
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 2, PP. 443–451
Manuscript received February 21, 2025; revised May, 2025. doi: 10.24425/ijet.2025.153591

Upgrading Frequency Test for Overlapping Vectors
and Fill Tree Tests

Krzysztof Mańk

Abstract—Randomness testing is one of the essential and
easiest tools for evaluating cryptographic primitives. The faster
we can test with more refined tests, the greater volume of data
that can be reliably tested. This paper we analyze three tests.
Starting with a range of observations made for a well-known
frequency test for overlapping vectors in binary sequence testing,
for which we have obtained precise chi-square statistic computed
in O

(
dt2dt

)
instead of O

(
22dt

)
time, without precomputed

tables. Next we focused on two tests from Dieharder: the DAB
Fill Tree Test and the DAB Fill Tree 2 Test — for which the
probability functions originally were determined empirically. We
also draw attention to the errors found in their implementations
and the insufficient exploration of the tested sequence in the
second test. Even though these tests have been in the package
for over 10 years, their significant shortcomings have not been
noticed until now.

Keywords—randomness testing, overlapping vectors testing,
NIST STS, Dieharder

I. INTRODUCTION

RANDOMNESS testing is widely used in the evaluation
of cryptographic primitives by reduction to examine

appropriately crafted binary sequences. Obviously, the quality
of the analysis increases with the volume of tested data, but
the time and cost increase as well.

Dieharder [1] was created thanks to Robert G. Brown, who
ported the Diehard package [2] to the C language. The oldest
version we found comes from 2007, while the tests to which
this work is devoted were included in 2011 and have not been
updated since.

We would like to draw attention to the fact that the
widespread use of the Dieharder package does not mean its
quality. Our attention was drawn to statistically significant
differences between the declared significance levels and the
observed signaling frequencies obtained when testing large
numbers of sequences. Their precise definition and diagnosis
of their causes should have been made a long time ago.

While trying to adapt the tree tests to our needs, we reached
into their source codes and discovered their shortcomings and
limitations:

• for the probability distributions used, only empirical
approximations were found, without providing a justifi-
cation for the adopted sample size,

This work was supported by the grant No. DOB/002/RON/ID1/2018 by
The National Centre for Research and Development.

The Author is with the Military University of Technology, Poland
(e-mail: krzysztof.mank@wat.edu.pl)
.

• data for the Pearson consistency test are incorrectly
prepared,

• only one height of a tree is allowed in each test – after
recompiling 5 in total,

• only 32-bit words are allowed in the DAB Fill Tree Test,
• rotations by 8 bits of 32-bit words are insufficient to

achieve examination of all bits of the sequence.

II. FREQUENCY TEST FOR OVERLAPPING VECTORS

WE will start by taking a closer look at well-known
frequency test for overlapping vectors. One of the first

results comes from Good [3]. He proposed using two statistics
computed for t and t− 1 element vectors.

A. Test overview

Supose we have sequence of n d-bit nonoverlapping blocks:
B1, B2, ..., Bn, which we extend adding t − 1 of the initial
elements at the end. Now we create two sequences, the first –
of 2 ≤ t < n element vectors:

(B1, B2, ..., Bt) , (B2, B3, ..., Bt+1) , (B3, B4, ..., Bt+2) , . . . ,
(Bn−t+1, Bn−t+2, ..., Bn) , (Bn−t+2, Bn−t+3, ..., Bn, B1) ,
(Bn−t+3, Bn−t+4, ..., Bn, B1, B2) , . . . ,
(Bn, B1, B2, ..., Bt−1) ,

and the second of t− 1 element vectors:

(B1, B2, ..., Bt−1) , (B2, B3, ..., Bt) , (B3, B4, ..., Bt+1) , . . . ,
(Bn−t+2, Bn−t+3, ..., Bn) , (Bn−t+3, Bn−t+4, ..., Bn, B1) ,
(Bn−t+4, Bn−t+5, ..., Bn, B1, B2) , . . . ,
(Bn, B1, B2, ..., Bt−2) .

Both sequences consist of n vectors.
Let vit for i = 0..2dt − 1 be numbers of observed occur-

rences of all possible t elements vectors (dt bit blocks), and
vjt−1

for j = 0..2d(t−1)−1 – numbers of observed occurrences
of all possible t− 1 elements vectors (d · (t− 1) bit blocks),
where each dt bit block is identified by an integer value, which
binary representation this block constitutes.

