
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 2, PP. 353–360
Manuscript received Fenruary 4, 2025; revised May, 2025. doi: 10.24425/ijet.2025.153580

Detailed maps conversion technique for usage in
realtime 3D mobile games

Maciej Kopczynski

Abstract—Research presents findings and outlines techniques
for converting detailed GIS maps into simplified versions suit-
able for real-time 3D mobile games, specifically optimized for
devices with medium to low processing power. This approach is
particularly valuable for developers of mobile 3D applications
that incorporate real-world maps, such as tycoon, strategy,
or geolocation-based games. The results demonstrate balance
between retaining essential map details from the original data
and achieving high-performance 3D graphics across a range of
mobile devices.

Keywords—map; 3D mobile app; conversion; mobile device

I. INTRODUCTION

LOCATION-Based Mobile Games (LBMG) are a distinc-
tive category of games where real-world map data and

geographic location play a central role in game design. Unlike
traditional games, LBMGs leverage mobile devices such as
smartphones and tablets not only for gameplay but also for
tracking the player’s position in real time. An example of
such a game is [14]. The integration of location services with
gameplay introduces complexities that make the development
of LBMGs more challenging than that of conventional games.

The primary challenge in developing LBMGs lies in ensur-
ing a seamless and continuous flow of information between
real-world and virtual maps. Achieving this while maintaining
a high frame-per-second (FPS) rate is crucial, as it directly
affects gameplay quality. However, this process requires an-
alyzing, selecting, and converting vast amounts of geospatial
data, which can overwhelm mobile devices, particularly those
with lower processing power. This makes the development
process demanding even for experienced developers, and the
end-users may also face issues if their devices lack the
necessary computing performance.

This research proposes an optimization solution to stream-
line the preprocessing, analysis, and visualization of large
GIS datasets for mobile devices. The hypothesis suggests that
reducing the level of detail in these datasets can significantly
cut CPU and GPU processing times, particularly on lower-end
devices. This approach also accelerates the production of new

The work was supported by the grant WZ/WI-IIT/3/2023 from Bialystok
University of Technology. Research results are based on the project ”Geo
Game Service – a scalable service that provides useful data about geolocation
information in asynchronous multiplayer games” financed by National Center
of Research and Development.

M. Kopczynski is with Faculty of Computer Science, Bialystok Univer-
sity of Technology, Bialystok, Poland (e-mail: m.kopczynski@pb.edu.pl).

LBMGs and enhances game stability, performance, and user
experience. Key elements requiring optimization include:

• data acquisition and selection: only relevant GIS data
should be selected to ensure value in gameplay,

• efficient data storage: proper structuring allows quick
data retrieval at various detail levels, maintaining game
smoothness,

• data visualization: Clear and engaging visuals are crucial
for attracting players and enhancing gameplay immersion,

• optimized indexing: organizing data to support quick
search and integration of real-world and virtual elements
enhances player experience.

Currently, there are few comprehensive solutions for op-
timizing data for mobile game engines, forcing developers
to rely on multiple tools, which increases complexity and
demands extensive knowledge of their integration capabilities.
Game developers often rely on a combination of different tools
to achieve the desired outcomes.

The existing literature largely focuses on describing con-
cepts or offering partial optimizations for converting this
type of data into a more efficient, ready-to-use format. The
integration of open geospatial data into 3D game engines
for urban digital twin applications is discussed in [1], while
industrial applications are highlighted in [2]. A cost-effective
virtual tour experience within a GIS-based educational game is
detailed in [3]. Frameworks for location-based mobile games
are exemplified in [4], [7], and [5]. A global geospatial anal-
ysis platform built on Google Earth Engine is introduced in
[6]. Foundational concepts related to gamification and spatial
elements in video games are outlined in [8] and [9]. Existing
methods for optimizing maps and analyzing performance in
games are presented in [10] and [11]. The process of designing
maps specifically for games is described in [12] and [13].

