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Gaussian Mixture Model with Bayesian approach
for maximizing RSS-based localization in

underwater Wireless Sensor Networks
Kiruthiga V, and Narmatha V

Abstract—Source localization is a highly challenging and
complex task in underwater environments due to uncertainties
and unknown sound propagation speed profiles in underwater
channels, as well as increased Doppler effects and constraints on
the energy sources of the sensor nodes. To address these issues,
we propose an energy-efficient Joint Gaussian Mixture Model
with a Bayesian approach for localization algorithms, aiming to
improve Received Signal Strength (RSS) accuracy. In this article,
we represent the additive noise using a Gaussian Mixture Model
to calculate the maximum likelihood estimation. The Bayesian
statistical approach solves the convex optimization problem to
find effective globally optimal solutions. These joint methods help
mitigate the underwater Doppler spread effects and improve the
estimation of sensor node positions. The simulated results are
analyzed, and the performance metrics show that the proposed
GMM-Bayesian approach is very close to the Cramér-Rao
Lower Bound and this method also outperforms other existing
localization algorithms in terms of lower Root Mean Squared
Error (RMSE) relative to anchor nodes and a better Cumulative
Distribution Function (CDF) for localization errors. From the
simulation results, it is evident that the proposed approach
achieves substantial performance gains in the localization of
underwater wireless sensor networks.

Keywords—Underwater Wireless Sensor Networks, Local-
ization, Received Signal Strength, Gaussian Mixture Model,
Bayesian Approach, Localization Error.

I. INTRODUCTION

UNDERWATER communication has become very impor-
tant and is attracting significant attention due to its

wide range of applications in underwater environments [1].
Underwater communication has become very important and is
attracting more attention based on the wide range of applica-
tions in underwater environments [2]. This UASN has many
applications [3], such as monitoring climatic changes, coastal
monitoring, surveillance, and oil pipeline monitoring systems.
Due to the channel characteristics in underwater environments
[4], [5], such as limited bandwidth, high signal propagation
delay, and the salinity of ocean water, there are inherent
challenges for signal transmission and reception. Therefore,
data transmission from effective localization [6] is becoming
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a challenging task. In order to overcome these issues, we need
an effective localization technique for identifying the location
of the sensor nodes.

Several localization methods are used to optimize the place-
ment of sensor nodes and facilitate data forwarding through
effective beaconing of signals [7]. Some of the methods in-
clude energy-based localization and Received Signal Strength
(RSS) difference-based schemes [8]. Most UWSN sensor
nodes utilize energy-based localization methods, which depend
on the underwater environment and specific applications [9].
Similarly, some localization schemes use RSS-based localiza-
tion to achieve better estimation through Maximum Likelihood
(ML) estimators to determine the positions of target nodes,
from which signals or information need to be transmitted or
received between nodes [10], [11]. This problem leads to a
non-linear and non-convex optimization challenge for RSS-
based localization.

A. Related Works
Many researchers have proposed various localization tech-

niques. This section discusses some of the most important and
recent works. This localization strategy is achieved through
measurements that include Time of Arrival (TOA), Time Dif-
ference of Arrival (TDoA), Angle of Arrival (AoA), Received
Signal Strength (RSS), and differences in RSS. Detecting
received signals based on RSS values is always a challeng-
ing task due to the characteristics of underwater channels
[12]. The localization problems based on RSS measurements
are generally formulated using techniques such as Least
Squares Estimation and Convex Optimization. Existing meth-
ods [13] are generally classified into three types: semidefinite
programming-based, Taylor series expansion-based, and least
squares method-based [14]. SDP techniques also use convex
optimization methods with certain relaxations. The major
limitation of this method is the computational complexity
involved in solving the optimization problem [15]. In [16]
poses a two-step, iteratively reweighted least squares (LS)
algorithm. In the first step, the algorithm calculates the initial
estimates of position and velocity. In the second step, the
algorithm refines the RSS measurements through an iterative
process.