The test statistic is a simple difference of the two usual
Pearson statistics:

ψ2
t =

2dt

n

2dt−1∑
i=0

v2it −
2d(t−1)

n

2d(t−1)−1∑
i=0

v2it−1
,

has chi-square distribution with 2dt − 2d(t−1) degrees of
freedom asymptotically.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


452 K. MAŃK

Authors of Statistical Test Suite [4] adopted this approach
in Serial Test. Two papers published in 2004: [5] and [6] gave
means for evaluating exact test statistic. From the first one,
we can derive the formula for the covariance matrix of the
vector of counts – vit , but to get efficient implementations,
one needs to store the weak inverse of the covariance matrix.
In the second paper, Alhakim proposed a workaround using
the matrix’s eigenvectors for eigenvalue 1. Alhakim’s method
is intended for a more general case in which the vector’s
elements come from any range of natural numbers. This causes
the construction of eigenvectors to be unnecessarily compli-
cated, and to obtain equivalent results to using a covariance
matrix, it requires repetition of procedure for all vector lengths
from 1 up to desired t. That means a lot of computations.

The observations below lead to the exact test statistic
with the number of arithmetic calculations similar to Good’s
approach.

B. Construction of eigenvectors for all eigenvalues

In [5], we can find a formula for test statistic identical to
the one received from a quadratic form with the weak inverse
of the covariance matrix:

Sd,t =
1

n

t∑
w=1

1

w2

L(w,d,t)∑
i=1

(Ψw
i ◦ v)2,

where w are eigenvalues and Ψw
i are cor-

responding eigenvectors, and L (w, d, t) =

=
(
2d − 1

)min{2,t−w+1} ·
(
2d
)max{0,t−w−1}

is the number of
eigenvectors for eigenvalue w [5]. Alhakim’s formula from
[6] is a truncation to w = 1 only, of presented above.

Let Hm = H1 ⊗Hm−1, where H1 =

[
1 1
1 −1

]
and ⊗

denotes Kronecker product, denote Walsh-Hadamard matrix of
format 2m × 2m. By Hm

i for i = 0..2m − 1 we will denote
rows of the matrix Hm.

For a given pair d and t, we will derive all eigenvectors
from the matrix Hdt.

There are L (1, d, t) =
(
2d − 1

)t · 2d(t−2) eigenvectors for
w = 1, they are:

Hdt
i+j·2d+2d(t−1) , i = 1..2d − 1, j = 0..

(
2d − 1

)
2d(t−2) − 1.

There are L (2, d, t) =
(
2d − 1

)t−1 · 2d(t−3) eigenvectors
for w = 2 and they are:

1√
2

(
Hdt

i+j·2d+2d(t−2) +Hdt

(i+j·2d+2d(t−2))2d

)
,

i = 1..2d − 1, j = 0..
(
2d − 1

)
2d(t−3) − 1.

For any w < t, its eigenvectors are given by:

1√
w

w∑
k=1

Hdt

(i+j·2d+2d(t−2))2d(k−1) ,

i = 1..2d − 1, j = 0..
(
2d − 1

)
2d(t−w−1) − 1,

and for w = t we have:

1√
t

t∑
k=1

Hdt
i2d(k−1) , i = 1..2d − 1.

Due to the linearity of the dot product, we can rewrite the
formula for the test statistic:

Sd,t =
1

n

t−1∑
w=1

1

w2

2d−1∑
i=1

(2d−1)2d(t−w−1)−1∑
j=0(

w−1∑
k=0

(
Hdt

(i+j·2d+2d(t−2))2dk ◦ v
))2

+

+
1

n

1

t2

2d−1∑
i=1

(
t−1∑
k=0

(
Hdt

i2dk ◦ v
))2

.

Because all dot products above constitute elements of the
Walsh-Hadamard transform of vector v, which we will denote
as V , we finally get:

Sd,t =
1

n

t−1∑
w=1

1

w2

2d−1∑
i=1

(2d−1)2d(t−w−1)−1∑
j=0(

w−1∑
k=0

V(i+j·2d+2d(t−2))2dk

)2

+

+
1

n

1

t2

2d−1∑
i=1

(
t−1∑
k=0

Vi2dk

)2

.

Vector V should be computed using the fast Walsh-
Hadamard transform, whose time complexity is O

(
dt2dt

)
.

C. Structure of the count vector and its utilization

Since consecutive observed vectors (Bi, Bi+1, ..., Bi+t−1)
overlap on t − 1 blocks and we have extended examined
sequence by as many its initial blocks, then for every possible
d (t− 1) bit block value we can write an equation:

2d−1∑
k=0

vk·2d(t−1)+i =

2d−1∑
k=0

vk+i·2d(t−1) , i = 0..2d(t−1) − 1.

