐽0,

}|  ≤ 𝜖     (4)  

Considering �̂�𝐽0,𝑘
  and �̂�𝑗,𝑘  as the estimates of 𝛼𝐽0,𝑘

∗   and  

𝛽𝑗,𝑘
∗  , wavelet network estimate of the function 𝑓(𝑥) can be 

expressed as 

𝑓(𝑥) = ∑ �̂�𝐽0,𝑘

𝐾𝐽𝑜

𝑘=1,2,…

𝜑𝐽0,𝑘
(𝑥) + ∑ ∑ �̂�𝑗,𝑘𝜓𝑗,𝑘(𝑥)

𝐾𝑗

𝑘=1,2…

𝐽

𝑗=𝐽0,

 

 (5) 

With estimation error defined as 

𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑥) = ∑ �̃�𝐽0,𝑘

𝐾𝐽𝑜
𝑘=1,2,… 𝜑𝐽0,𝑘

(𝑥) +

∑ ∑ 𝛽𝑗,𝑘𝜓𝑗,𝑘(𝑥) +  𝜖
𝐾𝑗

𝑘=1,2…
𝐽
𝑗=𝐽0,

=   �̃�𝑇𝜑(𝑥) +  𝛽𝑇𝜓(𝑥) + 𝜖   

 (6) 

where �̃�𝐽0,𝑘
= 𝛼𝐽0,𝑘

∗ − �̂�𝐽0,𝑘
   and 𝛽𝑗,𝑘 = 𝛽𝑗,𝑘

∗ − �̂�𝑗,𝑘 

By developing appropriate update laws for weight value 

updation weight estimation error can be reduced to arbitrarily 

small value.So due to the universal approximation property of 

wavelet networks, with enough resolutions and translates, the 

estimation error can be confined to a compact set so that 

|𝑓(𝑥)| < 𝐹 for  ∀𝑥 ∈ 𝑆𝑥 ⊂ 𝑅𝑛[15,17]. 

For multidimensional cases, wavelet and scaling functions 

are obtained by performing the tensor product of single 
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dimensional scaling and wavelet functions in different 

dimensions, for example [15] 𝜓𝑗,𝑘(𝑥) =

∏ 𝜓𝑗,𝑘(𝑥𝑖)
𝑛
𝑖=1 ;𝜓𝑗,𝑘(𝑥) = ∏ 𝜓𝑗,𝑘(𝑥𝑖)𝑛

𝑖=1  

III. ADAPTIVE CONTROLLER DESIGN  

This section details the designing of adaptive controller, 

weight update laws and event triggering conditions for 

effective implementation of closed loop system.  

A. Controller Design 

Defining error terms for the system of form (1) 

{

𝑒1 = 𝑥1 − 𝑦𝑑

𝑒2 = 𝑥2 − 𝑦�̇�

𝑒𝑛  = 𝑥𝑛 − 𝑦
𝑛−1

𝑑

    (7) 

 

Differentiation of these error terms along the system 

trajectories leads to the following error dynamics 

{

𝑒1̇ = 𝑒2

𝑒2̇ = 𝑒3

⋮

𝑒�̇� = 𝑓(𝑥) + 𝑢 − 𝑦
𝑛

𝑑

 (8) 

Defining the filtered tracking error as 

𝑟 = 𝑘1𝑒1 + 𝑘2𝑒2 + ⋯ + 𝑒𝑛    (9) 

where 𝑘𝑖 , (𝑖 = 1,2, … 𝑛 − 1) are positive constants 

Differentiation of (8) and subsequent substitutions 

ultimately leads to the control law of the form (10)  

�̇� = 𝑘1𝑒2 + 𝑘2𝑒3 + ⋯ + 𝑓(𝑥) + 𝑢 − 𝑦
𝑛

𝑑    (10) 

𝑢 = − {𝑘1𝑒2 + 𝑘2𝑒3 + ⋯ + 𝑘𝑛−1𝑒𝑛 + 𝑓(𝑥) − 𝑦
𝑛

𝑑 + 𝑘𝑟}   (11) 

here 𝑘  is a positive constant whereas 𝑓(𝑥)  (5) is the 

wavelet network estimate of the uncertain term 𝑓(𝑥).    

The control term (11) updates itself in a continuous way 

and its application in networked system will result in 

continuous allocation of network resources. This control 

scheme can be considered optimum from the point of view of 

limited network resources and resource sharing. Next 

subsection details the event triggering based modifications in 

(11) so that the updates are carried out only at stipulated 

instants known as triggering instants [5].  