The Taylor series expansion is frequently used to optimize
problems related to the estimation of velocity and position
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for targeted nodes. The major limitation of this work is that
selecting the initial values makes it very difficult to find the
local solutions. To effectively address such local optimizations,
SDP techniques are proposed. These SDP techniques provide
a relaxation of these non-convex problems into convex opti-
mization problems [17]. This method has very good accuracy,
but it involves tight optimization and high computational
complexity. For effective position estimation and velocity
values, the authors propose a multiple and robust version of
the two-step weighted least squares method [18]. The main
issue with these methods is that they are not suitable for
practical and realistic underwater environments. In [19], the
authors propose a three-step TS-WLS algorithm that jointly
estimates location information based on the coordinates. In
this method, the estimation of Doppler spread values is omitted
from the optimization function. In [20], a TOA measurements-
based SDP localization algorithm is proposed. This approach
also suffers from issues such as clock synchronization and
computational complexity.

Some algebraic localization methods [21] have been pro-
posed by researchers for solving optimization functions using
their position and speed uncertainties with different measure-
ment models. The limitation is that underwater environments
remain unpredictable, and localization error comparisons are
not very accurate due to uncertainties in underwater sound
propagation profiles. In [22], a TDoA-based underwater po-
sitioning system (UPS) is proposed for determining the lo-
calization of sensor nodes. This method collects positioning
information, and the aggregated data will be transferred to
the respective anchor positions after calculating the range
differences. In some papers [23], [24] genetic-based localiza-
tion algorithms are proposed using surface beaconing signals.
Similarly, in [25] modified genetic algorithms are investigated
using effective time-of-arrival techniques. In these technique
[26], the Doppler effect is also considered to determine local-
ization. This method is based entirely on the communication or
received signal strength values between the sensors and anchor
nodes [27]. There are some range-free localization algorithms
[28], [29] that rely on beacon signals, topology, and position
information based on their area of coverage. These algorithms
consume more energy than range-based algorithms.

In this article, we focus on proposing an effective solution
to the localization problem by jointly estimating Gaussian
Mixture Model (GMM) with a Bayesian statistical approach
to solve the optimization function. This proposed localization
algorithm will be an effective solution for all types of realistic,
harsh underwater environments. In this proposed work, we
assume that the unknown sound propagation speed and its
parameters are estimated using RSS measurements. This joint
localization estimation algorithm, using GMM and a Bayesian
approach, will yield good performance in overcoming local-
ization errors. We have also derived and studied the equations
of the localization algorithms corresponding to the Cramér-
Rao Lower Bound (CRLB) to analyse their performance in
terms of PDF and localization errors.

B. Organization and Notations

The rest of this article is organized as follows: Section II
discusses the underwater system model and its preliminaries.
Section III provides a detailed explanation of the proposed
joint GMM-Bayesian localization algorithm. The numerical
simulation results are discussed in the subsequent section.
Finally, the article is concluded in the last section.

The notations used in this article are given as follows: the
term Rn represents the set of n vectors, and the term Sn

represents the n × n symmetric matrix. If the matrix A > 0,
it means that the matrix A is said to be positive semidefinite.
The terms l1, l2, and l∞ norms of the vectors are represented
as ||.||1, ||.||2, and ||.||∞ respectively.

II. SYSTEM MODEL AND PRELIMINARIES

In the underwater acoustic communication channel model,
the term φj =

[
φj1 φj2

]T
represents the unknown coordi-

nates where j varies from 1 to M , denoting the jth targeted
node. Similarly, αj =

[
αi1 αi2

]T
represents the known

coordinates of the i-th anchor node, where i varies from 1
to N . Here, M and N represent the total number of target
nodes and anchor nodes deployed in the acoustic channel,
respectively. From [30] and [31], the total received power
Puw(d) at the j-th target node from the i-th anchor node is
given as,

Puw(d) = P0 uw − 10 · αuw · log10
(
duw

d0

)
(1)

Here, the term Puw(d) represents the initial received power
at the reference distance (d0), and the term α represents the
path loss exponent. Similarly, duw represents the distance at
which the path loss value is calculated, and d0 represents the
reference distance.