Market products like ArcGIS [16], OpenMapTiles [17],
Mapbox [18] and Bing Maps [19] offer services and game
SDKs that provide map data with varying levels of detail,
depending on the zoom level. However, products that offer
raster tiles cannot be converted into a 3D game environment
because the maps are pre-rendered in 2D, making it impossible
to extract detailed information from flat image data. Even
for 2D games or cleverly designed 2.5D games, which are
simulating some sort of depth, preparing raster data with an
adequate level of detail demands a significant amount of disk
space, which is often a problem on mobile devices.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


354 M. KOPCZYNSKI

The paper is structured as follows. In Section II, a compre-
hensive overview of the fundamental definitions relevant to the
study is presented, laying the groundwork for the concepts
discussed in subsequent sections. Section III goes into the
detailed description of the implemented solutions, outlining
the various techniques and strategies employed, as well as
the optimizations made within the test applications to enhance
performance and efficiency. This section also provides insights
into the rationale behind the chosen methods and highlights the
challenges addressed during implementation. Finally, Section
IV is dedicated to a thorough presentation and analysis of the
experimental results, including a discussion of the outcomes
and their implications, along with any observed trends and key
findings derived from the experimentation.

II. BASIC DEFINITIONS

To comprehensively measure the results of map transfor-
mations and evaluate the performance of applications on
mobile devices, it is important to establish a set of clear
and precise definitions. For each geographical region under
consideration, the following parameters will be assessed to
determine efficiency and accuracy:

• Rpoints - the total number of data points used to define
the shape of the road network. This metric is crucial
for understanding the complexity and detail of the road
representation.

• Edist - the aggregate distance of all roads within the
region. This value helps in assessing the overall connec-
tivity and extent of the road infrastructure.

• Tgen - the time required to generate the entire area, which
provides an indication of the computational efficiency of
the generation process.

• Tload - the duration needed to load and process the
region in the client environment. This parameter is vital
for evaluating the responsiveness and usability of the
application on mobile devices.

• Tframe - the time taken to render the resulting geometry
within the client environment, impacting the frame rate
and smoothness of the user experience.

• Rverts - the total number of vertices forming the road
network mesh. This value indicates the geometric com-
plexity of the road network, which can influence render-
ing performance.

• Rtris - the total number of triangles used to construct
the final road network mesh. This metric is important
for understanding the rendering workload and graphical
performance impact.

To ensure that each playable region in the game environment
is both realistic and engaging, the algorithm for generating
city and road graphs must adhere to the following essential
requirements:

1) Connected Weighted Graph (CWG) - each region
must be modeled as a connected weighted graph, with
cities represented as vertices (V ) and roads as edges (E).
This structure ensures that all cities within the region are
interconnected, facilitating navigation and travel within
the game.

2) Minimum Number of Cities (MNoC) - the graph
CWG must contain a minimum of Vcount vertices, each
representing a unique city or town. This requirement
guarantees that the region has a sufficient number of
urban areas to make the gameplay dynamic and diverse.

3) City Separation - to maintain realistic spatial distri-
bution, each city must be placed no closer than Vsep

kilometers (in terms of geodetic distance) from any
other city. This spacing helps create a more authentic
representation of a geographical area, preventing cities
from clustering unrealistically.

4) Road Network (RN) - the road network must have a
minimum total weight of Edist kilometers. This require-
ment ensures that the generated road system is extensive
enough to support meaningful exploration and gameplay.
The total weight of the edges E must meet or exceed
this threshold to be considered successful.

III. SOLUTION DESCRIPTION

The application was developed using .NET technology,
with C# as the primary programming language. The PC-
side development and coding tasks were carried out using
Microsoft Visual Studio 2022. For the mobile component,
the application was designed to run on devices using the
Android operating system. This part of the development was
implemented using Unity 2021 Long Term Support (LTS)
version. Unity 2021 LTS was chosen for its stability and
extensive support for 3D rendering, real-time simulation and
cross-platform deployment.

Fig. 1 shows solution layout.

Fig. 1. General layout of solution.

The system is composed of two main components: a test
application running on a mobile device (client) and a real
map processing part operating on a PC (developer). The
transformed geospatial data is packaged together with the
game files and integrated into the client application using a
compressed GeoJSON format [15].

