
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 2, PP. 397–402
Manuscript received February 17, 2025; revised May, 2025. doi: 10.24425/ijet.2025.153585

A boundle of on-line algorithms for scheduling
computational tasks

Dariusz Dorota, Czeslaw Smutnicki

Abstract—We deal with the problem of scheduling the set
of computational tasks on parallel identical processors. Each
task needs a predefined number of processors to perform.
The problem is known in scheduling theory and has been
considered up to now by a few authors. Starting from the formal
original description of the problem, we provide a mathematical
model and then propose, at first, the solution method in the
deterministic case. In fact, the paper focuses chiefly on the non-
deterministic variant of the problem. We have proposed several
online algorithms for this case. These algorithms are evaluated
through competitive analysis and experiments. The practical
application of the problem can be found in embedded systems
with increased dependability obtained through hardware and
software redundancy.

Index Terms—Multiprocessor tasks, on-line scheduling

I. INTRODUCTION

Tracing on Web the tendency in development of the elec-
tronic devices dedicated for control systems, one can observe
in recent years: (a) the significant reduction of the production
cost of a chip, (b) unification (standardization) of chips, (c)
chips’ miniaturization, and (d) replacing crucial functions of
a device by programs (passing to programmable mode). The
feature (d) induces us to focus on designing more advanced
algorithms perceived as programs (software controller). More-
over, features (a) and (d) allow us to introduce some redun-
dancy of hardware and software to increase dependability.
Redundancy means that automatic decision is made as the
result of “voting” among the predefined subset of identical
processors which perform the same functions and run the
same programming code for identical data, see Fig. 1 for
details. From the formal point of view the mentioned software
and hardware redundancy lead to the so-called multiprocessor
task scheduling. This problem has appeared in the literature;
however, the approach presented in the paper is new.

The possible applications are among others in controllers
used in critical civil objects (monitoring, energy transmission,
communication, transport), military and cosmic installations,
IoT, IoV, and IoR. More practical applications one can find in
our paper [10].

We consider a chiefly more realistic problem where the set
of tasks is unknown in advance and tasks arrive at random

D. Dorota is with Cracow University of Technology, Crakow, Poland
(e-mail: ddorota@pk.edu.pl).

C. Smutnicki is with Wrocław University of Science and Technology,
Wrocław, Poland (e-mail: czeslaw.smutnicki@pwr.edu.pl).

time moments. In this case, it is justifiable to use an on-line
scheduler. Thus, we consider several on-line algorithms that
provide competitive as well as experimental evaluation of their
quality.

II. THE PROBLEM

Let us denote the set of tasks T = {1, 2, 3, ..., n} to be
performed and the set of machines (processors, independent
embedded devices) to perform these tasks. The machines are
identical and work in parallel. The task i ∈ T is processed
synchronously on ai ≤ m processors. The task can be
perceived as identical copies of ai of the program running
simultaneously. The processing time of the task is denoted
by pi > 0, i ∈ T . The solution of the problem is defined
by the pair (S, V), where S = (S1, S2, . . . , Sn) defines task
starting times and V = (V1, V2,, Vn), Vi ⊆ M , |Vi| = ai
defines processors allocated for the task. In any moment of
time, the number of machines allocated for tasks cannot exceed
m. For each pair of tasks i, j ∈ T , which uses conflicting
sets of processors, it has to be processed either i → j or
j → i. Our goal is to find (S, V), which meets time and
resource constraints and minimizes certain quality indicators.
In this paper, we use the criterion “to estimate the length of
the schedule” Cmax = maxi∈T (Si + pi). This criterion also
maximizes the degree of machine utilization. The problem is
NP-hard.

To establish the location of the stated problem in the well-
known taxonomy α|β|γ, we refer to notation [15] which
operates on the problem structure α, constraints β, and the
goal function γ. Embedding the problem considered in the
common taxonomy, we skip an extension of α that tradition-
ally covers parallel processing, [27]. Instead, we prefer some
extension of the meaning β. We use symbol ai = k in the

scheduler

procesor

tasks

procesor

procesor

procesor

interpreter

 "vo�ng"

results

decision

Fig. 1. Structure of the system

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

398 M. KALETA, T. ŚLIWIŃSKI

Fig. 2. Example of Gantt chart for some solution of multiprocessor scheduling

case where all tasks need the same number k of processors.
The symbol ai ≤ k is used in the case where tasks need
various (but bounded) ai. Unbounded (free) ai is marked
by ai alone. The proposed taxonomy is an extension of this
from [2], [13], [18], [20], [27]. Accordingly to the proposed
taxonomy, we consider the problem denoted as P |β|Cmax,
where β ∈ {◦, ai = k, ai ≤ k, ai, pmtn, prec}.