In this underwater acoustic channel model, two related
issues arise. They are:

1) The Received Signal Strength (RSS) level behaviors
are depicted in the figure 1. We have tried to adopt a
suitable logarithmic curve for RSS level fitting and its
measurements to achieve less localization error.

2) The noise factor in this underwater acoustic channel
model does not always follow a Gaussian distribution,
especially in real-time application scenarios.

For RSS measurements, the Gaussian mixture model is gen-
erally used with a noise factor when modeling underwater
environments [32], [33]. The comparison of empirical path loss
model of underwater acoustic channel without noise factors is
depicted in the Figure 2. This joint modeling will result in a
conditional probability distribution function (PDF) based on
the observed power factors Pj = [P1,j , P2,j · · ·PN,j ] inferred
at the jth target is given as,

P [Pj |Qj ] =

N∏
i=1

S∑
s=1

τi,s
[
N (µs, σ

2
s)
]

(2)

Here, τi,s represents the cluster weights with the average mean
(µ) and noise variance (σ2

s ), and S represents the total number
of GMM mixture components.
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Fig. 1. Comparison of real RSS measurements with Empirical path loss model
of underwater acoustic channel without noise

The path loss exponent αuw value is known and fixed for the
entire simulation experiments. Based on prior measurements,
the values are fixed using logarithmic fitting for the underwater
channels. In the simulation, P = −70 dB, the αuw value is 1.5,
and the reference distance d0 is fixed for multiple iterations
of the algorithms.

Fig. 2. Histogram of RSS measurement noise versus frequency

III. PROPOSED LOCALIZATION METHOD

This section give the detailed explanation for optimization
problem formulation and the proposed localization algorithm.

A. Problem formulation

In real-time scenarios, the values of µs, σ2
s , and τi,s

variables need to be estimated to calculate the localization
of sensor nodes [34]. As referred to in [35], according to
the Expected Conditional Maximization (ECM) criterion, the
position ϕ is updated and estimated using the µη

s , ση
s , and η be

the iteration values. The τηi,s values are generally not updated.
To overcome this joint optimization problem, the proposed
Gaussian mixture model, along with appropriate relaxation
techniques, is employed. This method is widely used to obtain

the Maximum Likelihood (ML) estimate ϕ for finding the
τi,s. After estimating the ML values, the equation can be
formulated as follows,

max
ϕj ,τ

Φ(ϕj , τ) · s.t · · ·C1, C2, C3 (3)

Where the term Φ represents the log-likelihood function,
which exhibits the conditional probability density function
(pdf) as given in equation 2. Here, the value of the Gaussian
mixture weight is constrained by the sum of the values being
equal to 1. The equation for C1, C2&C3 is given as,

C1 :

S∑
s=1

τi,s = 1 (4)

C2 : 0 ≤ τi,s ≤ 1 (5)

C3 : d(ϕj , αi) ̸= 0 (6)

Due to these inherent conditions and the combinatorial be-
havior, this will lead to NP-hard problems. To reduce com-
putational complexity, the joint optimization problem is re-
formulated and approximated to find a lower bound of the
non-convex objective function. Such an objective function is
solved by using suitable relaxation techniques to achieve an
effective optimal solution. The joint optimization problem is
formulated as follows,

max
ϕj

N∑
i=1

S∑
s=1

τi,sln
[
N (µs, σ

2
s)
]

(7)

Here, the term (ϕj ,τ ) represents the sub-optimal pairs for this
primary subsumed problem.