The key functional components of the developer-side appli-
cation on the PC are as follows:

• GIS Data Source - a source of real-world map data
obtained from OpenStreetMap, which provides compre-
hensive and up-to-date geospatial information.



DETAILED MAPS CONVERSION TECHNIQUE FOR USAGE IN REALTIME 3D MOBILE GAMES 355

• Structured Spatial Database - a PostgreSQL database
enhanced with the PostGIS extension, used to store and
manage geospatial data. This database structure ensures
quick access and spatial queries for data processing.

• Spatial Data Processor - the core unit responsible for
processing geographical data, including tasks like data
filtering, transformation and optimization for further use
in the mobile environment.

• Data Packer - a module that prepares the processed
geospatial data by converting and compressing it into
game-compatible data packages. This component ensures
that the data is efficiently formatted for integration with
the client application.

On the mobile device side, the main functional components
include:

• Data Unpacker - a module responsible for decompressing
and unpacking the embedded data, preparing it for further
use. It ensures that the transformed data is ready for
processing by subsequent components.

• Mesh Processor - this unit processes the unpacked
geospatial data, converting it into mesh structures suitable
for visualization within the game environment.

• Rendering Shader - a component used by the test applica-
tion to render and visualize the processed data, ensuring
high-quality 3D representation on the mobile device.

GIS Data Source is created from the Planet.osm export
from OpenStreetMap. The essential elements required for this
project are the exporting of route geometry tagged with the
highway category using one of the following tags: motorway,
trunk, primary, secondary and tertiary. Those are joined by
city data contained in node geometries, which are tagged
with place type matching one of the following values: city,
town and village. The suitability of osm2pgsql and imposm3
tools for importing the data was evaluated. Both tools were
found to be capable of transforming the binary package
into a structured database. Imposm3 was used in this paper,
however, benchmarking these tools was beyond the scope
of this paper. Additionally, data deemed unnecessary for the
game’s functionality, such as street names, was removed to
keep the database size manageable and optimized for perfor-
mance. The dataset is organized within a PostgreSQL database
using the PostGIS extension, which facilitates spatial indexing
and enhances GIS operations through specialized acceleration
structures.

The Spatial Data Processor is a vital module on the
developer side, designed specifically to filter and extract only
the data essential for the client environment. This module
determines the structure and layout of the game world by
selectively processing geospatial data based on gameplay re-
quirements. Spatial Data Processor is implemented as a .NET
application and communicates with the Structured Spatial
Database. Using this connection, the processor refines the raw
data and assembles it into the final form of the game world.
This process includes defining spatial relationships, applying
necessary transformations and converting data into a format
compatible with the mobile application.

The algorithm within the Spatial Data Processor generates
a set of routes and cities, representing E (edges) and V (ver-
tices), respectively. These routes are then evaluated to calculate
Rpoints. The entire process halts at this stage, recording Tgen

as the total runtime of the generation algorithm.
After collecting the resultant set of roads, an additional

geometry aggregation pass is executed. During this step, roads
in close proximity are merged into single entities. Furthermore,
as placeholders for 3D models, each urban city center is trans-
formed into a roundabout, with roads inside it and extended
to meet the circle’s boundary.

This method creates a functional road network, incorpo-
rating all key roads connecting major cities while filtering
out redundant links and excessive geometry from variable-
quality OSM data. Consequently, the data volume is reduced
and normalized to a standard complexity level, suitable for
presenting balanced gameplay maps that maintain performance
expectations for mobile devices.

The Data Packer and Data Unpacker modules play a
crucial role in transforming spatial data into an intermediate
format and back, facilitating seamless integration into the
client application. To minimize the size of the spatial data
payload, the GeoJSON format is used in combination with
LZMA compression, ensuring efficient data transmission and
storage.

Data Unpacker decompresses these data packets and re-
constructs the map data, converting it into a navigation graph.
This graph serves as the foundation for pathfinding algorithms,
enabling efficient navigation between points within the defined
region. Once the navigation graph is established, it is used
to generate a detailed road network mesh. The time taken to
load and process this data is recorded as Tload. The final road
mesh is represented by a set of triangles, Rtris, and a set of
vertices, Rverts. To optimize performance on mobile devices,
the algorithm is designed to reuse vertices across adjacent
triangles, significantly reducing GPU memory consumption
and enhancing rendering efficiency.