III. DETERMINISTIC SCHEDULING

We start with a certain formulation of the problem in terms
of the deterministic scheduling notions. This model provides
the optimal reference value of the criterion for the competitive
analysis carried out in the sequel. Let us assume that T is
known and that ai, pi, i ∈ T are also known. Next, we assume
that time is discrete, that is, t = 0, 1, 2, . . . ,H , where H is
the horizon of the schedule. This fact holds if only pi, i ∈ T
are integers. Let us define the set of tasks At(S, V) processed
in the time interval [t−1, t]. Clearly, At(S, V) depends on S,
V and t. The formal definition is

At(S, V) = {i ∈ T : t− pi ≤ Si ≤ t}. (1)

The optimization problem is to minimize the goal function
(2) under under constraints (3)–(5), where where S and V are
decision variables.

min
V

min
S

max
i∈T

(Si + pi) (2)

(Si + pi ≤ Sj) ∨ (Sj + pj ≤ Si),

Vi ∩ Vj ̸= ∅, i, j ∈ T, i ̸= j, (3)∑
i∈At(S,V)

ai ≤ m, t = 1, 2, . . . ,H (4)

Si ≥ 0, i ∈ T. (5)

The goal function (2) is the makespan, which is minimized.
Constraint (3) ensures sequencing of tasks having conflicting
set of resources. Constraint (4) restricts the capacity of the
system. Note that maxi∈T (Si+ pi) in (2) can be converted to
linear expression as follows, where C means the makespan

min
V

min
S

min
C

C (6)

C ≥ Si + pi, i ∈ T. (7)

Similarly, the disjunctive condition (3) can be converted to a
linear expression with the help of an auxiliary binary variable;

Fig. 3. Non-guillotined SCP as the special case of multiprocessor scheduling

see also [27] for details. To this aim we introduce binary
variable

xij =

{
1 i → j
0 otherwise

(8)

From (3) we obtain for some large number K

Si + pi − Sj ≤ K(1− xij)

Sj + pj − Si ≤ Kxij ,

Vi ∩ Vj ̸= ∅, i, j ∈ T, i ̸= j, (9)

This has an influence on the form of the goal function (2)

min
V

min
x

min
S

min
C

C (10)

Unfortunately, the constraint (4) cannot be converted to linear.
The recommended approach to the solution algorithm goes
through the Lagrange function and dual prices; see [27] for
details.

Problem (2)–(5) can alternatively be perceived as a special
case of “project scheduling” under constraints imposed on
discrete renewable resources with a constant amount accessible
in time (RCPSP) [17]. Although the solution methods recom-
mended for RCPSP can be applied there, [17], nevertheless we
do not find such an approach in the literature. Problem (2)–(5)
can also be perceived as a special case of the “cutting strip
problem ” (SCP), see Fig. 3 for example, see also [18] for
details of the formulation, description, and solution methods
of SCP. We also found other methods of modeling problems
(2)–(5) by using a special class of graphs; see [22] for details.
The analysis of deterministic case will not be developed in the
sequel, since it plays only an auxiliary role.

IV. UNCERTAIN SCHEDULING

In this section we refer to the effective problem with
uncertain data, namely task set T is unknown in advance
and data pi, ai, i ∈ T are also unknown. The considerations
presented here are continuation of the research reported in
[11], however, here they are built on a different ground than
the one presented in [8], [9]. Note that there may exist various
types of uncertainty; see [11] for details, namely, among
others: unknown the set T ; unknown task inflow; unknown
task processing time; unknown task transfer time; unknown
moments of processor breakdowns; unknown policy of proces-
sor maintenance; unknown preceding constraints among tasks;
unknown resource needs required by the task. Uncertainty can

NEURAL-DRIVEN HEURISTIC FOR STRIP PACKING TRAINED WITH BLACK-BOX OPTIMIZATION 399

be modeled and analyzed through: (a) queening approach, (b)
stochastic scheduling, (c) fuzzy scheduling, and (d) on-line
scheduling. Approach (a) assumes that we have an infinite
inflow of tasks. Cases (b) and (c) assume that T is known but
unknown parameters remain pi, i ∈ T , which are random or
fuzzy, respectively. Thus, in this paper, we consider case (d)
assuming that task set is not known in advance, tasks arrive at
random moments of time and in random sequence. Note that
the inflow has no stochastic features.