The additional equation is obvious:

2dt−1∑
k=0

vk = n.

This system of equations has order 2d(t−1) thus allows to
determine 2d(t−1) of the elements of the vector v as a linear
combination of n and the rest of them, that is 2dt − 2d(t−1),
which is consistent with the stated number of degrees of
freedom of the test statistic Sd,t.

Walsh-Hadamard transform of modified this way vector v
has an interesting property – elements V(i+j·2d+2d(t−2))2dk

for a given trio (w, i, j) and every k = 0..w − 1 are equal.
The same applies to Vi2dk , of course. This leads to further
simplification of the test statistic:

Sd,t =
1

n

t−1∑
w=1

2d−1∑
i=1

(2d−1)2d(t−w−1)−1∑
j=0



UPGRADING FREQUENCY TEST FOR OVERLAPPING VECTORS AND FILL TREE TESTS 453

(
V(i+j·2d+2d(t−2))2d(w−1)

)2
+

1

n

2d−1∑
i=1

(Vi2d(t−1))
2
.

In a such setup, initial 2d(t−1) elements of V are obsolete.

III. FILL TREE TEST FOR A BINARY SEQUENCE

The basis of the test is the procedure of randomly walking
through a binary tree of height h. In each iteration, the tree is
emptied. Then, subsequent bits of the sequence are interpreted
as an indicator of delving into the left or right sub-tree until
an unvisited node or leaf is found, after which it returns
to the root. The iteration ends when a leaf that has already
been visited is reached, which we will call collision. Two test
statistics are determined:

• number of unique nodes or leaves visited – the observed
distribution is compared using the Pearson test with the
theoretical distribution,

• position of the leaf for which the collision occurred – the
observed distribution is compared using the Pearson test
with a uniform distribution.

A. Implementation in Dieharder

Instead of a theoretical distribution of the number of unique
nodes visited until the collision occurred, it was established
empirically based on 6 · 109 samples. In the implementation,
trees of height seven are used, and the lowest used probability
is 3.33333333333 · 10−10. From the central limit theorem, it
is easy to calculate that there is a 48% probability of it being
off by at least 50% and 16% – by 100%. [7]

Even in more realistic scenarios, we have obtained:
• 1.5% probability of 1% or more deviation of the low-

est used probability for 10 MB sequence (default in
DIEHARD),

• 19.6% probability of 2% or more deviation of the lowest
used probability for 1 Gib sequence,

• 52% probability of 1% or more deviation of the lowest
used probability for 1 Gib sequence.

Below, we present our approach to the analytic evaluation of
the probability function for the number of unique nodes or
leaves visited before collision.

The following fragment can be found in the implementation:
/* Calculate expected counts. */
for (i = 0; i < target; i++) {
expected[i] = targetData[i] *

test[0]->tsamples;
if (expected[i] < 4) {
if (end == 0) start = i;

} else if (expected[i] > 4) end = i;
}

Its function, in addition to calculating the expected values of
the number of observations for each number of visited nodes,
is also to reject those with a value less than 4. However, there
is no grouping here, only a truncation of the arrays range,
which results that the vectors of observations and expected
values transferred to the function implementing the Pearson’s
consistency test have different sums, which is unacceptable in
this test.

B. Transition probability matrix approach

Under the assumption that the tested sequence is a real-
ization of independent uniformly distributed binary variables,
we can swap sub-trees at any level of the tree. Combining
them into classes significantly reduces the number of cases
considered.

We will start from a tree of height 2. Figure 1 shows the
state graph of a tree while it is being filled. We marked the
states corresponding to the collision that occurred when k
nodes (including the root) were visited with squares. These
are absorbing states.

2 3

1 1/2

1/2 1

Fig. 1. State graph for a tree of height 2

The following matrix of transition probabilities corresponds
to this graph:

M2 =


0 1 0 0 0
0 0 1

2
1
2 0

0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

 .
While the longest path in this graph is of length 3, it is

sufficient to calculate the third power of the matrix M2, and
from its first row, we would read the desired probabilities. We
have:

M3
2 =


0 0 0 1

2
1
2

0 0 0 1
2

1
2

0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

 .
We can do the same for a tree of height 3. The transition

graph and matrix are on the figures 2 and 3.
From 7-th power of M3 we get vector of probabilities:

1

8
,
1

4
,
5

16
,
15

64
,
5

64
.