The generated mesh is subsequently loaded into the ren-
dering part, where the rendering performance is measured as
Tframe during specific test scenarios.

The entire mesh generation process is illustrated in Fig. 2.
Part a) depicts a sample section of the initial road graph.
Part b) illustrates the first stage of mesh generation, focusing
on the geometry of intersections. Part c) shows the second
stage, where connections between intersections are created,
and part d) displays the final mesh appearance with textures
applied, providing a complete visual representation of the road
network.

A. Spatial Data Processor algorithm

The main goal of the algorithm running on the developer’s
PC is to construct a road network that effectively connects a
series of cities within a specified region. This network must
meet predefined criteria, including constraints on the total
length of the roads and the spatial distribution of the cities.
The following pseudocode provides an outline of the steps
involved in the processing algorithm.



356 M. KOPCZYNSKI

(a) initial road graph

(b) mesh - intersections geometry

(c) mesh - intersections connected

(d) final appearance with textures

Fig. 2. Visualisation of mesh network road generation

INPUT: Region-clipped map data including way (linear ge-
ometry, eg. roads) and point (points geometry data)

OUTPUT: List of routes and cities
1: allCityClasses ← [city, town, village]
2: roadClassesConsidered ← [motorway, trunk]
3: additionalRoadClasses ← [primary, secondary, tertiary]
4: repeat
5: roadClassesConsidered.push(allRoadClasses.pop())
6: roads ← CollectRoads(way, roadClassesConsidered)
7: mergedRoads ← Union(roads)
8: simplifiedRoads ← Simplify(roads)
9: allCities ← CollectCities(point, allCityClasses)

10: citiesConnected ← FilterDisconnectedCities(allCities,
simplifiedRoads)

11: citiesSorted ← SortCitiesByPopulation(cities)
12: citiesReduced ← ReduceDensity(citiesSorted, Vsep)
13: citiesTrimmed ← TakeFirst(citiesReduced,Vcount)
14: cities ← SnapCitiesToRoads(citiesTrimmed, simpli-

fiedRoads)
15: for each city cityStart in cities do

16: for each city cityEnd in cities do
17: routes.push(CalculateRoute(cityStart, cityEnd))
18: end for
19: totalDistance ← SumDistances(routes)
20: end for
21: until totalDist ¡ Edist or additionalRoadClasses = ∅

The input for the algorithm is regional world map data
clipped and stored in a PostgreSQL database, which includes
roads and linear geometries represented as way and point
geometries represented as point. The output consists of two
lists: routes, which signify connections between selected
cities. Initially, the algorithm categorizes cities and roads
based on the standardized OpenStreetMap attribute guidelines.
It begins with the highest road classes (motorway and trunk)
and progressively includes lower classes (primary, secondary,
and tertiary) until the specified conditions are satisfied. The
algorithm extracts road segments from the structured spatial
database, treating each segment as an individual instance.
These segments are merged with a minor tolerance to join
roads that might have been added across different Open-
StreetMap changesets. The merging of the roads is a sub-
routine that transforms each of the lines into a polygonal
area encompassing a distance (5 km) surrounding each road
geometry. All of the polygons are then merged together
and simplified using the Douglas-Peucker algorithm with a
tolerance of 500 m to make computation easier in the next
part without losing too much of the quality. Subsequently,
an approximate medial axis is calculated for this kind of
polygonal geometry, thereby creating the resulting road mesh
which is then used for subsequent steps. It should be noted
that created roads may be slightly off compared to real-
world values. However, by merging adjacent roads, a result
is produced that is both computationally less demanding and
visually more appealing than the raw data. In a subsequent
step, cities are snapped to the mesh in order to correct any re-
maining inaccuracies. The algorithm then simplifies road lines
by removing redundant points using the Visvalingam–Whyatt
algorithm. The algorithm collects all cities in the region as
point data and filters out those not connected to the main
graph of the calculated road network. The cities are sorted by
population to select the largest within the region, and lower-
ranked cities within the specified Vsep area are removed to
reduce clutter. Only the top Vcount cities are retained, and
they are snapped to points on the road network, creating new
nodes if needed. Finally, Dijkstra’s algorithm is employed to
find the shortest path between each pair of cities, which is
then added to the routes list. The total distance of the roads in
the routes list is calculated and compared against the defined
stop-condition threshold, Edist. The process repeats until the
total distance meets or exceeds Edist or until there are no
remaining roads in the dataset.