V. ONLINE SCHEDULING

On-line scheduling means that the decision referring to
which task is processed next is made immediately after the
tasks arrive. The fundamental difference between online and
offline working mode is the access to data: (a) in the offline
scheduling mode, we know all data in advance, see determin-
istic problem in Section III; (b) in the online mode, data are
accessible (fully or partially) step-by-step with the arriving
tasks. Variant (b) also includes cases with incomplete data or
with no deterministic events, [21], [6].

The online schedulers are considered to be suitable for real
applications. There are commonly classified accordingly: (A)
online list; (B) online time; see, for example, [1], [4], [7],
[12], [25]. The scheduling strategy on-line list assumes that the
entry of the tasks randomly without any statistical distribution,
alone, and all the data of the task (namely the processing time,
the resource requirements) becomes known when the task has
appeared. Immediately, after the task arrives, the scheduler
has to plan task processing (namely assigns resources as well
as determines the processing order) and the made decision
has to remain unchanged in the future. This implicitly means
that tasks are considered in the sequence of their arrivals
(scheduler works in FIFO mode). The formerly mentioned on-
line time model allows tasks to come randomly but may arrive
contemporaneously. Some data associated with an incoming
task may be known (for example, ai), other data (for example
pi) may remain unknown or not predictable even during task
service. When pi is unknown, we usually employ a certain pre-
emptive service policy (such as, for example, Round Robin,
RR). In this case, the scheduler has to choose among all tasks
waited in the queue (these new and these postponed) by using
certain priority rule. In accordance to this classification, we
consider in the paper only algorithms from the category online
list.

The scheduling algorithms are classified according to the
strategy for making the decision in the deterministic or random
way, [1]. In the literature, we found other classifications of
online algorithms [1], [26]: clairvoyant, nonclairvoyant, with
adversaries. Skipping the formal definitions of these cases we
will only refer the reader to papers [1], [26]. Taking into
account this classification, our investigations refer to a specific
class of algorithms, namely, list scheduling with deterministic
decision-making. The rank of on-line algorithms has been
established through competitive analysis called sometimes
analysis of the worst case or analysis of the pessimistic case).
This approach establishes the relation between the value of the
goal function provided by the online algorithm A compared to

the best value of the goal function OPT achieved by the off-
line algorithm calculated with complete posterior knowledge
of the data, for example, I . Formal expressions on competitive
ratio are varied depending on the algorithm type. In the
sequel, we use the coefficient ratio for the deterministic on-line
algorithm defined as follows.

f(A, I) ≤ r · f(OPT, I) + α. (11)

The general aim is to find the minimal r that is true for
the entire population of instances I . The beneficial feature
of r is the independence from I , so it is objective. On the
other hand, the poor feature of r follows from the observation
that extreme instance I theoretically exists but rarely occurs.
Therefore, practitioners are interested in prevailing cases in
experimental analysis on a sample of instances that appeared
in industrial practice. Employing “no free lunch theorem” [28]
and philosophy of choosing “suitable sample of instances”, the
numerical experiments provide only supplementary, subjective
evaluation of algorithm quality. Therefore, in this paper, we
provide several algorithms that focus mainly on theoretical
evaluation of their properties and verifying these features in
some experimental research.

VI. NON-PREEMPTIVE TASKS

In this section, we propose a few scheduling algorithms
for the case 1 ≤ ai ≤ k ≤ m without task preemption.
These algorithms have been designed through enhancing some
appropriate off-line algorithms formulated for ai = 1, see
e.g. [13]. First, we refer to paper [16] which provided the
online list algorithm of scheduling for case ai = 1, hereinafter
called the algorithm LIST). Tasks are analyzed in the order
of their arrival date. The scheduler works according to the
following rule “if the processor is free, then plan to schedule
successive waiting tasks from the list representing the queue”.
This algorithm has been shown to be the best among all known
algorithms for the case considered [5], [16].