B. Event Triggering  

In order to implement the event triggering strategy, 

control term (11) is redefined as 

𝑣(𝑡) = 𝑢(𝑡𝑘)𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1]; 𝑘 ∈ 𝑍   (12) 

here 𝑡𝑘𝑎𝑛𝑑𝑡𝑘+1  can be viewed as the current and next 

triggering instants and between these two instants control 

term is held constant. Thus 𝑣(𝑡) (12) can be viewed as the 

event triggered version of control term 𝑢(𝑡) (11).  

Control term (12) be defined by considering the control 

term (11) at the update instant 𝑡𝑘   i.e. at 𝑡 = 𝑡𝑘 

𝑣(𝑡) = 𝑢(𝑡𝑘) = − {𝑘1𝑒2(𝑡𝑘) + 𝑘2𝑒3(𝑡𝑘) + ⋯ +

𝑘𝑛−1𝑒𝑛(𝑡𝑘) + 𝑓(𝑥(𝑡𝑘)) − 𝑦
𝑛

𝑑(𝑡𝑘) + 𝑘𝑟(𝑡𝑘)}  (13) 

The term is held constant until a predefined event 

triggered criteria is not violated. All the components of 

control term (13) are updated only at the triggering instants so 

the weights of the wavelet estimation term 𝑓(𝑥(𝑡𝑘))  are also 

updated at these instants only.  

The rest of this subsection describes the development of 

triggering criterions to control the update instants of the 

control term (12). These designs mainly emphasize on system 

stability and prescribed performance accuracy [5].   

Assuming that the last update was carried out at instant 𝑡𝑘 

and next update will be carried out at 𝑡𝑘+1. Defining an error 

term of the form 

𝑒∆(𝑡) = ∑|𝑒𝑖(𝑡) − 𝑒𝑖(𝑡𝑘)|

𝑛

𝑖=1

∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) 

The term reflects the dispersion between values used in 

control laws and the values which should have been used. 

Whenever the dispersion exceeds a specific limit updation 

will occur,  

𝑒∆(𝑡) ≥ 𝑚1  (14) 

where 𝑚1  is the threshold for updation. Thus, triggering 

instant can be defined as 

𝑡𝑘+1
′ = 𝑖𝑛𝑓{𝑡 ≥ 𝑡𝑘; 𝑒∆ ≥ 𝑚1}                          (15) 

Similarly, another criterion considered is 

𝑒𝜃(𝑡) = ∑ |𝑥𝑖(𝑡) − 𝑥𝑖(𝑡𝑘)|𝑛
𝑖=1 ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1)  (16) 

with, triggering condition and update instants defined as 

𝑒𝜃(𝑡) ≥ 𝑚2        (17) 

𝑡𝑘+1
′′ = 𝑖𝑛𝑓{𝑡 ≥ 𝑡𝑘; 𝑒𝜃 ≥ 𝑚2}      (18) 

With these update conditions, next triggering instant will 

be defined as 

𝑡𝑘+1 = 𝑖𝑛𝑓{𝑡𝑘+1
′  , 𝑡𝑘+1

′′ }       (19) 

Next section establishes the stability of closed loop 

system.   

IV. STABILITY ANALYSIS 

This section analyzes the stability issues of the closed loop 
system. Analysis is carried out at update instant and for the 
duration between two consecutive updates [5].   
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A. Stability Analysis at update instant 

Considering the update instant 𝑡 = 𝑡𝑘  , at this instant all 

the control term components and subsequently the control 

term (12) is updated as 

𝑣(𝑡) = 𝑢(𝑡𝑘) = − {𝑘1𝑒2(𝑡𝑘) + 𝑘2𝑒3(𝑡𝑘) + ⋯ + 𝑘𝑛−1𝑒𝑛(𝑡𝑘)

+ 𝑓(𝑥(𝑡𝑘)) − 𝑦
𝑛

𝑑(𝑡𝑘) + 𝑘𝑟(𝑡𝑘)} 

Consider a Lyapunov function of the form 

𝑉 =
1

2
{𝑟2 + �̃�𝑇�̃� + 𝛽𝑇𝛽}   (20) 

Differentiating it along the trajectories of the system 

�̇� = 𝑟�̇� + �̃�𝑇 �̇̃� +  𝛽𝑇�̇�     (21) 