B. Challenges and limitations

Crucial challenge in solution development was the creation
of a stable experience, regardless of the player’s gameplay
decision. The player’s experience must be consistent across all
possibilities without the introduction of artificial limitations on



DETAILED MAPS CONVERSION TECHNIQUE FOR USAGE IN REALTIME 3D MOBILE GAMES 357

their choices. This requirement called for the development of
an algorithm that can process input data of varying complexity
and deliver a similar experience in terms of gameplay, focusing
on technical performance. Algorithms were designed to pro-
cess both dense urban areas and sparsely populated regions. It
was imperative to target fixed ranges of desired city counts and
total length of roads in order to achieve such consistency. Both
gameplay design and performance target scale nearly linearly
with the length of roads and amount of cities. This relationship
is then reflected in the mesh vertex count, which can be a
bottleneck in a limited-resource environment of mobile GPU
deployment targets.

Another challenge is transforming everything into small
packages that can be easily expanded and handled in isolated
fashion. The conversion of all data into GeoJSON as an
intermediate format facilitates the distribution, inspection, and
further expansion of game assets. The fact that it is a well-
established RFC standard also provides a degree of safety in
maintaining the use cases for years, with the added benefit
of being utilized by future third-party tooling compatible with
the standard to further improve the process.

IV. EXPERIMENTAL RESULTS

The results presented in this study were obtained using a
PC configured with 64 GB of DDR4 RAM operating at 3200
MHz, paired with a 6-core AMD Ryzen 5600X processor.
The database engine utilized was PostgreSQL 14, with the
tablespace hosted on an SSD connected via NVMe at PCIe
Gen3 speeds, ensuring high data transfer rates and efficient
performance. The mobile devices tested included a Samsung
Galaxy S20, a Razer Phone, and a Samsung Galaxy S6,
each updated to the latest Android operating system versions
released by their respective manufacturers. The Samsung
Galaxy S20 was classified as a high-performance device,
offering cutting-edge features and superior processing power.
The Razer Phone represented a mid-range option, balancing
performance and efficiency. Lastly, the Samsung Galaxy S6
was categorized as a lower-performance device, providing
insight into how the application performs on older hardware.

Three distinct areas were selected for the experiments,
representing different geographic characteristics around the
world—from the sparsely populated wilderness of Canada to
the densely packed urban regions on the U.S. east coast. The
specific areas studied are:

• Sample 1: Northeastern US. This sample includes few
combined states. It is characterized by dense urban re-
gions with numerous roads but covers a relatively small
land area compared to the other samples.

• Sample 2: Texas. This is the largest state in the contiguous
United States, featuring numerous major cities like Hous-
ton, Dallas, Austin, and San Antonio, which are separated
by extensive stretches of open land.

• Sample 3: Saskatchewan. A sparsely populated province
in Canada with a large area but a low number of cities
and roads connecting them.

For the purposes of this analysis, roads were defined ac-
cording to OpenStreetMap (OSM) classifications, specifically

including highways tagged as ”motorway,” ”trunk,” ”primary,”
”secondary,” and ”tertiary.” Settlements were identified as
locations tagged as ”city,” ”town,” or ”village” in the OSM
data. To enhance the realism of the game environment, cities
located just outside the primary boundary of the region were
included within a buffer zone. This allowed for the creation of
external roads that seamlessly fade into the game’s fog effect,
reducing the sense of isolation and enhancing immersion.

The parameters for the algorithm on the developer’s PC
were configured to ensure that each processed map region fell
within a specified range of city complexity, targeting between
10 ≤ Vcount ≤ 20 settlements. Additionally, a minimum
road complexity threshold was set, requiring Edist > 8000 to
ensure adequate connectivity and detail in the road network.