The natural extension of LIST on multiprocessor scheduling
is called m− LIST and defined as follows “if ai processors
are free, use ai processors to perform the task Note that LIST
and m-LIST apply the FIFO service rule. The fundamental
role of the scheduler is to allocate resources Vi ⊆ M and
to plan the expected processing period (Si, Si + pi). These
generally formulated rules of resource allocation, for LIST
as well as m-LIST, become ambiguous when several equally
evaluated allocations are available. In order to fix this problem,
we assume that the allocation with the smallest indices is
preferable.

Algorithm 1:
We denote by Ck, k ∈ M the moment of time such that the
processor k is constantly idle after Ck. The initial conditions
are Ck = 0 for all k ∈ M . The iterative step is as follows.
Select from the list of tasks that wait to be processed for the
successive task and denote it i. Calculate the earliest time Si

so that ai processors are available after Si. Formally we need
to find subset Vi ⊆ M , |Vi| = ai so that

Si = min
Vi⊆M

max
k∈Vi

Ck (12)

400 M. KALETA, T. ŚLIWIŃSKI

Fig. 4. Instance of the schedule provided by on-line algorithm m-LIST, for
ai = 1, m = 3

Fig. 5. m = 4, n = 13, online LIST (left) versus off-line OPT (right).

Then, plan task i in the interval [Si, Si + pi], allocate chosen
processors Vi to the task, and modify appropriately Ck =
Si + pi, k ∈ Vi. Repeat this procedure for successive tasks
from the queue. ◦

Figure 4 shows the schedule for n = 18, m = 3
provided by LIST when the sequence of task arrivals
is (1, 7, 16, 3, 4, 5, 6, 8, 2, 10, 11, 9, 18, 13, 14, 15, 12, 17). We
quote the result of the fundamental well-known literature; see
Theorem 1.

Theorem 1: LIST has competitive ratio

r = 2− 1

m
. (13)

Figure 5 (left) provides the schedule for some (worst) instance
I , the online algorithm LIST, and the sequence (1, 2, . . . , 13)
of incoming jobs. It provides a makespan almost twice as long
as OPT. The optimal off-line schedule OPT is given in this
figure on the right. It is clear that for this case of LIST we
have r → 2 if m → ∞.

We introduce the properties of m-LIST through an approxi-
mation of the problem data. To this end, we assume that ai =

Fig. 6. m-LIST. m = 5, n = 14, ai = 2, i ∈ T (upper); ai = k (lower)

c, i ∈ T . Approximation means that we replace c processors by
single “aggregated artificial processor”. Consequently, we can
apply the Algorithm 1 to aggregated processors and artificial
single-processor tasks. Applying Theorem 1 we conclude that

Theorem 2: m-LIST for ai = 2, i ∈ T has competitive ratio

r =

{
2− 2

m if m is even
2− 2

m−1 if m is odd
(14)

Proof: By grouping processors, we find that there exist no
more than [m/2] pairs, each of them leading to “aggregated
artificial single processor” representing two physical proces-
sors. Let us assume that these pairs have the form for even m
as follows (1, 2), (2, 3), . . .,(m− 1,m) if m and for even as
follows m (1, 2), (2, 3), . . .,(m− 2,m− 1). If m is odd, we
skip the processor m because it is single (has no pair).

For proof needs, we convert the problem with data n, m,
pj , ∈ T , aj = 2, j ∈ T , to the problem with data n′, m′, p′j ,
i ∈ T using the transformation: n′ = n, m′ = [m/2], p′j = pj ,
j ∈ T . Applying the previous theorem, we have

r = 2− 1

m′ . (15)

Substituting m′ into (15) we obtain (14). This ends the proof.
◦

Extending the previous idea, we can formulate, without
proof, the analogous theorem.

