
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 2, PP. 387–396
Manuscript received February 19, 2025; revised May, 2025. doi: 10.24425/ijet.2025.153584

Neural-Driven heuristic for strip packing trained
with Black-Box optimization

Mariusz Kaleta, Tomasz Śliwiński

Abstract—We address the well-known NP-hard problem of
packing rectangular items into a strip, a problem of signif-
icant importance in electronics (e.g., packing components on
printed circuit boards and macro-cell placement in Very-Large-
Scale Integration design) and telecommunications (e.g., allocating
data packets over transmission channels). Traditional heuristics
and metaheuristics struggle with generalization, efficiency, and
adaptability, as they rely on predefined rules or require extensive
computational effort for each new problem instance. In this
paper, we propose a neural-driven constructive heuristic that
leverages a lightware neural network trained via black-box
optimization to dynamically evaluate item placement decisions.
Instead of relying on static heuristic rules, our approach adapts
to the characteristics of each problem instance, enabling more
efficient and effective packing strategies.

To train the neural network, we employ the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), a state-of-
the-art derivative-free optimization method. Our method learns
decision policies by optimizing fill factor improvements over a
large dataset of problem instances. Unlike conventional heuristics,
our approach dynamically adapts placement decisions based on
a broad set of features describing the current partial solution
and remaining items.

Through extensive computational experiments, we compare
our method against well-known strip packing heuristics, in-
cluding MaxRects and Skyline-based algorithms. The results
demonstrate that our approach consistently outperforms the best
traditional heuristics, achieving up to 6.74 percentage points of
improvement in packing efficiency. Furthermore, our method
improves 87.87% of tested instances. Our study highlights the
potential of machine learning-driven heuristics in combinatorial
optimization and opens avenues for further research into adaptive
decision-making strategies in packing and scheduling problems.

Keywords—strip packing problem; algorithm selection prob-
lem; heuristics; neural networks; reinforcement learning

I. INTRODUCTION

A. Background

The two-dimensional orthogonal rectangular strip packing
problem (2D-SPP) involves arranging a set of rectangular
items on a large rectangular strip of fixed width and variable
length. The objective is to minimize the strip’s length while
ensuring that all items are placed entirely within the strip in a
non-overlapping manner. The 2D-SPP arises in various practi-
cal applications, such as packing components on printed circuit

Mariusz Kaleta and Tomasz Śliwiński are with Faculty of Electronics
and Information Technology, Warsaw University of Technology, Warsaw,
Poland (e-mail: mariusz.kaleta, tomasz.sliwinski@pw.edu.pl).

boards, macro-cell placement in Very-Large-Scale Integration
(VLSI), allocation of data packets over transmission channels,
and the cutting of wood boards, steel plates, or paper rolls.

Since the problem is known to be an NP-hard problem,
it is typically tackled using heuristics and metaheuristics [1].
However, heuristics often suffer from poor generalization;
there is no single best heuristic, as different heuristics tend to
perform best on different problem instances. Metaheuristics,
such as genetic algorithms, simulated annealing, and variable
neighborhood search, repeatedly explore the solution space for
each problem instance, even when the problems are similar.
These methods risk getting trapped in local optima and fre-
quently make suboptimal local decisions, and each time they
are run, they try many local decisions that later appear to
be poor. Their inability to learn from past attempts results in
redundant computations, making them inefficient in terms of
runtime.

In this paper, we propose a novel hybrid framework that
addresses both the challenge of selecting the right heuristic and
the inefficiencies of metaheuristics. Our approach leverages
a neural network to evaluate available alternatives and uses
these evaluations to construct solutions, improving efficiency
and adaptability.

B. Related literature

Heuristic approaches to the two-dimensional strip packing
problem typically involve two main tasks: selecting the next
item to be packed and determining its placement on the strip. A
common approach to item selection is to pre-sort items based
on a specific feature, such as descending size. More sophisti-
cated approaches have been explored; for instance, Xusheng
et al. apply a Q-learning approach to predict the packing
sequence while assuming a fixed heuristic for placement [2].
However, most of the research has focused on the placement
problem, assuming a predefined ordering of items.

Various greedy heuristics have been proposed to construct
solutions by selecting placements based on some scoring func-
tion [3]. Constructive heuristics typically choose placements
from a set of candidate positions, which can be generated using
simple rules such as Bottom-Left or Best-Fit [4], Best Short
Side Fit [5], and Occupied Area Ratio [6]. These methods
apply to rectangles derived from horizontal or guillotine cuts
(shelf and guillotine algorithms) or overlapping rectangles in

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

388 M. KALETA, T. ŚLIWIŃSKI

MaxRects algorithms [5]. The Skyline algorithm simplifies
MaxRects by tracing only the top envelope of packed items
[7]. A similar envelope-based approach was introduced by
Martello, Pisinger, and Vigo, who defined Corner Points as
non-dominated locations where an item can be placed [8].
Extreme Points, an extension of this idea, further exploits free
space within the current packing [9].

Although numerous constructive heuristics exist [10], no
universal method for selecting the best heuristic for a given
problem instance is known. This challenge is a specific case
of the Algorithm Selection Problem, introduced by Rice [11].
Some studies attempt to discover the best-fitted heuristic from
data instances. For example, Jipan proposed using a genetic al-
gorithm to learn coefficients for a linear combination of greedy
heuristics, improving 93% of cases in the 2D Bin Packing
Problem, assuming certain similarities in input distributions
[12]. Rakotonirainy used data mining techniques and a dataset
of solved strip packing instances to predict the best-performing
heuristic based on instance characteristics [13].

The selection and combination of multiple heuristics fall
under hyper-heuristic optimization. Beyaz et al. proposed a
hyper-heuristic method for 2D packing problems inspired by
evolutionary algorithms, incorporating crossover and mutation
operators to optimize heuristic selection [14].