To ensure reliability and reduce variability caused by
background processes on both the PC and mobile devices,
all time measurements were averaged over 100 runs. This
averaging approach minimizes the influence of extraneous
system activities, providing a more accurate representation
of the algorithm’s performance. For consistency, the mobile
device tests maintained the same projection length and camera
movement scheme across all analyzed region types.

The results from the PC processing of selected regions are
presented in Tables I and II. These tables detail the steps
involved in preparing the map data for subsequent testing on
mobile devices. The Input columns provide information about
the raw data complexity for each region: Area specifies the size
of the region, Road network lists the total length of relevant
road types, and Settlements indicates the number of identified
settlements. The Tgen column shows the total time taken from
the initial data reading to the completion of the final packaged
data for mobile use.

TABLE I
RESULTS OBTAINED FROM PROCESSING REAL MAP DATA - INPUT

Region
Input

Area Road network Settlements
[km2] [km] [−]

Northeastern US 348 076 89 020 1 325
Texas 708 011 156 635 1 141

Saskatchewan 504 367 32 319 179

TABLE II
RESULTS OBTAINED FROM PROCESSING REAL MAP DATA - OUTPUT DATA

Region
Output

TgenEdist Rpoints

[−] [−] [s]

Northeastern US 19 003 5 143 207
Texas 28 818 6 749 115

Saskatchewan 20 017 4 365 14

Fig. 3 shows three regions after input map processing.
As observed, the generation time varies significantly based

on the complexity of the road network and the number of
cities within a region, but it does not strongly correlate with
the physical size of the region. This is because the algorithms
operate on geometric data and graph structures. For example,



358 M. KOPCZYNSKI

(a) Northeastern US

(b) Texas

(c) Saskatchewan
Fig. 3. Visualisation of three regions after map processing

despite Saskatchewan’s large land area, it has relatively few
roads, resulting in shorter processing times.

An additional insight from Fig.3 and the data presented in
TablesI and II is that, despite significant variations in input
characteristics across different regions, the resulting output
sets remain relatively consistent in terms of appearance and
properties. This uniformity is particularly advantageous for
gameplay applications, where maintaining regional balance is
crucial to ensure fair and equitable experiences for all players.
By minimizing geographic variability, the algorithm ensures
that players are neither penalized nor given an advantage based
on their starting location. Moreover, with suitable parameter

adjustments, the algorithm can be adapted to generate balanced
and consistent game environments in any region worldwide,
as long as the area includes properly classified roads and
settlements.

Map data generated on the PC was transferred to the
mobile device for performance testing using a dedicated test
application. This testing measured rendering performance and
processing times, which are critical factors affecting the overall
efficiency of the mobile application. Generated geometry was
also examined: Rverts represents the total number of vertices
in the road network mesh, and Rtris indicates the number
of triangles forming the final mesh. Importantly, these values
depend solely on the map region’s characteristics and remain
unchanged regardless of the mobile device used. Fig. 4 pro-
vides an example screenshot of the Texas region as displayed
within the mobile application.

Fig. 4. Exemplary screenshot of Texas region from test application.

Table III shows the results obtained on various mobile
devices across different regions, using both raw and processed
map data. The Tload column indicates the time taken to load
the map data from the initial data access point, while Tframe

represents the frame rendering time. The Raw map column
group includes measurements for unprocessed map data, fil-
tered only by the specified road and city tags. In contrast, the
Processed map column group contains data processed by the
PC before being tested on the mobile devices.

TABLE III
PERFORMANCE RESULTS ON MOBILE DEVICES FOR SELECTED REGIONS

Mobile device
Filtered raw map Processed map
Tload Tframe Tload Tframe

[ms] [ms] [ms] [ms]