Obtained for a tree of height four matrix is of format 76×76,
so we present only obtained probabilities:

1

26
,
3

26
,
45

29
,
535

212
,
1335

213
,
355

211
,
5115

215
,

30525

218
,
9075

217
,
32175

220
,
75075

223
,
10725

223
.

For height 7, implemented in Dieharder, the matrix dimen-
sion is only slightly less than 3.4 · 1012, so we need a much
simpler method.



454 K. MAŃK

1/2

1/2

4

3

1

1/2

1/4

1/4

1/21/4

5

1/2

1/4

1/2

1/2

1/2

6

7

1/2

1/2

3/4

1/4

1

Fig. 2. State graph for a tree of height 3

M3 =



0 1
2

1
2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2

1
4

0 0 0 0 1
4

0 0 0 0

0 0 0 0 0 1
2

1
4

0 0 0 1
4

0 0 0

0 0 0 0 0 0 1
2

0 0 0 1
2

0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 1
2

0 0

0 0 0 0 0 0 0 1
2

0 0 0 1
2

0 0

0 0 0 0 0 0 0 0 1
4

0 0 0 3
4

0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

Fig. 3. State transition matrix for a tree of height 3

C. Iterative approach

We will consider two sets of connected probabilities:
• ph,k – of collision occurring when k = 0..2h − 1 nodes

were visited,
• sh,k – of collision not occurring when k = 0..2h − 1

nodes were visited,
where h is tree height and

sh,k = 1− ph,k∑2h−1
m=k ph,m

.

Our starting point will be probabilities computed for a tree
of height 2, probabilities ph,k and sh,k were gathered in the
table I.

The calculation for a tree of height 3, we will start from
,,the last save” configuration, e.t. the highest number of visited
nodes without the possibility of collision: 3 – 1 as root and
2 in sub-trees. There are three possible ways of distributing
these two elements in the sub-trees. Their probabilities can be
determined using the binomial distribution with the number of
trials two, and the probability of success is 1/2.

TABLE I
PROBABILITIES ph,k AND sh,k FOR HEIGHT 2

k p2,k s2,k

0 0 1

1 0 1

2 1/2 1/2

3 1/2 0

Intermediate probabilities we will denote as qh,l,r, where l
is the number of visited nodes in the left sub-tree and r – in
the right one.

We begin with probabilities:

q3,0,2 =

(
2

0

)
· 2−2 =

1

4
, q3,1,1 =

(
2

1

)
· 2−2 =

1

2
,

q3,2,0 =

(
2

2

)
· 2−2 =

1

4
,

and will update them according to the formula:

qh,l,r =
1

2
(qh,l−1,r · sh−1,l−1 + qh,l,r−1 · sh−1,r−1) ,

until the qh,2h−1−1,2h−1−1 is reached, so we get:

q3,0,3 =
1

2
q3,0,2 · s2,2 =

1

16
,

q3,1,2 =
1

2
(q3,0,2 · s2,0 + q3,1,1 · s2,1) =

3

8
,

q3,2,1 =
1

2
(q3,1,1 · s2,1 + q3,0,2 · s2,0) =

3

8
,

q3,3,0 =
1

2
q3,2,0 · s2,2 =

1

16
.



UPGRADING FREQUENCY TEST FOR OVERLAPPING VECTORS AND FILL TREE TESTS 455

The next steps are slightly different, which results from the
saturation of the capacity of individual subtrees:

q3,1,3 =
1

2
(q3,0,3 · s2,0 + q3,1,2 · s2,2) =

1

8
,

q3,2,2 =
1

2
(q3,1,2 · s2,1 + q3,2,1 · s2,1) =

3

8
,

q3,3,1 =
1

2
(q3,3,0 · s2,0 + q3,2,1 · s2,2) =

1

8
,

q3,2,3 =
1

2
(q3,1,3 · s2,1 + q3,2,2 · s2,2) =

5

32
,

q3,3,2 =
1

2
(q3,3,1 · s2,1 + q3,2,2 · s2,2) =

5

32
,

q3,3,3 =
1

2
(q3,2,3 · s2,2 + q3,3,2 · s2,2) =

5

64
.

From Kolmogorov’s axiomatic definition of probability, we
know that the above probabilities, in layers, should sum to 1,
but they do not. Fortunately, this only means that we have not
included all events—collisions.

For three nodes visited:

p3,3 = 1− q3,0,3 − q3,1,2 − q3,2,1 − q3,3,0 =
1

8
,

for four nodes visited:

p3,4 = 1− q3,1,3 − q3,2,2 − q3,3,1 − p3,3 =
1

4
,

for five nodes visited:

p3,5 = 1− q3,2,3 − q3,3,2 − p3,3 − p3,4 =
5

16
,

for six nodes visited:

p3,6 = 1− q3,3,3 − p3,3 − p3,4 − p3,5 =
15

64
,

and finally:

p3,7 = 1− p3,3 − p3,4 − p3,5 − p3,6 = q3,3,3 =
5

64
.