Recently, machine learning has emerged as a promising
tool for packing problems. One approach involves discretiz-
ing the strip into a pixel-like representation and applying
reinforcement learning (RL) to make decisions. However,
these methods are limited by problem size [15]. In general,
solving decision problems with neural networks often involves
reinforcement learning, where the network selects an action
from a predefined set of decisions. For example, in Atari
games [16], the network chooses actions like moving forward,
jumping, or staying still based on the game state. However,
in combinatorial optimization, the decision set size varies
at each step, making direct RL application difficult. One
workaround is designing networks with a large superset of
possible decisions, but this fails when the decision space is
huge or infinite.

Instead of directly solving the problem, machine learning
can be used to guide heuristic selection. Fang et al. pro-
posed a pointer network with an encoder-decoder structure
to optimize packing sequences, combined with MaxRects-
BL for placement [17]. Xu et al. introduced a dual graph
neural network, where one network selects the next item
to pack, and the other encodes free space geometry [18].
Kai Zhu et al. used a neural network and reinforcement
learning as a ”scorer”, evaluating placement candidates [19].
Another approach is supervised learning to classify problem
instances and recommend a suitable heuristic. Álvaro et al.
developed such a framework, achieving reduced computation
time compared to testing all heuristics, though it does not allow
for dynamic heuristic switching during solution construction
[20].

C. Research gap and contribution
To the best of our knowledge, there is limited research on

the use of machine learning, particularly deep reinforcement

learning, in the context of constructive heuristics for solving
the strip packing problem. Based on our review of the litera-
ture, we have identified the following research gaps:

• There is a lack of systematic knowledge regarding which
heuristic should be chosen for specific problem instances.

• Specifically, it remains unclear whether deep learning can
efficiently address the algorithm selection problem for
strip packing. No prior work has explored deep learning
from data to determine correlations between instance
characteristics and the most suitable heuristics.

• Current research on heuristic selection primarily con-
siders static decisions, meaning that once a heuristic is
chosen, it remains fixed throughout the construction of
the solution.

• A major challenge in combinatorial optimization is that
the number of possible decisions at each step of an
algorithm varies significantly, making the direct applica-
tion of standard reinforcement learning (RL) approaches
difficult.

Beyond these research gaps, we are also motivated by the
observation that each time a metaheuristic runs, it repeatedly
explores a vast search space and evaluates numerous partial
solutions—many of which ultimately lead to dead ends. This
redundancy could be mitigated by skipping moves that histor-
ically (on average) do not contribute to good solutions.

In this paper, we propose a novel framework for strip
packing that outperforms traditional constructive heuristics in
both efficiency and solution quality. Our main contributions
are:

• A new constructive heuristic based on a neural network
optimized via an evolutionary algorithm.

• Instead of directly solving the strip packing problem, our
approach leverages a neural network to score placement
and item selection decisions, making it independent of
the variable-size description of the current state as the
solution progresses.

By integrating machine learning with heuristic optimization,
our method addresses the limitations of existing approaches
and offers a more adaptive and efficient solution to the strip
packing problem.

D. Paper organisation

The rest of this paper is structured as follows. Section
II formally defines the strip-packing problem and introduces
the notation. Section III provides a detailed description of
our neural-driven constructive heuristic. Then, in section IV,
we present numerical experiments, evaluating our approach
against standard heuristics. Section V summarizes our find-
ings.

II. DEFINITIONS AND NOTATIONS

A. Problem statement

Let R = {r1, r2, . . . , rn} denote the set n of rectangular
items, each defined by a width wj > 0, and a high hj > 0,
j ∈ R. We are also given a strip of width W , a bin of
infinite height. The aim is to pack all the items into the

NEURAL-DRIVEN HEURISTIC FOR STRIP PACKING TRAINED WITH BLACK-BOX OPTIMIZATION 389

strip, minimizing the total height of all the items packed.
We consider orthogonal packing, where rectangular items are
placed into the strip such that every edge of each rectangle is
parallel to the edges of the strip. The items can be rotated
90 degrees. They must be placed entirely within the strip
boundaries and they cannot overlap with each other.

In the problem instances encountered in practice, there
are often many duplicates of a given item. It is therefore
reasonable to introduce t ∈ T the set element types and dt
number of the set items of type t that are to be packed.
Then, the set of items R can alternatively be defined as
R = {rt1, rt2, . . . , rtdt

}, ∀t ∈ T.

B. Constructive heuristics
Our approach is based on the general principle of construc-

tive heuristics, which iteratively builds a solution. Let h ∈ H
represent a specific heuristic from the set of constructive
heuristics H, where each heuristic satisfies the assumptions
outlined in this section. A constructive heuristic h starts with
an empty solution, i.e., an empty strip, and iteratively chooses
an item and its placement on the strip.

At the beginning of the k-th iteration, the current partial
solution is denoted as sk ∈ S, where sk represents the packing
configuration after placing k items. The set S contains all
possible partial solutions, i.e., all possible packings of any
subset of items.

In iteration k-th a new item must be chosen, possibly
rotated, and placed on the strip. Let yk ∈ Yk ⊆ Y denote a
potential decision in iteration k-th, where Yk is the set of all
feasible decisions given the current partial solution sk, and Y
is the set of all possible decisions across any partial solution.

Each decision made by a constructive heuristic transforms
the current partial solution into an updated solution. This
transformation is represented by a function:

T : (S,Y) → S (1)

where T (sk, yk) adds one item according to the decision yk
to the current packing sk, producing a new partial or final
solution, sk+1.

The selection of an item and its placement is specific to
each constructive heuristic h ∈ H and is guided by heuristic
rules or criteria, which are typically chosen based on prior
knowledge or computational experiments. These criteria often
take into account the item’s properties (e.g., width, height)
and/or characteristics of the current packing state (e.g., wasted
space).

Let
ph : (S, Y) → Rm (2)

denote a property function that assigns an m-dimensional
vector to a partial solution sk and a candidate decision yk
under heuristic h ∈ H. Typical properties considered in the
strip packing problem include item size, aspect ratio, and space
utilization.