B. Proposed GMM with Bayesian Approach

In order to reduce the computation complexity of the
exisiting GMM-SDP model, the new objective function is
reformulated by the suboptimal function. The optimal value
of ϕj is expressed as,

Φ∗ = sub
[
Φ(ϕj , τ)

]
|C1, C2, C3 (8)

The lower bound for the given primary non-convex weighted
objective function which will give the effective and feasible
solution for this optimization problems. The ojective function
is formulated using Jensen’s inequality [36] and is expressed
as follows,

Φ(ϕj , τ) ≥
N∑
i=1

S∑
s=1

τi,sln
[
N (µs, σ

2
s)
]
= Φ1(ϕj , τ) (9)

The term Φ(ϕj , τ) will be sereves as a lower bounds for the
maximum likelihood function exist based on parameters such
as ϕj and τ . Due to the existence of £, the log-likelihood
function will always be sub-optimal. The objective function is
rewritten as follows,

min
ϕj ,τ

Φ2(ϕj , τ)|C1, C2, C3 (10)
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where,

Φ2(ϕj , τ) = −Φ1(ϕj , τ) =

N∑
i=1

S∑
s=1

τi,s

[
ln
√
2πσs+

(ni,j − µs)
2

2σ2
s

]
(11)

The above equation clearly shows that the objective exhibits
non-convexity, even though the ϕj values are discontinuous.
Hence, it is always difficult to calculate the global optimal
solutions for this problem. In this article, we propose using a
Bayesian approach combined with a Gaussian mixture model
to achieve this convex estimator [37]. In this work, the local-
ization of target nodes in underwater wireless sensor networks
is determined using a Gaussian mixture model combined with
a Bayesian approach. Such Bayesian inference is widely used
to estimate the posterior distribution of the target nodes’
positions based on received signal strength measurements.
This proposed joint Gaussian Mixture Model and Bayesian
approach enables updating the target positions based on the
observed data. Such Bayesian inference is based on Bayes’
theorem, which is given by,

p(ϕ|P ) =
(p(P |ϕ).p(ϕ)

p(P )
(12)

Here, ϕ represents the position of the target node, P denotes
the RSS measurement vector, and p(ϕ|P ) is the posterior
distribution of the target node’s position. p(P |ϕ) is the likeli-
hood function, and p(ϕ) is the prior distribution of the target
node’s position. Similarly, p(P ) is the marginal distribution
of the RSS measurements, and it represents the normalization
constant. By using this RSS measurements-based localization
model, the measurements will follow the modified Gaussian
Mixture Model (GMM) which is given as,

Pm = P0 − 10βlog10

(
d

d0

)
+ η (13)

Here, Pm represents the total power received by the target
node, d is the distance between the target and anchor nodes,
d−0 is the reference distance, P0 is the reference power level,
β is the path loss exponent, and η represents the Gaussian
noise in the RSS localization model. The maximum likelihood
estimation for each Gaussian component is given by,

p(P | ϕ) =
N∏
i=1

S∑
s=1

τs·N
(
(Pi | P0)− 10 · β · log10

(
di
d0

)
, σ2

s

)
(14)

Similarly, τi represents the weights of the Gaussian compo-
nents, and N denotes the normal distribution with specified
mean and variance.

The pseudocode for the GMM-Bayesian approach-based
localization algorithm is explained in 1. This algorithm helps
to estimate the positions of the targeted nodes by using a
Gaussian mixture model with a Bayesian approach. At first,
the inputs collected are the power levels of RSS, path loss
exponents, reference distance, GMM mean vectors, weights
of GMM components, targeted nodes, anchor nodes, and
positioning information. In the initial step of this algorithm,
the RMSE array is created for the given number of anchor
nodes. The estimated positions and true position values are

Algorithm 1 Bayesian-GMM Localization
1: Input: P0: Reference power level, β: Path loss exponent,

d0: Reference distance, µ: Mean vectors of GMM com-
ponents, sigmasq: Covariance matrices of GMM compo-
nents, τ : Weights of GMM components, side: Length of
the area side, nNodes: Number of target nodes, nAnchorsList:
List of anchor counts, ϕIndex: Index of the target node to
estimate.