The above calculations can be summarized in a general
formula:

ph,k =
1

2

min{k−1,2h−1−1}∑
l=max{h−1,k−2h−1}

qh,l,k−l−1 · (1− sh−1,l) .

The obtained values are in perfect agreement with those
obtained in III-B from M7

3 . This is no coincidence; if we
carefully examine the significant products performed when
calculating the 7-th power of M3, it would turn out that they
are exactly the same as above.

D. Comparison with the Dieharder

Referring to the test implementation in Dieharder, we ob-
tained a probability of more than 50% error in determining
the lowest tabulated probability equal 48%. Using the dis-
cussed method, we obtained 1.69627368106 ·10−10 instead of
3.33333333333 · 10−10, which means an error of 49% with
respect to the original value and 97% with respect to the
correct one.

In the set of probabilities exceeding 6.9 · 10−7, which cor-
responds to the expected value of the number of observations

equal 4, which is used in the implementation, the maximum
relative error slightly exceeds 1%.

The impact of the discussed discrepancies on p-value ob-
tained in Pearson’s consistency test is negligible.

IV. FILL TREE TEST FOR A SEQUENCE OF BIT-BLOCKS

The Fill Tree Test case is more complicated than the
previous one, and we will complicate it even further.

Suppose that tested (P)RNG produces sequences of d-bit
blocks interpreted as a natural numbers from 0 to 2d − 1.
We repeatedly try to place them in a binary tree of height
h. We start from an empty tree, so the first block is placed
as a root, and for every next block, we search for the empty
node or leaf, choosing the left sub-tree if the current number
is less than one in the current node or the right sub-tree
otherwise. We finish the iteration when a leaf is reached, and
it is already occupied, which we will call a collision. The
test consists of chi-square statistics – the first one examines
the compliance of the distribution of leaf positions on which
collisions occurred, and the second one is the distribution of
the number of elements placed in the tree before the collision.

However, knowledge of the theoretical distribution is nec-
essary for the compliance test, which we provide below.

A. Height 2

Our starting point will be a tree of height 2, filled with
numbers from the interval {A, ..., B − 1}. We have four ways
in which a given iteration can end, and we will calculate the
probabilities of each of them occurring:

• collision on the left leaf (L = 0) with two elements
(E = 2) in the tree:

P2 (L = 0 ∧ E = 2) (A,B) =

B−1∑
a=A

a−1∑
b=A

a−1∑
c=A

1

(B −A)
3 =

=
(1 + (2 (B −A)− 3) (B −A))

6 (B −A)
2 ,

• collision on the right leaf (L = 1) with two elements
(E = 2) in the tree:

P2 (L = 1 ∧ E = 2) (A,B) =

B−1∑
a=A

B−1∑
b=a

B−1∑
c=a

1

(B −A)
3 =

=
(1 + (2 (B −A) + 3) (B −A))

6 (B −A)
2 ,

• collision on the left leaf (L = 0) with three elements
(E = 3) in the tree:

P2 (L = 0 ∧ E = 3) (A,B) =

= 2

B−1∑
a=A

a−1∑
b=A

B−1∑
c=a

a−1∑
e=A

1

(B −A)
4 =

(B −A)
2 − 1

6 (B −A)
2 ,

• collision on the right leaf (L = 1) with three elements
(E = 3) in the tree:

P2 (L = 1 ∧ E = 3) (A,B) =

= 2

B−1∑
a=A

a−1∑
b=A

B−1∑
c=a

B−1∑
e=a

1

(B −A)
4 =

(B −A)
2 − 1

6 (B −A)
2 .



456 K. MAŃK

Below, we will denote these probabilities briefly as:
P2,0,2 (A,B), P2,1,2 (A,B), P2,0,3 (A,B), P2,1,3 (A,B).

Because we will use a method similar to the one in the
previous case, we will need one more set of probabilities – of
successfully placing k elements in a tree:

• for k = 0: S2,0 (A,B) = 1,
• for k = 1: S2,1 (A,B) = 1,
• for k = 2: S2,2 (A,B) = 1,
• for k = 3:

S2,3 (A,B) = 1− P2,0,2 (A,B)− P2,1,2 (A,B) =

= P2,0,3 (A,B) + P2,1,3 (A,B) =
(B −A)

2 − 1

3 (B −A)
2 .