Each heuristic h evaluates a decision yk based on proper-
ties ph and greedily selects the decision that maximizes the
evaluation function:

Eh(ph(sk, yk)) : Rm → R1 (3)

where Eh(ph(sk, yk)) assigns a scalar score to the decision
yk at state sk. For instance, if ph(sk, yk) computes the item’s
area and the wasted space after the placement, the heuristic
might choose the largest item and place it at the position that
minimizes wasted space.

The generic constructive heuristic algorithm h ∈ H is
illustrated in figure 1 and follows these steps:

1. Initialize: Set k = 0 and initialize the partial solution
s0 (empty strip).

2. Select a Decision: Find the decision ŷk that maximizes
the evaluation function E:

ŷk = argmax
y∈Yk

Eh(ph(sk, yk))

3. Update Solution: Apply the decision ŷk to extend the
current partial solution:

sk+1 = T (sk, ŷk)

4. Iterate: Set k = k + 1. If the solution is not complete,
return to step 2.

Fig. 1. Algorithm chart of the general constructive heuristic flow

III. METHODS

A. General idea

Typically, constructive heuristics rely on a very limited set
of properties of the items and the current partial solution. In
most cases, this is restricted to one property of the items
and one property of the partial solution. For instance, the
Maximal Rectangles Bottom-Left (MAXRECTS-BL) heuristic
uses the x and y coordinates of all possible placements [21].
The function E selects the placement with the smallest y-
coordinate, and if multiple placements share the same y-
coordinate, the smallest x-coordinate is used to break the
tie. Clearly, the relative importance of these properties varies
depending on the specific problem instance.

Furthermore, the function E, which evaluates the properties
(e.g., transforms those properties into a scalar), is typically

390 M. KALETA, T. ŚLIWIŃSKI

based on simple and static rules for selecting an item and
determining its placement and orientation. For example, in
the RectsMax heuristic, items can be sorted according to var-
ious criteria, such as descending area, descending perimeter,
difference between rectangle sides, shortest/longest side, or
aspect ratio (ratio between sides). Similarly, the placement
and orientation of an item in the RectsMax heuristic can be
based on specific selection criteria, such as minimizing the
y-coordinate of the top side of the rectangle (Bottom-Left),
picking the smallest available place (Best Area Fit) or choosing
the place with minimum length of the longer leftover side
(Best Long Side Fit). However, once the sorting order and
placement rules are chosen, they remain static throughout the
algorithm’s execution and do not adapt to the current partial
solution. This means that for different problem instances, some
evaluation criteria may be more or less effective, depending
on the specific characteristics of the input data.

Based on the above observations we are aiming at a heuristic
that:

• uses a wide range of properties of the current partial
packing and uses these properties that are more relevant
in a particular problem instance, and

• is characterized by dynamic element selection, orientation
and placement, adapted to the current partial solution.

The fundamental idea of the proposed approach is to use a
neural network as a function E to evaluate the properties of the
available alternatives at each step of the constructive heuristic.
The neural network should be able to learn when and which
properties are important and when and which orientation and
placement lead to a good solution. It is applied separately to
each alternative decision in the current step described by the
current partial solution. That makes it possible to consider a
variable number of potential decisions with the constant size
of the neural network input.

The input to the neural network is the vector of properties
ph(sk, yk) → Rm. A proper set of properties is discussed in
section IV where numerical results are presented; however, we
expect that size m of property vector is greater than in stan-
dard simple heuristics. The neural network output is a scalar
evaluation of the decisions yk at state sk, assuming that the
higher the evaluation, the better the decision. The actual value
returned by the network is used to choose the best decision,
however the value by itself has no other interpretation, for
instance, it is not a probability assigned to a given decision.

The procedure of constructing the final solution is depicted
in Figure 2, where the role of evaluator Eh is taken over by
Nw̄, the trained neural network with the weights w̄.

Note that in this approach, having the trained network,
we do not make any search of the solution space as many
metahuristics do, but instead, we perform just a single pass of
the construction heuristic that builds the solution.

B. Detailing the constructive heuristic for the strip–packing
problem

In the most general case, at iteration k an item can be
placed all over the empty space of the strip. That makes the
decision space of the constructive heuristic huge. To make

Fig. 2. General view of the neural-driven construction heuristic

it computationally feasible, we follow one of the common
approaches that limit the set of possible placing positions to
certain, sensible alternatives. In the algorithm proposed by
Martello, et al. [8], the authors utilize a set of placing positions
called corner points. These are bottom- and left-aligned non-
dominated locations, resulting from the top envelope of items
already placed on the strip, see Figure 3.

Fig. 3. Corner points (black dots) for a given partial solution.

Although, in the general case, there is no guarantee that
the optimal solution of every problem instance can be con-
structed by placing properly ordered items in the right corner
points (see [9], [22]), the approach gives very good results
when combined with the proposed neural–driven constructive
heuristic.

In each iteration, the neural network Nw̄ is used to find
evaluations for all possible decisions. We define the space of
possible decisions Yk at iteration k as the set of the following
triplets: item type, rotations (no rotation or 90 degrees rota-
tion), and feasible corner point. Only those element types for
which there are still unpacked elements in iteration k are taken
into account. The number of feasible corner points depends on
the current partial solution sk and the item and varies through

NEURAL-DRIVEN HEURISTIC FOR STRIP PACKING TRAINED WITH BLACK-BOX OPTIMIZATION 391

the algorithm execution. So, the decision ŷk is to choose a
triplet yk consisting of item type, its rotation, and a placement
position that maximizes the evaluation Nw̄(ph(sk, yk)). For
example, in the situation depicted in Figure 4, there are six
item types illustrated at the top of the figure. However, all
items of types 2 and 4 are already packed. There is still one
item of types 1, 3, and 5, and three items of type 6 left. In the
current iteration, four item types are considered together with
the three corner points (the rightmost corner point is ruled
out, as the accompanying free space is smaller than any of
the dimensions of the small items). Thus, the total number of
alternative decisions equals 4 · 2 · 3 = 24.