2: Output: RMSE values for different anchors
3: for each nAnchorsList do
4: Display ϕHat and ϕTrue
5: for i=1: 100 do
6: Generate ϕ and α
7: ϕ ∼ Uniform([0, side], [0, side])
8: α = predefined positions based on nAnchors
9: Compute RSS measurements P based on ϕ and α:

10: Compute distances between i and j:
11: d(i, j) =

√
(ϕ0,i − α0,j)2 + (ϕ1,i − α1,j)2

12: P (i, j) = P0 − 10 · β · log10(d(i, j)/d0) + n(i, j)
13: where n(i, j) ∼ Gaussian(µ, sigmasq)
14: Target position estiamation by Bayesian inference
15: for i=n+1 do
16: for each im = 1 : m do
17: Propose a new target position:
18: ϕprop = ϕcurr + random perturbation
19: Compute the equation 14
20: Compute acceptance probability:
21: α = min

(
1,

p(P |ϕprop)
p(P |ϕcurr)

)
22: Accept or reject of position based on α:
23: if random(i) ≤ α then
24: ϕcurr = ϕprop
25: end if
26: end for
27: Compute the estimated position:
28: ϕhat = mean(ϕsamples)
29: end for
30: Store in ϕHat
31: Store in ϕTrue
32: end for
33: dsq =

∑
(ϕTrue − ϕHat)

2

34: RMSE =
√

mean(dsq)
35: end for
36: Save RMSE results

Algorithm 2 findRSS
1: Compute distances between each target and each anchor:
2: d(i, j) =

√
(ϕ0,i − α0,j)2 + (ϕ1,i − α1,j)2

3: Generate noise samples from the GMM:
4: n(i, j) ∼ Gaussian(µ, sigmasq)
5: Compute RSS measurements based on the path loss model

and add noise:
6: P (i, j) = P0 − 10 · β · log10(d(i, j)/d0) + n(i, j)
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Fig. 3. RMSE versus the number of anchor nodes

Fig. 4. CDF of localization errors for the different algorithms

initialized to determine the positions of the anchor nodes.
We increased the value of n varies from 1 to 100 to run
Monte Carlo simulations and compute the RSS measurements.
These RSS measurements are calculated based on the positions
using the path loss model and added Gaussian noise. The
target positions are estimated using Bayesian inference and
the Markov Chain Monte Carlo (MCMC) sampling process.
The MCMC sampling process provides the positions and helps

compute the likelihood of these positions using the RSS values
and GMM components.

The algorithm 2 provides a detailed explanation of how
to find the RSS values. First, the Euclidean distance is cal-
culated using the squared distance between the targeted and
anchor nodes. The noise samples are generated and added
to the GMM parameters based on the randomly deployed
target nodes within the predefined area. Bayesian inference is
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effectively utilized to find the unknown target positions based
on the observed RSS measurement data.

IV. SIMULATED RESULTS AND DISCUSSIONS

This section provides a detailed explanation of the proposed
Gaussian Mixture Model with a Bayesian approach (GMM-
Bayesian) algorithm and compares it with other existing lo-
calization algorithms. The performance metrics are evaluated
through Monte Carlo simulations, and the simulated results
are compared with the Cramer-Rao Lower Bound (CRLB),
the Weighted Least Squares (LS) algorithm, and the Gaussian
Mixture Model with Semidefinite Programming algorithms.
Recently developed algorithms are taken into account for
comparison of RMSE and localization error.