Substitution of error dynamics (9) and control term (12) 

results in  

�̇� = 𝑟(𝑡𝑘){𝑓(𝑥(𝑡𝑘)) − 𝑘𝑟(𝑡𝑘)} +  �̃�𝑇�̇̃� +  𝛽𝑇�̇� 

�̇� = 𝑟(𝑡𝑘){�̃�𝑇𝜑(𝑥(𝑡𝑘)) +  𝛽𝑇𝜓(𝑥(𝑡𝑘)) + 𝜖 − 𝑘𝑟(𝑡𝑘)} +

 �̃�𝑇 �̇̃� +  𝛽𝑇�̇�         

 (22) 

With the following update rules, above equation becomes    

{
�̇̃� = −𝑟(𝑡𝑘)𝜑(𝑥(𝑡𝑘))

�̇� =  −𝑟(𝑡𝑘)𝜓(𝑥(𝑡𝑘))
             (24) 

�̇� = −𝑘𝑟2(𝑡𝑘) + 𝜖𝑟(𝑡𝑘)    (25)  

Thus, at the update instant all the closed loop signals are 

bounded and �̇� is negative outside a compact set defined as    

𝛺𝑟 =  {𝑟(𝑡𝑘)||𝑟(𝑡𝑘)| ≤
𝜖

𝑘
}     (26)  

B. Stability Analysis between two consecutive update 

instants 

This subsection displays the stability condition at an 

instant lying between two consecutive triggering instants. In 

this duration control term and all its components are held 

constant.  

Consider a Lyapunov function defined at some instant 𝑡 ∈
(𝑡𝑘, 𝑡𝑘+1) 

𝑉 =
1

2
𝑟2 (𝑡)   (27) 

Differentiating (27) and carrying out subsequent 

substitution   

�̇� = 𝑟(𝑡)𝑟(𝑡)̇  

�̇� = 𝑟(𝑡) {𝑘1𝑒2(𝑡) + 𝑘2𝑒3(𝑡) + ⋯ + 𝑓(𝑥(𝑡)) + −𝑦
𝑛

𝑑(𝑡)} (28) 

At this instant, control term is equal to its last updated 

value i.e. 𝑢(𝑡𝑘). Substituting the control term (12) 

�̇� = 𝑟(𝑡) {𝑘1𝑒2(𝑡) + 𝑘2𝑒3(𝑡) + ⋯ + 𝑓(𝑥(𝑡)) ± 𝑦
𝑛

𝑑(𝑡)}

− 𝑟(𝑡) {𝑘1𝑒2(𝑡𝑘) + 𝑘2𝑒3(𝑡𝑘) + ⋯

+ 𝑘𝑛−1𝑒𝑛(𝑡𝑘) + 𝑓(𝑥(𝑡𝑘)) − 𝑦
𝑛

𝑑(𝑡𝑘)

+ 𝑘𝑟(𝑡𝑘)} 

Inserting the term {𝑘𝑟(𝑡) − 𝑘𝑟(𝑡)} in above equation and 

rearranging the terms  

 

 

�̇� = 𝑟(𝑡) {−𝑘𝑟(𝑡) + 𝑘𝑘1(𝑒1(𝑡) −  𝑒1(𝑡𝑘))

+ ∑(𝑘𝑘𝑖 + 𝑘𝑖−1)(𝑒𝑖(𝑡) −  𝑒𝑖(𝑡𝑘))

𝑛−1

𝑖=2

+ (𝑘 + 𝑘𝑛−1)(𝑒𝑛(𝑡) − 𝑒𝑛(𝑡𝑘))

+  (𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘)))

+ (𝑦
𝑛

𝑑(𝑡𝑘) − 𝑦
𝑛

𝑑(𝑡))} 

 

Considering the following mathematical substitutions for 

transforming the above equation into a conclusive form 

(𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘)))

= (𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘)))

+ (𝑓(𝑥(𝑡𝑘)) − 𝑓(𝑥(𝑡𝑘)))

=  (𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘))) + 𝑓(𝑥(𝑡𝑘)) 

and  

𝜌 = 𝑠𝑢𝑝 {𝑘𝑘1, (𝑘𝑘2 +  𝑘1), (𝑘𝑘3 + 𝑘2), … , (𝑘 + 𝑘𝑛−1)} 

�̇� ≤ 𝑟(𝑡) {−𝑘𝑟(𝑡) + 𝜌 ∑(𝑒𝑖(𝑡) − 𝑒𝑖(𝑡𝑘))