These formulas will be useful later. Now, taking A = 0 and
B = 2d, we obtain the desired distributions for a tree of height
2.

Probability of collision occurring:
• on the left leaf:

P2,0,∗
(
0, 2d

)
= P2,0,2

(
0, 2d

)
+ P2,0,3

(
0, 2d

)
=

=
2d − 1

2d+1
,

• on the right leaf:

P2,1,∗
(
0, 2d

)
= P2,1,2

(
0, 2d

)
+ P2,1,3

(
0, 2d

)
=

=
2d + 1

2d+1
,

• when none of elements were placed: P2,∗,0
(
0, 2d

)
= 0,

• and 1 element was placed: P2,∗,1
(
0, 2d

)
= 0,

• and two elements were placed:

P2,∗,2
(
0, 2d

)
= P2,0,2

(
0, 2d

)
+ P2,1,2

(
0, 2d

)
=

=
22d+1 + 1

3 · 22d
,

• and three elements were placed:

P2,∗,3
(
0, 2d

)
= P2,0,3

(
0, 2d

)
+ P2,1,3

(
0, 2d

)
=

=
22d − 1

3 · 22d
.

B. Height 3

For the height three things become more complex or, to be
more precise, we have definitely more cases.

To allow for a collision for the next element, at least three
elements have to be placed in a tree of height 3, so we skip
insignificant cases in the formulas below. Probabilities for
collision occurring on a given leaf can be derived as follows:

P3,0,∗ (A,B) =

B−1∑
a=A

1

B −A

(
6∑

k=3

(P2,0,2 (A, a)P2,∗,k−3 (a,B) ·

·
(
a−A

B −A

)3(
B − a

B −A

)k−3(
k − 1

2

)
+

+P2,0,3 (A, a)P2,∗,k−3 (a,B) ·

·
(
a−A

B −A

)4(
B − a

B −A

)k−3(
k

3

)))
=

=
(B −A− 1) (B −A− 2)

360 (B −A)
5 ·

·
(
90 (B −A)

3
+ 29 (B −A)

2 − 3 (B −A)− 2
)
,

P3,1,∗ (A,B) =

B−1∑
a=A

1

B −A

(
6∑

k=3

(P2,1,2 (A, a)P2,∗,k−3 (a,B) ·

·
(
a−A

B −A

)3(
B − a

B −A

)k−3(
k − 1

2

)
+

+P2,1,3 (A, a)P2,∗,k−3 (a,B) ·

·
(
a−A

B −A

)4(
B − a

B −A

)k−3(
k

3

)))
=

=
(B −A− 1) (B −A+ 1)

360 (B −A)
5 ·

· (2 (B −A) + 1) (5 (B −A) + 2) (9 (B −A)− 2) ,

similarly we get:

P3,2,∗ (A,B) =
(B −A− 1) (B −A+ 1)

360 (B −A)
5 ·

· (2 (B −A)− 1) (5 (B −A)− 2) (9 (B −A) + 2) ,

P3,3,∗ (A,B) =
(B −A+ 1) (B −A+ 2)

360 (B −A)
5 ·

·
(
90 (B −A)

3 − 29 (B −A)
2 − 3 (B −A) + 2

)
,

and probabilities for collision occurring and:
• 0, 1, 2 elements were placed: P3,∗,k (A,B) = 0, k ∈

{0, 1, 2},
• 3 elements were placed:

P3,∗,3 (A,B) =

B−1∑
a=A

1

B −A

(
P2,∗,2 (A, a)

(
a−A

B −A

)3

+

+P2,∗,2 (a,B) ·
(
B − a

B −A

)3
)

=
(B −A)

2
+ 2

3 (B −A)
2 ,

• 4 elements were placed:

P3,∗,4 (A,B) =

B−1∑
a=A

1

B −A
(P2,∗,2 (A, a) ·

·
(
a−A

B −A

)3(
B − a

B −A

)(
3

2

)
+

+P2,∗,2 (a,B)

(
B − a

B −A

)3(
a−A

B −A

)(
3

2

)
+

+P2,∗,3 (A, a)

(
a−A

B −A

)4

+

+P2,∗,3 (a,B)

(
B − a

B −A

)4
)

=

=
(B −A)

4 − 1

3 (B −A)
4 ,



UPGRADING FREQUENCY TEST FOR OVERLAPPING VECTORS AND FILL TREE TESTS 457

• 5 elements were placed:

P3,∗,5 (A,B) =

=
(B −A− 1) (B −A+ 1)

(
2 (B −A)

2
+ 1
)

9 (B −A)
4 ,

• 6 elements were placed:

P3,∗,6 (A,B) =
(B −A− 1) (B −A+ 1)

21 (B −A)
6 ·

· (B −A− 2) (B −A+ 2)
(
2 (B −A)

2
+ 3
)
,

• 7 elements were placed:

P3,∗,7 (A,B) =
(B −A− 1) (B −A+ 1)

63 (B −A)
6 ·

· (B −A− 2) (B −A+ 2) (B −A− 3) (B −A+ 3) .