Northeastern US
Samsung Galaxy S20 30 350 8.53 106.32 0.03

Razer Phone 49 920 18.44 153.31 0.05
Samsung Galaxy S6 79 072 37.48 288.58 0.11

Texas
Samsung Galaxy S20 28 222 7.01 88.72 0.02

Razer Phone 44 842 15.08 122.67 0.04
Samsung Galaxy S6 75 786 29.25 235.45 0.12

Saskatchewan
Samsung Galaxy S20 1 526 0.36 68.67 0.02

Razer Phone 2 120 0.79 110.92 0.05
Samsung Galaxy S6 3 903 1.66 174.14 0.10



DETAILED MAPS CONVERSION TECHNIQUE FOR USAGE IN REALTIME 3D MOBILE GAMES 359

The geometric results for the filtered raw and processed map
data are as follows:

• filtered raw map:
– Rverts = 4 402 754 for Northeastern US; 3 690 430

for Texas; 193 471 for Saskatchewan,
– Rtris = 4 213 483 for Northeastern US; 3 355 568

for Texas; 177 887 for Saskatchewan.
• processed map:

– Rverts = 12 142 for Northeastern US; 15 924 for
Texas; 9 866 for Saskatchewan,

– Rtris = 10 592 for Northeastern US; 14 022 for
Texas; 8 926 for Saskatchewan.

The timing and geometric analysis reveal that each region
was successfully converted into a renderable package that
delivers consistent performance, regardless of variations in the
complexity of the map data. This uniformity ensures that the
game meets similar performance standards across a wide range
of devices, accommodating differences in computing power
and graphical capabilities. Achieving this level of consistency
is vital in modern game development, where players demand
a stable and smooth experience, regardless of the device they
are using or the specific gameplay scenarios they choose.

For lower-tier mobile devices, however, certain challenges
arise. Specifically, regions with highly detailed and extensive
raw map data, such as the Northeastern US, could not be
loaded in their entirety due to hardware limitations. To address
this, the map had to be divided into smaller, manageable
segments, with the overall timing results computed as the
cumulative sum of all processing and rendering operations.
Additionally, it’s important to consider the constraints imposed
by rendering engines. Most engines default to using 16-bit
integers for mesh index buffer data, which restricts the number
of indices per mesh to a maximum of 65536. While this
limitation is suitable for many scenarios, higher-end mobile
devices have the capability to support 32-bit indices, allowing
for more complex and detailed mesh structures.

V. CONCLUSIONS

The research conducted demonstrates that it is feasible to
develop efficient and adaptable methods for processing real-
world data tailored to the game development industry, particu-
larly for mobile devices. Optimizing the transformation of map
data for use in geolocation-based games is a critical aspect of
development. This ensures consistency between in-game maps
and the ever-evolving real-world maps, which are frequently
updated with new details due to urban expansion, construction
of new roads, and improved cartographic accuracy.

The proposed solution accelerates the creation of new
geolocation games and contributes to a smoother gameplay
experience. One significant advantage is that it reduces the
need for deep expertise in GIS data acquisition, storage, and
processing, as well as the real-time visualization of exten-
sive GIS datasets within game engines on mobile devices.
However, developers must carefully choose the appropriate
parameters for the presented algorithms to meet the desired
level of detail for the transformed map data. Comparative

analysis of different outputs is recommended to ensure that
the final product aligns with project requirements.

It is crucial to maintain the vertex count as low as possible
to achieve optimal performance. For older mobile devices, the
practical limit is approximately 100 000 vertices per scene,
whereas modern devices can handle up to 1 million vertices.
Utilizing unprocessed data can quickly exceed these limits,
leading to excessive rendering times that monopolize most
of the processing resources. This would prevent the real-time
rendering of other essential 3D objects, severely impacting the
framerate and overall user experience. Moreover, the storage
demands of unprocessed map data are impractical for mobile
games on medium to lower-grade devices, particularly since
road networks are just one of many objects that need to be
rendered in contemporary games.

Future research will focus on enhancing and refining these
methods. Key areas for development include advanced strate-
gies for selecting settlements, creating simplified road meshes
for larger cities, and introducing mechanisms for generating
parallel roads while adhering to different road classification
requirements. Additionally, further testing on a broader range
of mobile devices and larger geographic regions will be
undertaken to assess scalability and robustness.

REFERENCES

[1] Rantanen T, Julin A, Virtanen J-P, Hyyppä H, Vaaja MT. Open Geospa-
tial Data Integration in Game Engine for Urban Digital Twin Applica-
tions. ISPRS International Journal of Geo-Information. 12(8):310, 2023.