𝑛

𝑖=1

+ (𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘))) +  𝑓(𝑥(𝑡𝑘))

+ (𝑦
𝑛

𝑑(𝑡𝑘) − 𝑦
𝑛

𝑑(𝑡))} 
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�̇� ≤ 𝑟(𝑡) {−𝑘𝑟(𝑡) + 𝜌 ∑|(𝑒𝑖(𝑡) −  𝑒𝑖(𝑡𝑘))|

𝑛

𝑖=1

+ |(𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘)))| + |𝑓(𝑥(𝑡𝑘))|  

+ |(𝑦
𝑛

𝑑(𝑡𝑘) − 𝑦
𝑛

𝑑(𝑡))|} 

�̇� ≤ 𝑟(𝑡) {−𝑘𝑟(𝑡) + 𝜌 ∑ |(𝑒𝑖(𝑡) −  𝑒𝑖(𝑡𝑘))|𝑛
𝑖=1 +

𝐿 ∑ |𝑥𝑖(𝑡) − 𝑥𝑖(𝑡𝑘)|𝑛
𝑖=1 + |𝑓(𝑥(𝑡𝑘))|  + |(𝑦

𝑛

𝑑(𝑡𝑘) − 𝑦
𝑛

𝑑(𝑡))|}              

 (29) 

Event triggering conditions considered in this work 

imposes an upper bound on some components of above 
equation 

∑ |(𝑒𝑖(𝑡) − 𝑒𝑖(𝑡𝑘))| ≤ 𝑚1
𝑛
𝑖=1    (30) 

∑ |𝑥𝑖(𝑡) − 𝑥𝑖(𝑡𝑘)| ≤ 𝑚2
𝑛
𝑖=1   (31) 

Also, as per the assumption 2 desired trajectory and its 

derivatives are bounded so 

|(𝑦
𝑛

𝑑(𝑡𝑘) − 𝑦
𝑛

𝑑(𝑡))| ≤ 𝑚3      (32) 

The term 𝑓(𝑥(𝑡𝑘)) represents the estimation error of the 

wavelet network at the instant of updation and proved in 
pervious subsection all the closed loop signals are 
bounded at the update instants and so it is justifiable to 
assume that 

|𝑓(𝑥(𝑡𝑘))| ≤ 𝑚4        (33) 

where 𝑚3 and 𝑚4 are positive constants. 
These justifications, thus lead to following equation  

�̇� ≤ 𝑟(𝑡){−𝑘𝑟(𝑡) + 𝜌𝑚1 + 𝐿𝑚2 + 𝑚4  + 𝑚3}  (34) 

Thus, �̇� is negative outside a compact set defined as 

𝛺𝑟 =  {𝑟(𝑡𝑘)||𝑟(𝑡𝑘)| ≤
𝜗

𝑘
}            (35) 

where 𝜗 = 𝜌𝑚1 + 𝐿𝑚2 + 𝑚4  + 𝑚3 . By optimally setting 
the constants this set can be reduced to an arbitrarily 
small value.  

Thus, for the closed loop system containing the dynamics 

(1), event triggered control strategy (12) with wavelet 

estimator and update laws (24), all the closed loop signals are 

ultimate upper bounded. Boundedness of the closed loop 

signals under the action of event triggered strategy is ensured 

at update instant as well as for the duration between the two 

consecutives updates.  

Also, �̇� ∈ 𝐿∞ at 𝑡 = 𝑡𝑘 ; 𝑘 ∈ 𝑍+  implies that the 

considered Lyapunov function is bounded and continuous 

over the entire time span i.e.   

{𝑉(𝑡)|𝑉(𝑡) ∈ 𝐶; 𝑉(𝑡) ≤ 𝑉(0)} ; ∀𝑡 ∈  [0, ∞) (36) 

Next section explores the issue of the existence of finite 

inter-execution time.  

V. INTER-EXECUTION TIME 

This section presents the analytical proof for the existence 

of finite time duration between two consecutive update 

instants. 

For the closed loop system under consideration, for a 

compact set 𝑆𝑥 ⊂  𝑅𝑛  there exist a positive constant ∆𝑡 such 

that inter-execution time is lower bounded by this value i.e. 