As discussed in this section, the algorithm considers a
population of neural networks that evolves. Therefore, we want
the evaluation procedure to be very efficient, so we use a
small-scale and simple feed-forward neural network for Nw̄.
The network has a simple four-layer feed forward architecture
with 22 inputs and one output. While the output is a numerical
evaluation, the inputs are discussed in depth in the following
subsection. The hidden layer sizes are 32 and 12, respectively.
The hidden layers and the output are equipped with bias
values. Only hidden layers utilize the tanh activation function.
The total number of network parameters (weights) is 1, 145.
Initially, all the weights are set to 0.

C. Inputs to the neural network

The properties evaluated by the neural network try to reflect
the state of the strip and the remaining items that are to be
placed, and the actual decision. Selecting the right properties
is an important design element that deeply impacts on the
quality of solutions. A neural network should know a wide
set of properties that allow it to take into account different
features depending on the current situation and thus provide
generalization. On the other hand, too many properties makes
the neural network too complex and less efficient.

Fig. 4. Making decisions for a partial solution: item types with number of
instances to pack given in brackets, current packing with corner points (black
dots), and various properties visualized with arrows.

The selection of properties resulted from expert knowledge
of packaging problems and a series of experiments with differ-
ent property configurations. Finally, we selected 22 properties
that resulted in the best outcomes. To introduce the properties,
let us consider the situation illustrated in Figure 4. The current
height of the strip (before inserting the next item) is marked
with a dotted line. The decision that needs to be evaluated
is the insertion of the new (white) item of type 1 into one
of the corner points. Figure 4 illustrates one of the possible
placements of the item. The vector of properties quantifying
this decision consists of the following properties:

I. Information on the item being placed in the current step
Width

w of the new item (after possible rotation).
Height

h of the new item (after possible rotation).
II. Information on the remaining items

Remaining area.
The total area of all the remaining items.

Type’s remaining area.
The area of all the remaining items of a type that
is about to be inserted (type of the new item).

items
of all Number of remaining items.

III. Information on the state after the placement
1D view of the strip state.

This is the eight-long element vector containing
the distance of the non-dominated envelope of
packed items (including the new item that is
about to be inserted) from the current height
of the strip. The distances are marked with
red arrows in Figure 4. Arrows pointing down
express positive, and arrows pointing up negative
values. The distance is sampled in positions
evenly spread over the width of the strip.

Horizontal mismatch.
This property quantifies how well the enve-
lope of the new item is aligned with adjacent
items horizontally. In Figure 4, this value is
represented by the length of the green section
connecting the corners of the new item and the
item of type 4. Its value may be positive or
negative, depending on the alignment.

Vertical mismatch.
This property quantifies how well the envelope
of the new item is aligned with adjacent items
vertically. In Figure 4, this value is represented
by the green dot in the corner of both items of
type 1. The dot means they are perfectly aligned.

Wasted space.
The total space wasted when placing the new
item, colored with dark gray. This waste of space
is due to the utilized corner points approach to
the generation of possible placement positions.

Horizontal size fit.
Let dx be the distance between the right side
of the new item and the right wall of the strip,

392 M. KALETA, T. ŚLIWIŃSKI

and let w be the width of the new item (after
possible rotation). Then the horizontal size fit
is computed as (dxmodw)/w, where w is the
width of the item. The measure tries to quantify
how well other items of the same type as the new
item would fit into the remaining space if there
were enough of them and they were inserted into
this space.

Vertical size fit.
Let dy be the distance between the top side
of the new item and the current height of the
strip. If dy is negative, the property is equal to
-1. Otherwise, the vertical size fit is equal to
(dy mod l)/l, where l is the length of the item.
The measure tries to assess the possibility of
placing items of the same type on top of the new
item without changing the current strip height.

Horizontal distance.
The horizontal distance of the new item from the
strip’s right wall, denoted with dx in Figure 4.

Vertical distance.
Similarly, the vertical distance from the current
strip’s height, marked with the vertical blue
arrow in the Figure.

Horizontal and vertical positions.
Similar to horizontal and vertical distance, but in
relation to the bottom and left sides of the new
item placed at certain corner point rather than to
the top and right sides of the new item.

Values of each property are scaled, and whenever the net-
work should focus on smaller values, but larger ones (outliers)
can also occur, we apply a hyperbolic tangent function to fit
values to [−1, 1] range (these include the following properties:
remaining area, number of the remaining items, 1D view of
the strip state, horizontal and vertical mismatch, wasted space,
vertical distance and position).

D. Network training with black-box optimization

Since the neural network is embedded within a combina-
torial construction heuristic, and there is no explicit way to
determine the correct network outputs, typical backpropaga-
tion learning schemes cannot be applied. However, black-
box optimization methods for neural network training have
gained significant attention in the machine learning community
[23]–[25]. Therefore, we chose black-box optimization as the
most versatile approach for computing the neural network’s
parameters w̄ (weights).

Among various evolutionary strategies, the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) is widely
regarded as a state-of-the-art derivative-free optimization
method. It is particularly suitable for black-box optimization
since it is derivative-free and relies solely on function evalu-
ations [26].

The general training process is illustrated in Figure 5. The
algorithm iteratively processes a population of individuals,
where each individual represents a set of neural network
weights and, consequently, a distinct neural network. Each

individual from the population of neural networks is evaluated
using the black-box function, meaning that the associated
neural network is embedded in our constructive heuristic.
The result of this application is an average fill factor, which
estimates how well the individual performs. CMA-ES utilizes
these evaluations, along with estimations of the mean and
covariance matrix, to generate an offspring population and
update the distribution parameters. The sole objective of the
optimization process is to maximize packing efficiency, i.e.,
the fill factor.

Since evaluating the black-box function for every training
instance would be time-consuming, we employ an approach
where only a subset of training instances (a batch) is used in
each iteration. In the experiments described in the following
section, we randomly select 100 problem instances from a total
of 500,000 instances for evaluation in each CMA-ES iteration.
Consequently, in every iteration, the population is assessed on
a new subset of problem instances.