After observing the formulas above, we concluded that we
only need to iterate one group of probabilities – of a collision
occurring on the l-th leaf when k elements were already
placed: Ph,l,k (A,B). So, we can move on to generalizations.

Distributions used in the test can be obtained from the
formulas above by simply replacing B −A by 2d in the final
formulas.

C. Generalization

As mentioned above, the only probability which we truly
need to iterate is Ph,l,k (A,B) – probability of collision
occurring on the l-th leaf of a tree of height h, when k elements
where already placed.

For leafs l ∈
{
0, ..., 2h−2 − 1

}
we have:

Ph,l,k (A,B) =

B−1∑
a=A

1

B −A

min{k−1,2h−1−1}∑
m=max{h−1,k−2h−1}

Ph−1,l,m (A, a)Sh−1,k−m−1 (a,B) ·

· (a−A)
m+1

(B − a)
k−m−1

(B −A)
k

(
k − 1

m

)
,

and for leafs l + 2d−2 ∈
{
2h−2, ..., 2h−1 − 1

}
:

Ph,l+2d−2,k (A,B) =

B−1∑
a=A

1

B −A

min{k−1,2h−1−1}∑
m=max{h−1,k−2h−1}

Ph−1,l,m (a,B)Sh−1,k−m−1 (A, a) ·

· (a−A)
k−m−1

(B − a)
m+1

(B −A)
k

(
k − 1

m

)
.

From it, we can derive any other:
• probability of a collision occurring on a given leaf:

Ph,l,∗ (A,B) =

2h−1∑
k=h

Ph,l,k (A,B) ,

• probability of collision occurring when k elements where
already placed:

Ph,∗,k (A,B) =

2h−1−1∑
l=0

Ph,l,k (A,B) ,

• probability of successful placing of k elements into a tree:

Sh,k (A,B) =

2h−1∑
m=k

Ph,∗,m (A,B) .

The calculations are easy but time-consuming, we used
Maple in our work.

D. Comparison with the Dieharder
In Dieharder, one can find this test implemented as DAB

Fill Tree Test, but it operated only on 32-bit blocks and trees
of height 4, although you can find the table of probabilities
for height 5 in the code as well.

The 32-bit block is so large that it is possible to assume
the continuous case in analytic computation, which makes
them a bit simpler. What’s more, the probabilities of collision
occurring on any leaf are all the same. The same can be
obtained from our results by determining the limit as d
approaches infinity.

Both are placed in the code tables of probabilities and ap-
pear to be estimated empirically, maybe with some ”minded”
corrections for the case of height 4. All values are, at least,
close enough to be obtained by us. The impact of their inaccu-
racy on Pearson’s statistics’ obtained values seems negligible.

Values based on our work are presented below, but we
strongly recommend reading the next paragraph before using
them.

For a tree of height h = 4 and d = 32 probabilities are
(for k = 0..15):
0.0, 0.0, 0.0, 0.0, 0.13333333,
0.20000000, 0.20634921, 0.17857143,
0.13007055, 0.08183422, 0.04338624,
0.01851852, 0.00617284, 0.00151172,
0.00023516, 0.00001680,
and for the continuous case:

0, 0, 0, 0,
2

15
,
1

5
,
13

63
,
5

28
,
295

2268
,
232

2835
,

41

945
,
1

54
,

1

162
,

2

1323
,

2

8505
,

1

59535
.

For a tree of height h = 5 and d = 32 probabilities are
(for k = 0..31):
0.0, 0.0, 0.0, 0.0, 0.0, 0.04444444,
0.08888889, 0.11825397, 0.13165785,
0.13134039, 0.12072310, 0.10338918,
0.08302243, 0.06274687, 0.04466924,
0.02989331, 0.01873895, 0.01096132,
0.00595993, 0.00299902, 0.00138902,
0.00058795, 0.00022540, 0.00007739,
0.00002348, 0.00000618, 0.00000138,
0.00000025, 0.00000004, 0.00000000,
0.00000000, 0.00000000.