(𝑡𝑘+1 − 𝑡𝑘) ≥ ∆𝑡         (37) 

Considering the event triggering mechanisms (30, 31) 

𝑒∆(𝑡) = ∑|𝑒𝑖(𝑡) − 𝑒𝑖(𝑡𝑘)|

𝑛

𝑖=1

 

𝑒𝜃(𝑡) = ∑|𝑥𝑖(𝑡) − 𝑥𝑖(𝑡𝑘)|

𝑛

𝑖=1

∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) 

Their differentiation results in 

�̇�∆(𝑡) = ∑ �̇�𝑖(𝑡)𝑠𝑔𝑛(𝑒𝑖(𝑡) − 𝑒𝑖(𝑡𝑘)

𝑛

𝑖=1

 ≤  ∑|�̇�𝑖(𝑡)|

𝑛

𝑖=1

 

�̇�𝜃(𝑡) = ∑ �̇�𝑖(𝑡)𝑠𝑔𝑛(𝑥𝑖(𝑡) − 𝑥𝑖(𝑡𝑘))

𝑛

𝑖=1

≤ ∑|�̇�𝑖(𝑡)|

𝑛

𝑖=1

 

As all the closed loop signals, system nonlinearities are 

bounded and continuous (36), it implies that  

�̇�∆(𝑡) ∈ 𝐿∞                 (38) 

�̇�𝜃(𝑡) ∈ 𝐿∞             (39) 

Thus, it requires a finite time for these triggering 

mechanisms to make transition to next update state.   

Let there exist positive constants 𝑑1  and 𝑑2 such that  

{𝑡𝑘+1 − 𝑡𝑘} ≥ 𝑚𝑖𝑛 {
𝑚1

𝑑1
,

𝑚2

𝑑2
}      (40) 

Thus, there exists a positive lower bound on inter-

execution time and so Zeno behaviour can be successfully 

avoided [5-7].   

Next section will illustrate the effectiveness of the control 

design with the help of simulation study. 

VI. SIMULATION 

In this section, a simulation study is demonstrated to 

verify the effectiveness of the event triggered control scheme. 

Simulation is carried out using following system dynamics  
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{
�̇�1 =  𝑥2

�̇�2 =  𝑓(𝑥) + 𝑢
   (41) 

where 𝑓(𝑥) = 1.25 sin(𝑥1𝑥2) + 1.1𝑥1
2(1 − 𝑥2)  is the 

nonlinear dynamics which is considered as system uncertainty 

and approximated by a wavelet network.   

Considered dynamics belongs to the class of strict 

feedback systems (1) considered for controller development 

(12,13). Proposed event triggered control scheme (12) and 

wavelet network tuning laws (24) are applied to the system 

(41) to solve the tracking and regulation problem of the 

system.  

The Daubechies wavelet (db2) with 𝑛 = 2 is utilised to 

build the wavelet network that serves as the estimator. The 

coarsest and finest resolution levels are chosen to be 1 and 3, 

respectively. Three translations are performed at the coarsest 

resolution level, and whenever the resolution is increased by 

one, the number of translations is doubled. 

Network weight adjustment is carried out using tunning 

laws (26 and 43) and initial setting for parameters is taken as 

zero. Updates are carried out only at triggering instants.   

Two simulation cases are studied. The first case of the 

simulation displays the tracking performance of the system 

whereas second case illustrates the regulatory performance. 

For case one, simulation is conducted with following initial 

condition and gain settings 

𝑥(0) = [0.3 0]𝑇 ;  𝑘1 = 3.42 ;  𝑘 = 2.42 

Desired trajectory is taken as 

𝑦𝑑 = 1.5sin (𝑡)  (42) 

Results of the simulation are shown in Fig. 1 and 2. 

Figures reveal the system performance and quality of the 

control input. As per the event triggered methodology, control 

updates are carried out at discrete instants on the violation of 

triggering mechanisms. Following (14), triggering threshold is 

selected as 𝑚1 =  0.95. As clear from the figure, system state 

closely tracks the desired trajectory, and the tracking error is 

bounded within the small bounds. As far as the control policy 

is concerned, acceptable control quality with successful 

avoidance of Zeno behaviour is achieved. Fig. 2 depicts the 

zoom of control input with clear display of triggering instants. 

Also, as clear from the figure, event triggered control term 

evolved here is free from Zeno behaviour with a minimum 

and maximum inter-execution interval about  0.09 𝑠𝑒𝑐  and 

0.442 𝑠𝑒𝑐  respectively with average number of update 

instants around 9 over a duration of 2 𝑠𝑒𝑐.  