Randomly selecting a relatively small subset in each iter-
ation implies that the objective function effectively changes
during optimization. Despite this, the algorithm maintains
convergence while keeping computational effort relatively low.
Moreover, this unconventional approach helps prevent the
algorithm from getting stuck in local optima.

It is important to note that, unlike many other optimization
algorithms [27], CMA-ES is based on the ranking of evalua-
tion values rather than their absolute values. This means that
the specific numerical values of evaluations are less relevant;
instead, the ordering of individuals based on performance
drives the optimization process. This property enhances the
algorithm’s robustness and facilitates convergence even when
the objective function varies during training.

Fig. 5. Black-box optimization with CMA-ES

Every 10th iteration, the best solution found in that iteration
is evaluated against a predefined validation set of 10,000
problems. The best-performing solution on the validation set
so far is stored as the final solution of the algorithm.

IV. COMPUTATIONAL EXPERIMENTS

A. Test bed and data generation
Since the proposed neural-driven heuristic aims to replace

simple rules for item selection and placement with neural-
based rules, we compared it against the best solutions obtained
from well-known single-pass heuristic families: MaxRects and
Skyline [5].

NEURAL-DRIVEN HEURISTIC FOR STRIP PACKING TRAINED WITH BLACK-BOX OPTIMIZATION 393

The original versions of these algorithms assume that items
are pre-sorted before packing. To benchmark our algorithm
against the best possible solution achievable within these
heuristic families, we check each heuristic with all basic
ordering such as:

• descending by
– item area,
– item perimeter,
– the absolute value of the difference in the lengths of

the sides,
– shorter side,
– longer side,
– the ratio of sides,

• and natural order.
Selection is integrated with placement decisions. The follow-
ing constructive heuristics were considered for placement [5]:

• MaxRects-Based Heuristics:
– Maximal Rectangles Bottom-Left (MaxRectsBl),
– Maximal Rectangles Best Area Fit (MaxRectsBaf),
– Maximal Rectangles Best Short Side Fit (MaxRects-

Bssf),
– Maximal Rectangles Best Long Side Fit (MaxRects-

Blsf),
• Skyline-Based Heuristics:

– Skyline Bottom-Left (SkylineBl),
– Skyline Bottom-Left Wast Map Improvement (Sky-

lineBlWm),
– Skyline Min Waste Fit (SkylineMwf),
– Skyline Min Waste Fit with low profile (Sky-

lineMwfl),
– Skyline Min Waste Fit with Waste Map Improvement

(SkylineMwfWm),
– Skyline Min Waste Fit with low profile and with

Waste Map Improvement (SkylineMwflWm).
To ensure a rigorous comparison, we always compare our

results against the best outcome achieved across all of the
above heuristics and item ordering.

To generate diverse problem instances, we used
2DCPackGen, a problem generator for two-dimensional
rectangular cutting and packing problems [28]. Following
the typology of Wäscher et al. [29], we generated problem
instances of the Open Dimension Problem/S (ODP/S) type.

Each problem instance is defined by the tuple:

(W,wt, lt, dt)

where:
• t ∈ T is the set of item types,
• W is the width of the strip,
• wt and lt are the width and length of item type t,
• dt is the demand (number of items of type t).
The parameters relevant to the ODP/S problem type required

by the generator 2DCPackGen are listed in Table I (irrelevant
parameters for strip packing were omitted).

Without loss of generality, the strip width was fixed to W =
1000 (parameter #4). We tested three different numbers of item
types (dt) (parameter #8):

TABLE I
PARAMETERS OF THE 2DCPACKGEN PROBLEM INSTANCES GENERATOR

Parameter name Value ([min, max])
1 Number of Dimensions: 2
2 Integer seed: 100 or 10000
3 Number of instances: 100 or 510000
4 Width of the strip: [1000, 1000]
5 Items’ size dimensions: [100, 500]
6 ID of the size and shape characteristic of items: 1, 6, 2 or 16
7 Number of bins (strips): [1, 1]
8 Number of different item types: [5, 5], [10, 10] or [15, 15]
9 Number for item type demand: [1, 5], [1, 10] or [1, 20]

10 ID of the characteristic for the item type demand: 5

• 5 item types,
• 10 item types,
• 15 item types.
Item dimensions (wt, lt) were randomly generated as in-

tegers in [100, 500] (parameter #5) following one of the four
predefined shape and size characteristics:

• small and square (ID=1),
• big and square (ID=6),
• long and narrow (ID=2),
• mixed sizes, i.e. small and square, short and tall, long

and narrow or big and square (ID=16),
where the ID corresponds to the 2DCPackGenitem item shape
classification (parameter #6).

The item demand distribution was set to a uniform random
variable based on the range specified in parameter #9.

To sum up, we tested problems with various numbers of
item types (parameter #8), different ranges for the generation
of item type demands (parameter #9), and different size
and shape characteristics of the generated small item types
(parameter #6). Table II provides basic statistics for generated
problem instances, showing the average number of items and
a heterogeneity measure (defined as the number of item types
divided by the average number of items per instance).

TABLE II
STATISTICS OF PROBLEM INSTANCES

num. of item type avg. num. heterogeneity
item types demand of items measure

1–5 15.0 0.33
5 1–10 27.5 0.18

1–20 52.5 0.09
1–5 30.0 0.33

10 1–10 55.0 0.18
1–20 105.0 0.09
1–5 45.0 0.33

15 1–10 82.5 0.18
1–20 157.5 0.09

For each problem type and size, we initially generated
510,000 instances with a random seed of 10,000 (parameter
#2), out of which 500,000 instances were used exclusively for
training, and 10,000 instances were reserved for testing.

During training, the neural network was trained purely on
the training set, while the testing set was used to select the
best-performing model across training iterations.

To compare our neural-driven heuristic with benchmark
heuristics, we generated 100 problem instances (instead of

394 M. KALETA, T. ŚLIWIŃSKI

510,000, parameter #3) for each problem type and size, using
2DCPackGen utility, with a seed value of 1,000 (parameter
#2).