Theorem 3: m-LIST for ai = k has competitive ratio

r = 2− 1

[mk]
. (16)

The function r = 2 − 1
[mk] decreases depending on k

and obtains the maximum value for k = 1. Considering
the problem where tasks have various ai, we note that the
competitive ratio has to hold for any instance I , any data ai,
pi, in particular for ai = 1, i ∈ T . Therefore, the m-LIST
competitive ratio for various ai cannot be less than r = 2− 1

m .
Another inspiration for the online algorithm that can be

applied for multiprocessor scheduling is provided by the
MR algorithm [14]. MR uses specific technology to balance
processor workloads. Balancing takes into account the set of
tasks waiting for processing, as well as the plan of the already
scheduled task. The competitive ratio r of MR tends to

1 +

√
1 + ln 2

2
< 1.921 (17)

if m → ∞, [14]. Because MR for is currently the best on-line
algorithm, we will shown some its key elements which can
be implemented in multiprocessor scheduling. Without losing
generality, we assume that tasks arrive in the queue in the order
(1, 2, . . . , n). Consider partial order, where tasks (1, 2, . . . , t)
have already been planned. Iterations of the algorithm are
indexed by t. Let us denote Lt

i the load of the processor i
in iteration t. We sequence workloads in nonincreasing order,

NEURAL-DRIVEN HEURISTIC FOR STRIP PACKING TRAINED WITH BLACK-BOX OPTIMIZATION 401

Lt
1 ≥ Lt

2 ≥ . . . ≥ Lt
m. These workloads refer to processors

M t
1 . . .M

t
m, respectively. Note that M t

1 has the highest load,
whereas Lt

1 is the makespan. The average workload for
processors M t

j , . . . ,M
t
m is defined as follows.

Dt
j =

∑m
k=j L

t
k

m− j + 1
(18)

We set Dt = Dt
1. The authors of MR use some prede-

fined “auxiliary” numbers necessary to describe the algorithm,
namely

c = 1 +

√
1 + ln 2

2
, i =

⌈
5c− 2c2 − 1

c
·m

⌉
− 1,

k = 2i−m. (19)

The schedule is called flat in iteration t if the following
inequality holds.

Lt−1
k <

2(c− 1)

2c− 3
Dt−1

i+1 . (20)

The inequality (20) expresses that the workload of the work-
load processor M t−1

k t does not exceed the average load of the
remaining processors m− i. If condition (20) is not satisfied,
we say that the schedule is steep .

Algorithm 2:
Let us assume that we scheduled tasks (1, 2, . . . , t − 1) for
some t. We would like to plan the processing of task t, where
pt denotes its processing time. Check if the actual schedule is
steep or flat. If the schedule is steep or pt + Lt−1

i > c · Dt,
then plan to perform task t on M t−1

m . Otherwise, plan the
processing of this task on M t−1

i . ◦

The methodology of designing algorithm m-MR (the ver-
sion for multiprocessor scheduling) is analogous to m-LIST.
Therefore, we omit the further details.

VII. PREEMPTIVE TASKS

In this section, we design online algorithms for tasks with
preemption. We begin with some useful features. First, for
ai = 1 there exists an offline polynomial-time algorithm, [23].
The optimal makespan C∗

max is equal to

C∗
max = max(

1

m

n∑
j=1

pj , max
1≤j≤n

pj). (21)

The detailed schedule follows from the MacNaughton algo-
rithm, [23]. Let us consider now the on-line list scheduling
algorithm for this case. We start from CVW, [5], which is
also described in Algorithm 3. As previously, we denote
the arrived tasks by successive integers 1, 2, . . . , n. Let us
assume that tasks 1, 2, . . . , t have already been scheduled
and t + 1 will be the next task to be scheduled. Let us
denote by Lt

i the processor workload for some fixed t. We
change the numeration of the processors M t

1 . . .M
t
m, to obtain

Lt
1 ≤ Lt

2 ≤ . . . ≤ Lt
m. The current optimal makespan is

OPT t. Next, we denote St =
∑t

j=1 pj .

The strategy of CVW is to maintain some lightly loaded
processors, to anticipate longer jobs that will come. CVW has
been proved to satisfy the following inequality.

Lt
m ≤ t ·OPT t (22)

k∑
i=1

Lt
i ≤

αk − 1

αm − 1
St, 1 ≤ k ≤ m (23)

where α = m
m−1 . To describe the algorithm we define auxiliary

value
r

def
=

αm

αm − 1
(24)

.