[2] Schleich B, Anwer N, Mathieu L, Wartzack S. Shaping the digital twin
for design and production engineering. CIRP Ann. 2017, vol. 66, pp.
141—144, 2017.

[3] Varinlioglu G, Sepehr VA, Eshaghi S, Balaban O, Nagakura T. GIS-
Based Educational Game Through Low-Cost Virtual Tour Experience –
Khan Game. Proceedings of the 27th CAADRIA Conference, Sydney,
9-15 April 2022, pp. 69–78, 2022.

[4] Ionescu G, Valmaseda JMD, Deriaz M. GeoGuild: Location-Based
Framework for Mobile Games. International Conference on Cloud and
Green Computing, Karlsruhe, Germany, 2013, pp. 261–265, 2013.

[5] Predescu A, Mocanu M, Chiru C. A case study of mobile games
design with a real-world component based on Google Maps and Unity.
13th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), Pitesti, Romania, pp. 1-6 2021.

[6] Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R.
Google Earth Engine: Planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. vol. 202, pp. 18–27, 2017.

[7] Lee A, Chang YS, Jang I. Planetary-Scale Geospatial Open Platform
Based on the Unity3D Environment. Sensors, vol. 20, no. 20, 2020.

[8] Deterding S, Dixon D, Khaled R, Nacke L. From Game Design
Elements to Gamefulness: Defining Gamification, Proceedings of the
15th International Academic MindTrek Conference: Envisioning Future
Media Environments, pp. 9–15, 2011.

[9] Wolf M. 3 Space in the Video Game. The Medium of the Video Game;
Wolf, M., Ed.; University of Texas Press: New York, NY, USA, 2021.

[10] Abubakar A, Zeki AM, Chiroma H. Optimizing Three-Dimensional (3D)
Map View on Mobile Devices as Navigation Aids Using Artificial Neural
Network. 2013 International Conference on Advanced Computer Science
Applications and Technologies, Kuching, Malaysia, pp. 232–237, 2013.

[11] Koh E, Park G, Lee B, Kim D, Sung S. Performance Validation and
Comparison of range/INS integrated system in urban navigation envi-
ronment using Unity3D and PILS. Proceedings of the 2020 IEEE/ION
Position, Location and Navigation Symposium (PLANS), Portland, OR,
USA, 20–23 April 2020; pp. 788–792, 2020.

[12] Zagata K, Medynska-Gulij B. Mini-Map Design Features as a Navi-
gation Aid in the Virtual Geographical Space Based on Video Games.
ISPRS Int. J. Geo-Inf, 12(2), 58, 2023.

[13] Toups ZO, Lalone N, Alharthi SA, Sharma HN, Webb AM. Making
Maps Available for Play: Analyzing the Design of Game Cartography
Interfaces. ACM Trans. Comput. Hum. Interact., vol. 26, pp. 1–43, 2019



360 M. KOPCZYNSKI

[14] Transportico game homepage, https://play.google.com/store/apps/details?id=
com.riftcat.transportico Last accessed 16 September 2024.

[15] RFC 7946 standard homepage, https://datatracker.ietf.org/doc/html/rfc7946
Last accessed 16 September 2024.

[16] ArcGIS homepage, https://www.arcgis.com/index.html Last accessed 24
September 2024.

[17] OpenMapTiles homepage, https://openmaptiles.org/ Last accessed 24
September 2024.

[18] Mapbox homepage, https://www.mapbox.com/ Last accessed 24
September 2024.

[19] Bing Maps homepage, https://www.bing.com/maps Last accessed 24
September 2024.

https://play.google.com/store/apps/details?id= com.riftcat.transportico
https://play.google.com/store/apps/details?id= com.riftcat.transportico
https://datatracker.ietf.org/doc/html/rfc7946
https://www.arcgis.com/index.html
https://openmaptiles.org/
https://www.mapbox.com/
https://www.bing.com/maps

	Introduction
	Basic definitions
	Solution description
	Spatial Data Processor algorithm
	Challenges and limitations

	Experimental results
	Conclusions
	References