For black-box optimization, we used the CMA-ES library
developed at Laboratory for Computer Science, Université
Paris-Sud (https://github.com/CMA-ES/libcmaes), authored by
Emmanuel Benazera and supported by the coauthor of the
original method, Nikolaus Hanse. The population size is set
to 384 individuals (which is well suited to used CPU with 12
cores and 24 threads), and the initial value of the step-size
parameter of the method σ = 0.4. As the stopping condition,
we limit the number of black-box function evaluations to
1,000,000, which is equivalent to 2,605 iterations. We use
the Sep-CMA-ES variant of the CMA-ES algorithm, which
uses a diagonal covariance matrix for linear computational
complexity [30].

B. Results
The average improvements of the neural-driven heuristic

compared with competitive heuristics are presented in Table
III. For each dataset, our algorithm improved the average fill
factor by 0.41 to 6.74 percentage points. It can be observed
that the lowest improvement occurs in the case of mixed
sizes (ID=16). This is an expected result since this dataset is
characterized by the least regularity. Consequently, the higher
entropy (irregularity) in the instances mitigates the potential
for improvement in our data-driven approach. On the contrary,
the best improvement is obtained for large and square items
(ID=6). This can be explained by the fact that the neural
network considers both horizontal and vertical size alignment,
whereas other heuristics neglect the ability to align similar
items efficiently.

In most cases, the improvement is higher when the number
of items increases from the range 1–5 to 1–10. This is
reasonable since a larger number of items provides more
opportunities to arrange elements better through flexible neural
network rules. Further increasing the number of items also
leads to greater improvement. However, interestingly, this
trend does not hold for the largest number of item types
(15 types). In that case, a moderate number of item types
results in the best improvement, particularly for small and
rectangular items (ID=1). Intuitively, having a large number of
small and rectangular items reduces the opportunity for further
enhancement, as many good arrangements are already possible
and possibly found by some of the benchmarking heuristics.

Tables IV and V present how often our algorithm is strictly
better and not worse, respectively, than the best benchmarking
heuristics. In all cases except one, our algorithm is strictly
better in more than 50% of problem instances, highlighting
its clear advantage. Even in the worst case, our algorithm is,
on average, not worse than the best heuristic in 57% of cases,
which clearly makes it a better choice than the ensemble of
benchmarking heuristics.

In general, as the number of item types increases, the advan-
tage of the neural-driven heuristic becomes more pronounced.
For 15 item types, the percentage of improved cases is around
98%, reaching 100% in some instances. Overall, the total
percentage of improved cases is 87.87%.

TABLE III
AVERAGE IMPROVEMENT IN PERCENTAGE POINTS OF THE FILL FACTOR

ACHIEVED BY THE NEURAL-DRIVEN HEURISTIC COMPARED TO
COMPETITIVE HEURISTICS.

num. of item type Size and shape ID
item types demand 1 6 2 16 avg.

1–5 1.83 3.94 4.10 0.41 2.57
5 1–10 2.27 4.65 4.00 1.07 3.00

1–20 2.91 5.02 3.74 1.50 3.29
1–5 4.21 4.39 4.07 1.39 3.51

10 1–10 3.53 5.22 3.73 1.43 3.48
1–20 3.58 6.01 4.06 1.70 3.84
1–5 3.89 5.56 2.87 1.41 3.43

15 1–10 3.64 6.38 3.20 1.81 3.76
1–20 3.27 6.59 3.06 1.80 3.68

avg. 3.24 5.31 3.65 1.39 3.39

Interestingly, the neural-driven heuristic is almost always
(95%–100% of instances) better for large and square items
(ID=6) and when the number of items is at its maximum,
which also corresponds to the highest improvement rates.
However, a high ratio of improved cases is also observed for
mixed sizes (ID=16) and 15 item types (84%–97%), despite
the relative improvement being modest (1.41%–1.81%).

TABLE IV
SHARE OF TEST PROBLEMS FOR WHICH THE NEURAL-DRIVEN HEURISTIC

IS STRICTLY BETTER THAN THE BENCHMARKING HEURISTIC [%]

num. of item type Size and shape ID
item types demand 1 6 2 16 avg.

1–5 66 77 77 50 67.50
5 1–10 68 86 83 67 76.00

1–20 89 92 90 77 87.00
1–5 92 91 91 74 87.00

10 1–10 89 95 94 80 89.50
1–20 93 100 97 92 95.50
1–5 94 95 91 84 91.00

15 1–10 99 100 97 96 98.00
1–20 98 100 99 97 98.50

avg. 87.56 92.89 91.00 79.67 87.77

TABLE V
SHARE OF TEST PROBLEMS FOR WHICH THE NEURAL-DRIVEN HEURISTIC

IS NOT WORSE THAN THE BENCHMARKING HEURISTIC [%]. CHANGES
RELATIVE TO TABLE IV ARE HIGHLIGHTED.

num. of item type Size and shape ID
item types demand 1 6 2 16 avg.

1–5 66 77 78 57 69.50
5 1–10 69 86 84 68 76.75

1–20 92 92 91 79 88.50
1–5 92 91 92 76 87.75

10 1–10 90 96 94 80 90.00
1–20 94 100 97 93 96.00
1–5 96 95 92 85 92.00

15 1–10 99 100 97 96 98.00
1–20 98 100 99 97 98.50

avg. 88.44 93.00 91.56 81.22 88.56

The average fill factors are presented in Table VI. Cases with
the lowest improvements, namely mixed sizes (ID=16) and
particularly 15 item types, exhibit a relatively high fill ratio.
This explains the relatively small improvement achieved by the

NEURAL-DRIVEN HEURISTIC FOR STRIP PACKING TRAINED WITH BLACK-BOX OPTIMIZATION 395

neural network heuristic —- these problems are already well-
handled by benchmarking heuristics, making further improve-
ment difficult or, in some cases, even impossible. Conversely,
cases with the greatest improvements have a relatively low
fill factor, indicating significant potential for optimization.
This suggests that benchmarking heuristics perform poorly on
these problem instances, whereas our neural-driven heuristic
successfully overcomes their limitations, leading to greater
improvements.