Algorithm 3:
Let us have already planned all the incoming processing tasks
up to t. The next scheduled task is t+1. Find OPT t+1 using
(21). If Lt

m+pt+1 ≤ r ·OPT t+1, then locate whole t+1 task
on M t

m. Otherwise find ℓ = min{i : 1 ≤ i ≤ m,Lt
i + pt+1 ≥

r ·OPT t+1, }. Allocate part r ·OPT t+1−Lt
ℓ of t+1 in M t

ℓ ,
and allocate the remaining part of t+ 1 in M t

ℓ−1.

Theorem 4: CVW has competitive ratio

r =
1

1− (1− 1
m)m

(25)

The coefficient r in (25) is equal to the predefined value
(24). If m → ∞, then r → e

e−1 ≈ 1.58. There are no
algorithms for m ≥ 2 with a better competitive coefficient
than CVW, [4], [5].

The implementation of CVW for multiple processor tasks
ai = c > 1 can be performed by aggregating the processor
(similarly to m-LIST). The newly designed algorithm will be
called further m-CVW. The quality evaluation follows from
the two successive theorems.

Theorem 5: m-CVW for ai = 2, i ∈ T has

r =


1

1−
√

(1− 2
m)m

if m is even

1

1−
√

(1− 2
m−1)

m−1
if m is odd

(26)

The proof is analogous to that from Theorem 2, therefore, will
be skipped.

Theorem 6: m-CVW for ai = k, i ∈ T , has r equal to

r =
1

1− (1− 1
[mk])

[mk]
◦ . (27)

Function
1

1− (1− 1
[mk])

[mk]
(28)

decreases with k. It obtains maximum value k = 1. For the
instances I with various ai’s the quality evaluation remains,
so r = 1

1−(1− 1
m)m

.
In addition to CVW, there exist other algorithms [24] for

the preemptive case, which, however, have not been discussed
further on.

402 M. KALETA, T. ŚLIWIŃSKI

TABLE I
MAKESPANS Cmax OBSERVED FOR ONLINE ALGORITHM m-LIST

FOR m = 3 AND m = 4

Instance ai Cmax

nr n 1 2 3 m=3 m=4
1 9 4 2 3 85 70
2 13 5 4 4 170 152
3 15 5 5 5 185 168
4 19 5 7 7 245 224
5 22 6 6 10 305 270
6 21 8 7 6 335 290
7 32 11 8 13 440 355
8 36 10 8 18 640 589
9 43 11 10 22 780 696
10 48 12 12 24 825 750

VIII. COMPUTATIONAL EXPERIMENTS

Theoretical competitive ratio of the online algorithms refers
to pessimistic instances I , which rarely occur in practice.
However, practitioners are mainly interested not in theoretical
evaluations but in the experimentally confirmed quality of the
algorithm. In order to fulfill this aim, we performed some
computational experiments. Being aware that all algorithms
described in this paper require experimental analysis and
this causes a large amount of calculations and experimental
data, we provide only limited such research. We consider
several instances for the online algorithm m-LIST with fixed
configuration of ai and random pi chosen from the interval
[1, 10]. Configuration of ai is provides in Table I in the form of
amount of task which require one, two or three processors. The
tasks are analyzed in the order (1, 2, . . . , n). The makespan
depends on the number of processors m = 3, 4 available in
the embedded system.

IX. CONCLUSION

Competitive ratios for a few algorithm dedicated for mul-
tiprocessor scheduling in non-preemptive an preemptive cases
have been proposed and proved. Worst-case evaluations have
pure theoretical results formulated as theorems. However,
pessimistic instances appear rather rarely in real scheduling
systems. Thus, numerical tests usually provide results better
than the worst case taking into account a random sample of
instances or instances taken from practice. These findings seem
to be closer to the probabilistic approach than to competitive
analysis. Combined analyses are complementary.

REFERENCES

[1] S. Albers, “Online Scheduling. Introduction to scheduling”, CRC Press,
2009.

[2] J. Błażewicz et al. “Handbook on scheduling: from theory to applica-
tions”, Springer Science & Business Media, 2007.

[3] J. Błażewicz and Z. Liu, “Scheduling multiprocessor tasks with chain
constraints”, European Journal of Operational Research, 94(2), 231-241,
1996.

[4] W. Bożejko and E. Gawlińska, “Algorytmy szeregowania online”. In:
W. Bożejko and J. Pempera (eds.): “Optymalizacja dyskretna w infor-
matyce, automatyce i robotyce” (Polish) Oficyna Wydawnicza Politech-
niki Wrocławskiej, Wrocław, 2012.