Second case of the simulation displays the regulatory 

performance of the system (41) with control law (12, 14), 

following initial condition and gain settings are taken for 

simulation  

𝑥(0) = [0.3, 0]𝑇 ; 𝑘1 = 1.3 ;  𝑘 = 2.2 

Triggering threshold is selected as 𝑚1 =  0.65.  

 

 
Fig. 1. Trajectory tracking performance (a) State and desired trajectories,  

(b) control effort, (c) tracking error 

 
Fig.2. Extended view of control effortfor trajectory tracking 

As revealed from Fig. 3, effective regulation is achieved 

with error converging to the bounds of the order 0.15. Also, 

the control term shown (Fig. 3 and Fig. 4) displays a Zeno 

free behaviour with a minimum inter-execution time of 

0.08 𝑠𝑒𝑐 and a maximum value of 0.25 𝑠𝑒𝑐. Average number 

of update instants around 13  over a duration of 2 𝑠𝑒𝑐 . 

Comparison of two cases displays the effect of threshold 

magnitude on system performance, higher threshold proves 

greater inter execution time however at the expense of system 

detuning. Thus, there is a trade-off between the system 

performance and optimal utility of network resources. 
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Fig. 3. Regulatory performance (a) State trajectory, (b) Control signal,  

(c) state error 

 

Fig. 4. Extended view of control effortfor regulation 

Finally, system performance and control quality clearly 

observed in both the cases reflects the acceptability of the 

event triggered control scheme (12, 14) for the strict feedback 

nonlinear systems (41) configured in closed loop over a 

communication channel with finite resources.   

VII. CONCLUSION 

This paper presents an event triggered adaptive control 

scheme for strict feedback uncertain systems. To implement 

the concept of event triggering, event triggering mechanisms   

are designed which ensure prescribed system performance 

with Zeno free behaviour. There exist a nonzero value of 

minimum inter-execution time ensuring the feasibility of the 

control term. Unknown nonlinear dynamics are approximated 

by using wavelet neural network which uses wavelets as 

basis. Wavelet functions display enhanced approximation 

capabilities due to orthonormality of wavelet basis functions 

and paves a systematic network construction methodology 

due to the norms of multiresolution analysis. The weights of 

these functions are tuned online using the tuning laws 

developed in this work and the tuning is carried out only at 

the update instants. Simulation results showed the evolution 

of an achievable control policy with control performance 

within the acceptable bounds.  

CONFLICTS OF INTEREST 

"No conflict of interest has been disclosed by the authors." 

By writing this statement, each author confirms that no 

conflict of interest or other personal considerations could have 

an improper effect on the presentation or interpretation of the 

research findings.   

AUTHOR CONTRIBUTIONS 

For this article, individual contributions of the authors is 

stated in following paragraph: “Conceptualization, and 

formulation: Ajay Kulkarni and Sachin Puntambekar, 

analytical development: Ajay Kulkarni and Neha Kapil; 

simulation and validation: Neha Kapil and Nitesh Soni; 

literature review: Neha Kapil, Nitesh Soni and Ajay Kulkarni; 

writing—original draft preparation, Neha Kapil and Sachin 

Puntambekar; review and editing: Nitesh Soni and A. 

Kulkarni ,supervision: A. Kulkarni, and Sachin Puntambekar; 

project administration: Ajay Kulkarni. 

REFERENCES 

[1] X. -M. Zhang et al., "Networked control systems: a survey of trends and 
techniques," in IEEE/CAA Journal of AutomaticaSinica, vol. 7, no. 1, 

pp. 1-17, 2020.  

[2] M. Guinaldo, D. Lehmann, J. Sánchez, S. Dormido and K. H. 
Johansson, "Distributed event-triggered control with network delays and 

packet losses," 2012 IEEE 51st IEEE Conference on Decision and 

Control (CDC), Maui, HI, USA, pp. 1-6, 2012. 
[3] Y. Batmani,” On the Design of Event-Triggered Suboptimal Controllers 

for Nonlinear Systems”, Asian Journal of Control, vol. 20, issue 3, pp. 