A. System Model

In this simulation trial, the sound propagation speed in
underwater environments is varied within the range of 1400
to 1600 m/s. A numerical simulation is conducted to evaluate
and analyse the proposed GMM-Bayesian algorithm. For
the simulation, a square region with dimensions of 15 x
15 square meters is considered. For the UWSN, a total of
120 sensor nodes are considered, and 20 anchor nodes are
deployed throughout the entire communication region. For an
effective evaluation, we assume two modes of the Gaussian
Mixture Distribution Models with values. Using this Gaussian
Mixture Model, the mean and variance values of each mixture
component are replicated, which helps us to better understand
the actual indoor noise measurements of UWSN channels.
The performance of the proposed GMM-Bayesian algorithm
will be evaluated by computing the Root Mean Squared Error
(RMSE) and Cumulative Distributuion Function (CDF) values
using 100 Monte Carlo simulations, with the number of anchor
nodes varied from 4 to 20.

B. RMSE versus Number of anchor nodes

The RMSE is the most important performance metric for
evaluating the accuracy of the system’s ability to estimate the
positions of sensor nodes in localization models. The RMSE
is the square root of the average squared differences between
the actual and predicted positions of the nodes. It is expressed
as,

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2
(15)

Where, the term yi is the actual position of the sensors, ŷi is
the predicted position, and the term n is the total number of
sensor nodes in the network.

The figure 3 illustrates the RMSE performance of the
proposed GMM-Bayesian algorithm as the number of anchor
nodes increases, compared to other existing methods. These
results are achieved because the GMM-Bayesian approach
provides more positioning information from the anchor nodes
based on the estimation of RSS measured values. This method
provides an RMSE value nearly equivalent to the CRLB be-
cause the proposed model requires fewer mixture components

to predict the localization of all sensor and anchor nodes with
improved accuracy. The results show that the proposed GMM-
Bayesian approach outperforms all other existing localization
algorithms, such as GMM-SDP and WLS algorithm, and is
nearly as close to the ideal CRLB algorithm in underwater
environments.

C. CDF of localization errors

The term Cumulative Distribution Function (CDF) is de-
fined as a statistical tool used to analyze the distribution of
errors in localization systems. The CDF is a function that
shows the probability that localization errors will be less than
or equal to a defined threshold value, illustrating how the errors
are distributed across different magnitudes. The CDF helps us
understand the likelihood of errors falling within a specific
range. For any error value x, the CDF is expressed as

F (x) = P (E ≤ x) (16)

where, the terms E and P is the error and the probalbility of
the localization function respectively.

The figure 4 illustrates a comparison of the impacts on the
CDF with respect to localization errors. It clearly shows that
the proposed GMM-Bayesian algorithm provides a better CDF
for localization errors compared to the GMM-SDP and WLS
methods. An increase in the CDF curve indicates that the
localization model has fewer errors and that the errors are
more evenly distributed. This is achieved because this model
handles more complex error distributions compared to other
models. By incorporating prior information about the under-
water sensors and anchor nodes, the efficiency of the algorithm
is improved. This joint estimation using the GMM-Bayesian
approach will be computationally effective for various types
of high-dimensional data with mixture components, provided
that Gaussian components and prior information parameters
are carefully tuned to achieve better localization.

V. CONCLUSION

In this article, we propose a joint Gaussian Mixture Model
with a Bayesian approach-based localization algorithm to
improve RSS estimation accuracy in underwater environments.
Due to the high Doppler spread and unpredictable charac-
teristics of the underwater environment, the measured RSS
values of sensor node parameters are not accurate and are also
affected by Gaussian-distributed errors. The proposed joint
approach-based localization algorithm effectively estimates the
maximum likelihood of node locations, solving optimization
problems with globally optimal solutions based on the RSS
measurements. The simulated results clearly show that the pro-
posed GMM-Bayesian approach-based localization algorithm
achieves CRLB accuracy and provides better performance
compared to other existing localization methods. In the future,
we plan to implement it in highly sparse and Time Difference
of Arrival (TDoA) based schemes in real underwater acoustic
environments.
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