[5] B. Chen, A. Van Vliet and G. J. Woeginger, “An optimal algorithm for
preemptive on-line scheduling” Second Annual European Symposium
on Algorithms, Utrecht, The Netherlands, September 26–28, 1994,
Proceedings 2. Springer Berlin Heidelberg, 1994.

[6] X. Chen, “ Selected problems of online scheduling on parallel ma-
chines”, PhD dissertation, Politechnika Poznańska, Poznań, 2014.

[7] R. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems”, ACM Computing Surveys (CSUR), 43(4), 1-
44, New York, NY, USA, 2011.

[8] D. Dorota, “Scheduling Tasks in a System with a Higher Level of
Dependability”. In: International Conference on Dependability and Com-
plex Systems. Springer, Cham, 2019.

[9] D. Dorota, “Scheduling tasks with uncertain times of duration”. In: Inter-
national Conference on Dependability and Complex Systems. Springer,
Cham, 2020.

[10] D. Dorota and C. Smutnicki, “ On-line scheduling multiprocessor tasks
in the non-predictive environment”, LNCS, 2024.

[11] D. Dorota, “Szeregowanie zadań wieloprocesorowych w warunkach
niepewności”, Ph. Thesis (Polish), Politechnika Wrocławska, 2023.

[12] M. Drozdowski, “Scheduling for parallel processing”, Springer, London,
2009.

[13] M. Drozdowski, “Scheduling multiprocessor tasks - an overview”,
European Journal of Operational Research 94(2), 215-230, 1996.

[14] R. Fleischer and M. Wahl, “Online scheduling revisited”. European Sym-
posium on Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000.

[15] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy
Kan, “Optimization and approximation in deterministic sequencing and
scheduling: a survey”, Annals of Discrete Mathematics 5, 287-326, 1979.

[16] R. Graham, “Bounds for certain multiprocessing anomalies”, Bell Sys-
tem Technical Journal, 45, 1563-1581, Wiley Online Library, 1966.

[17] W. Herroelen, B. De Reyck and E. Demeulemeester, “Resource-
constrained project scheduling: A survey of recent developments”,
Computers & Operations Research 25.4, 279-302, 1998.

[18] J. Hurink and J. Paulus, “Online algorithm for parallel job scheduling
and strip packing”, International Workshop on Approximation and
Online Algorithms, Springer, 2007.

[19] S. Im, “Online scheduling algorithms for average flow time and its
variants”, University of Illinois at Urbana-Champaign, 2012.

[20] B. Johannes, “Scheduling parallel jobs to minimize the makespan”,
Journal of Scheduling 9, 433-452, 2006.

[21] R. M. Karp, “On-Line Algorithms Versus Off-Line Algorithms: How
Much, Algorithms, Software, Architecture”, Information Processing 92:
Proceedings of the IFIP 12th World Computer Congress, Madrid, Spain,
7-11 September 1992.

[22] M. Makuchowski, “Problemy gniazdowe z operacjami wielomaszyno-
wymi. Własności i algorytmy”, PhD thesis. (Polish) Raporty Instytutu
Cybernetyki Technicznej PWr. 2004, Ser. PRE; nr 37. 196 s.

[23] R. McNaughton, “Scheduling with deadlines and loss functions”, Man-
agement Science, INFORMS, 1959.

[24] R. R. Muntz and E. G. Jr Cofmann, “Preemptive scheduling of real-time
tasks on multiprocessors systems”, Journal of the ACM, 17(2), 324-338,
1970.

[25] M. Pinedo, “Scheduling”, Springer, New York, NY, 2015.
[26] K. Pruhs, S. Jiri and E. Torng, “Online scheduling”, 2004.
[27] C. Smutnicki, “Algorytmy szeregowania zadań” (Polish), Oficyna

Wydawnicza Politechniki Wrocławskiej, 2012.
[28] D. H. Wolpert and W. G. Macready, “No free lunch theorems for

optimization”, IEEE Transactions on Evolutionary Computation, 1(1),
67-82, 1997.

	Introduction
	The problem
	Deterministic scheduling
	Uncertain scheduling
	Online scheduling
	Non-preemptive tasks
	Preemptive tasks
	Computational experiments
	Conclusion
	References