TABLE VI
AVERAGE FILL FACTOR OF 100 TEST PROBLEMS AS COMPUTED BY THE

NEURAL-DRIVEN HEURISTIC [%]

num. of item type Size and shape ID
item types demand 1 6 2 16 avg.

1–5 86.14 87.08 89.14 89.37 87.93
5 1–10 90.51 89.58 92.32 92.96 91.34

1–20 93.82 91.13 94.37 93.83 93.54
1–5 92.43 90.19 93.33 94.40 92.58

10 1–10 94.17 91.79 94.78 95.68 94.11
1–20 96.21 93.04 96.41 96.91 95.64
1–5 93.77 92.19 94.45 95.34 93.94

15 1–10 95.72 93.52 96.20 96.78 95.56
1–20 97.28 94.25 97.02 97.54 96.52

avg. 93.34 91.42 94.22 94.87 93.46

V. CONCLUSIONS

In this study, we proposed a novel constructive heuristic
for the two-dimensional offline strip packing problem with
rectangular shapes. Unlike traditional constructive heuristics
that rely on static, predefined rules, our approach leverages a
neural network to evaluate candidate placements dynamically
during the solution construction process.

By utilizing a broad range of properties of the partial
solution and candidate item, our neural-driven heuristic not
only generalizes existing heuristic families but also makes the
Algorithm Selection Problem irrelevant. More importantly, it
allows for dynamic adjustment of selection criteria, including
item choice, rotation, and placement, providing greater adapt-
ability and performance potential compared to static heuristics.

One of the main challenges in applying neural networks
to combinatorial optimization problems is handling variable
input sizes. We overcome this by using the neural network
purely as an evaluator within a general constructive heuristic
framework. However, this introduces another challenge: the
difficulty of training the network via backpropagation, since
the decision-making process is non-differentiable. To address
this, we employ an evolutionary algorithm for training, which
is well-suited for optimizing small neural networks while
avoiding local optima in weight updates.

Our experimental results demonstrate that the proposed
method consistently outperforms the best heuristics from the
Skyline and MaxRects families across different problem in-
stance characteristics. In 24 out of 36 data sets our algorithm is
the best in at least 90% of instances. In only one specific case,
our method does not strictly outperform competing heuristics
in most instances. However, even in that case, it is still better
on average, improving the average packing quality.

In conclusion, our proposed neural-driven constructive
heuristic successfully mitigates the problem of heuristic se-
lection and achieves better packing solutions on average. This
approach opens the door for further improvements in machine-
learning-driven combinatorial optimization and suggests that
similar methods could be extended to other packing and
scheduling problems.

REFERENCES

[1] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing
problems: A survey,” European Journal of Operational Research,
vol. 141, no. 2, pp. 241–252, 2002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0377221702001236

[2] X. Zhao, Y. Rao, and J. Fang, “A reinforcement learning algorithm
for the 2d-rectangular strip packing problem,” Journal of Physics:
Conference Series, vol. 2181, no. 1, p. 012002, jan 2022. [Online].
Available: https://dx.doi.org/10.1088/1742-6596/2181/1/012002

[3] J. Oliveira, A. Neuenfeldt Júnior, E. Silva, and M. Carravilla, “A survey
on heuristics for the two-dimensional rectangular strip packing problem,”
Pesquisa Operacional, vol. 36, pp. 197–226, 08 2016.

[4] E. K. Burke, G. Kendall, and G. Whitwell, “A new placement
heuristic for the orthogonal stock-cutting problem,” Operations
Research, vol. 52, no. 4, pp. 655–671, 2004. [Online]. Available:
http://www.jstor.org/stable/30036614

[5] J. Jylänki, “A thousand ways to pack the bin-a practical approach to
two-dimensional rectangle bin packing,” retrived from http://clb. demon.
fi/files/RectangleBinPack. pdf, 2010.

[6] J. L. da Silveira, F. K. Miyazawa, and E. C. Xavier, “Heuristics
for the strip packing problem with unloading constraints,” Computers
& Operations Research, vol. 40, no. 4, pp. 991–1003, 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0305054812002353

[7] L. Wei, A. Lim, and W. Zhu, “A skyline-based heuristic for the 2d
rectangular strip packing problem,” in Modern Approaches in Applied
Intelligence, K. G. Mehrotra, C. K. Mohan, J. C. Oh, P. K. Varshney,
and M. Ali, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 286–295.

[8] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin
packing problem,” Operations Research, vol. 48, no. 2, pp. 256–267,
2000. [Online]. Available: http://www.jstor.org/stable/223143

[9] T. G. Crainic, G. Perboli, and R. Tadei, “Extreme point-based
heuristics for three-dimensional bin packing,” INFORMS Journal on
Computing, vol. 20, no. 3, pp. 368–384, 2008. [Online]. Available:
https://doi.org/10.1287/ijoc.1070.0250

[10] A. Neuenfeldt Júnior, E. Silva, M. Francescatto, C. B. Rosa, and
J. Siluk, “The rectangular two-dimensional strip packing problem
real-life practical constraints: A bibliometric overview,” Computers &
Operations Research, vol. 137, p. 105521, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054821002616

[11] J. R. Rice, “The algorithm selection problem,” ser. Advances in
Computers, M. Rubinoff and M. C. Yovits, Eds. Elsevier, 1976,
vol. 15, pp. 65–118. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0065245808605203

[12] J. Huang, “Optimal linear combination of heuristic strategies for 2d
rectangular bin packing algorithms,” in 2024 IEEE 2nd International
Conference on Image Processing and Computer Applications (ICIPCA),
2024, pp. 1867–1876.

[13] R. Rakotonirainy, “A machine learning approach for automated strip
packing algorithm selection,” ORiON, vol. 36, pp. 73–, 02 2021.