1303-1311,  2018. 
[4] J. Cai, R. Yu, Q. Yan, C. Mei and L. Shen, "Event-Triggered Control for 

Strict-Feedback Nonlinear Systems with External Disturbances," 

in IEEE Access, vol. 7, pp. 38390-38396, 2019,  
[5] J. Huang, W. Wang, C. Wen and G. Li, "Adaptive Event-Triggered 

Control of Nonlinear Systems With Controller and Parameter Estimator 

Triggering," in IEEE Transactions on Automatic Control, vol. 65, no. 1, 
pp. 318-324, Jan. 2020, 

[6] H. Lu, Y. Deng and W. Zhou, "Adaptive Event-Triggered H∞ Control 

for Networked Control Systems With Actuator Saturation and Random 

Nonlinearities," in IEEE Access, vol. 8, pp. 220723-220733, 2020.  

[7] S. Al Issa and I. Kar, “ Event-triggered Adaptive Backstepping Control 
of Nonlinear Uncertain Systems with Input Delay” IFAC-Papers Online, 

vol. 55, Issue 1, pp. 667-672 , 2022. 

[8] Y. Xie, Q. Ma and S. Xu, "Adaptive Event-Triggered Finite-Time 
Control for Uncertain Time Delay Nonlinear System," in IEEE 

Transactions on Cybernetics, vol. 53, no. 9, pp. 5928-5937, 2023. 

[9] L. Chu and Y. Liu, “Adaptive event-triggered control for nonlinear 
systems with time-varying parameter uncertainties”, International 

Journal of Robust and Nonlinear Control, vol. 34, issue 3, pp. 2094-

2108, 2024. 
[10] J. Blanco Rico, and B. Mohammed Al-Hadithi .” Event-triggered 

Controlled Charger for Lithium Battery Packs”, IEEE Latin America 

Transactions, 22(5), 435–441. 2024. 
[11] Y. Hua and T. Zhang, "Adaptive Neural Event-Triggered Control of 

MIMO Pure-Feedback Systems with Asymmetric Output Constraints 

and Unmodeled Dynamics," in IEEE Access, vol. 8, pp. 37684-37696, 
2020, 

[12] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE Transactions 

on Neural Networks, Vol. 3, no. 6, pp.889-898, November 1992. 

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15

0.2

Time[s]

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

Time[s]

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

Time[s]

 

 

x1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-5

-4

-3

-2

-1

0

1

2

Time[s]



308 A. KULKARNI, N. KAPIL, S. PUNTAMBEKAR, N. K. SONI 

 

 

[13] J. Zhang, G. G. Walter, Y. Miao, and. W. Lee, “Wavelet neural 

networks for function learning,” IEEE Transactions on Signal 

Processing, Vol. 43, no. 6, pp.1485-1497, June 1995. 

[14] B. Delyon, A. Juditsky, and A. Benveniste, “Accuracy analysis for 
wavelet approximations,” IEEE Transactions on Neural Networks, Vol. 

6, no. 2, pp.332-348 March 1995. 
[15] S.A. Billings and H.L.Wei, “A New Class of Wavelet Networks for 

Nonlinear System Identification,” IEEE Transactions on Neural 

Networks, vol. 16, pp.862—874, 2005. 
[16] M.Zekri, S.Sadri, F.Sheikholeslam, “Adaptive Wavelet Controller 

Design for Non Linear Systems”, Fuzzy Sets and Systems, vol. 159, 

pp.2668-2695, 2008. 
[17] Y. Fang, L. Liu, J.  Li.& Y. Xu,” Decoupling control based on terminal 

sliding mode and wavelet network for the speed and tension system of 

reversible cold strip rolling mill”. International Journal of Control, 

vol.  88, no. 8, pp. 1630–1646, 2015. 

[18] M. Ameziane., K. Slaoui, and I. Boumhidi,. “Adaptive wavelet network 

sliding mode control for a photovoltaic-pumping system”. Australian 
Journal of Electrical and Electronics Engineering, vol. 13 no. 1, pp.  24–

31, 2016. 

[19] F. Nafa, A.  Boudouda, and B. Smaani, “Adaptive Wavelets Sliding 
Mode Control for a Class of Second Order Underactuated Mechanical 

Systems”. Acta Polytechnica, vol. 61, no. 2, pp. 350-363. 2021.  

[20] K. J. Astrom and B. Wittenmark, “Adaptive control”. New York: 
Addison Wesley, 1995. 

[21] H.K. Khalil, “Nonlinear systems”. Upper Saddle River, NJ Prentice 
Hall, 2002. 