[14] M. Beyaz, T. Dokeroglu, and A. Cosar, “Robust hyper-heuristic algo-
rithms for the offline oriented/non-oriented 2d bin packing problems,”
Applied Soft Computing, vol. 36, pp. 236–245, 2015.

[15] Progress in Polish Artificial Intelligence Research 5, 1st ed.
PL: Warsaw University of Technology, 2024. [Online]. Available:
https://doi.org/10.17388/WUT.2024.0002.MiNI

[16] J. Fan, “A review for deep reinforcement learning in atari: Benchmarks,
challenges and solutions,” EasyChair Preprint 6985, EasyChair, 2023.

[17] J. Fang, Y. Rao, and M. Shi, “A deep reinforcement learning
algorithm for the rectangular strip packing problem,” PLOS ONE,
vol. 18, no. 3, pp. 1–20, 03 2023. [Online]. Available: https:
//doi.org/10.1371/journal.pone.0282598

https://www.sciencedirect.com/science/article/pii/S0377221702001236
https://www.sciencedirect.com/science/article/pii/S0377221702001236
https://dx.doi.org/10.1088/1742-6596/2181/1/012002
http://www.jstor.org/stable/30036614
https://www.sciencedirect.com/science/article/pii/S0305054812002353
https://www.sciencedirect.com/science/article/pii/S0305054812002353
http://www.jstor.org/stable/223143
https://doi.org/10.1287/ijoc.1070.0250
https://www.sciencedirect.com/science/article/pii/S0305054821002616
https://www.sciencedirect.com/science/article/pii/S0065245808605203
https://www.sciencedirect.com/science/article/pii/S0065245808605203
https://doi.org/10.17388/WUT.2024.0002.MiNI
https://doi.org/10.1371/journal.pone.0282598
https://doi.org/10.1371/journal.pone.0282598

396 M. KALETA, T. ŚLIWIŃSKI

[18] Y. Xu and Z. Yang, “Graphpack: A reinforcement learning algorithm
for strip packing problem using graph neural network,” Journal of
Circuits, Systems and Computers, vol. 33, no. 08, p. 2450139, 2024.
[Online]. Available: https://doi.org/10.1142/S0218126624501391

[19] K. Zhu, N. Ji, and X. D. Li, “Hybrid heuristic algorithm based on
improved rules & reinforcement learning for 2d strip packing problem,”
IEEE Access, vol. 8, pp. 226 784–226 796, 2020.

[20] A. Neuenfeldt Júnior, J. Siluk, M. Francescatto, G. Stieler,
and D. Disconzi, “A framework to select heuristics for the
rectangular two-dimensional strip packing problem,” Expert Systems
with Applications, vol. 213, p. 119202, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422022205

[21] Chazelle, “The bottomn-left bin-packing heuristic: An efficient imple-
mentation,” IEEE Transactions on Computers, vol. C-32, no. 8, pp. 697–
707, 1983.

[22] E. den Boef, J. Korst, S. Martello, D. Pisinger, and D. Vigo,
“Erratum to ”the three-dimensional bin packing problem”: Robot-
packable and orthogonal variants of packing problems,” Oper.
Res., vol. 53, no. 4, p. 735–736, Jul. 2005. [Online]. Available:
https://doi.org/10.1287/opre.1050.0210

[23] J. Arabas and D. Jagodziński, “Toward a matrix-free covariance ma-
trix adaptation evolution strategy,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 1, pp. 84–98, 2020.

[24] P. Carvalho, N. Lourenço, and P. Machado, “How to improve
neural network training using evolutionary algorithms,” SN Computer
Science, vol. 5, no. 6, p. 664, Jun 2024. [Online]. Available:
https://doi.org/10.1007/s42979-024-02972-5

[25] D. Jagodziński, Ł. Neumann, and P. Zawistowski, “Deep neuroevolution:
Training neural networks using a matrix-free evolution strategy,” in
Neural Information Processing, T. Mantoro, M. Lee, M. A. Ayu, K. W.
Wong, and A. N. Hidayanto, Eds. Cham: Springer International
Publishing, 2021, pp. 524–536.

[26] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[27] M. Hüttenrauch and G. Neumann, “Robust black-box optimization
for stochastic search and episodic reinforcement learning,” Journal of
Machine Learning Research, vol. 25, no. 153, pp. 1–44, 2024. [Online].
Available: http://jmlr.org/papers/v25/22-0564.html

[28] E. Silva, J. F. Oliveira, and G. Wäscher, “2dcpackgen: A problem
generator for two-dimensional rectangular cutting and packing
problems,” European Journal of Operational Research, vol. 237, no. 3,
pp. 846–856, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0377221714002112

[29] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology
of cutting and packing problems,” European Journal of Operational
Research, vol. 183, no. 3, pp. 1109–1130, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S037722170600292X

[30] R. Ros and N. Hansen, “A simple modification in cma-es achieving
linear time and space complexity,” in Parallel Problem Solving from
Nature – PPSN X, G. Rudolph, T. Jansen, N. Beume, S. Lucas, and
C. Poloni, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 296–305.

https://doi.org/10.1142/S0218126624501391
https://www.sciencedirect.com/science/article/pii/S0957417422022205
https://doi.org/10.1287/opre.1050.0210
https://doi.org/10.1007/s42979-024-02972-5
http://jmlr.org/papers/v25/22-0564.html
https://www.sciencedirect.com/science/article/pii/S0377221714002112
https://www.sciencedirect.com/science/article/pii/S0377221714002112
https://www.sciencedirect.com/science/article/pii/S037722170600292X

	Introduction
	Background
	Related literature
	Research gap and contribution
	Paper organisation

	Definitions and notations
	Problem statement
	Constructive heuristics

	Methods
	General idea
	Detailing the constructive heuristic for the strip–packing problem
	Inputs to the neural network
	Network training with black-box optimization

	Computational experiments
	Test bed and data generation
	Results

	Conclusions
	References