Of course, the last three values are not equal to 0, they are:

3.9498747 ·10−9, 2.7303281 ·10−10, and 9.1010938 ·10−12.



458 K. MAŃK

E. What is wrong with the DAB Fill Tree Test?

After reading the previous paragraph, the reader may have
concluded that the test has been used correctly so far, and our
calculations do not add anything significant, which would not
be largely wrong.

Of course, in the implementation of this test, the error
related to grouping too few classes, which we described in
point III-A, was repeated. However, there is something more.

In the test description we find information, that words from
the RNG are rotated, and from the implementation we can
deduce that this is cyclic rotation by 8, 16 and 24 bits. It is
said that it is for better detection of RNGs that are biased on
high, middle, or low bytes.

In our opinion, without such rotation, the test has almost
no capability of detecting any bias on bits other than the 4-th
significant when using trees of height 4.

0

1

2

3 4

5

6 7

8

9

10 11

12

13 14

Fig. 4. Tree filling order

In the picture 4, we present a tree of height 4 with nodes
labeled according to the filling order that guarantees the
maximum number of comparisons for a given tree filling. For
example, there are eight ways to fill a tree with four elements,
which can lead to a collision when trying to add a fifth element
– filling nodes:

1) 0, 1, 2, 3,
2) 0, 1, 2, 4,
3) 0, 1, 5, 6,
...
7) 0, 8, 12, 13,
8) 0, 8, 12, 14.

But they all lead to the same number of comparisons – 9:
• none when placing the first element,
• 1 when placing the second element,
• 2 for the third element,
• 3 for the fourth element,
• 3 for the fifth attempt leading to a collision.

So we will use the first one as a representative.
The case of collision occurring when five elements were

placed has three distinct cases:
1) 0, 1, 2, 3, 4 – giving 12 comparisons,
2) 0, 1, 2, 3, 5 – giving 11 comparisons,
3) 0, 1, 2, 3, 8 – giving 10 comparisons.
The case of collision occurring when six elements were

placed has three distinct cases:
1) 0, 1, 2, 3, 4, 5 – giving 14 comparisons,

2) 0, 1, 2, 3, 4, 8 – giving 13 comparisons,
3) 0, 1, 2, 3, 5, 8 – giving 12 comparisons.
Similarly, we can determine the number of comparisons for

the remaining cases, the results are summarized in the table
II.

TABLE II
MINIMAL AND MAXIMAL NUMBER OF COMPARISONS WHEN FILLING

THREE OF HEIGHT 4

no. of elem. prob. of min. max.

in the tree collision number number

4 2/15 9 9

5 1/5 10 12

6 13/63 12 14

7 5/28 14 17

8 295/2268 16 20

9 232/2835 19 21

10 41/945 22 23

11 1/54 25 26

12 1/162 28 29

13 2/1323 31 31

14 2/8505 34 34

15 1/59535 37 37

From data in the table II, we can calculate the expected
number of comparisons per element:

• 42591761
12039300 ≈ 3.5 in the minimal case,

• 11680088933
2860537680 ≈ 4.1 in the maximal case.

So, we will continue with the value 4.
The first element, placed on the 0 node, is compared with

1555849
238140 ≈ 6.5 elements, on average.

By comparison, we meant the above simple arithmetic
comparison, which means that the most significant bits of both
blocks are compared first. If they are equal, then the second
most significant bits are compared, and so on.

The probability that the comparison reaches the t-th most
significant bit and ends there is

p (t) =

{
2−t, t = 1, ..., d− 1,
21−d, t = d,

so after c comparisons, probability that at least one of them
reaches t-th most significant bit and not further equals

pc (t) =

{
(1− 2−t)

c −
(
1− 21−t

)c
, t = 1, ..., d− 1,

1−
(
1− 21−d

)c
, t = d.

From this formula, we can numerically calculate the ex-
pected number of bits at least once used in any comparison.
For d = 32 and four comparisons, we obtained 3.5 bits.
Even for the exaggerated case of the first element, assuming
seven comparisons, we only get 4.2. This means that even
after performing an additional three iterations of the test on
a sequence of cyclically rotated words, more than half of the
bits will not affect the result.

The easiest to implement workaround is to perform eight
iterations for words rotated by 4 bits. This will allow us to



UPGRADING FREQUENCY TEST FOR OVERLAPPING VECTORS AND FILL TREE TESTS 459

achieve almost exact testing coverage while maintaining the
correlation of the results of subsequent iterations at a low level.

The seemingly obvious solution of operating on blocks of 4
bits reduces the expected value of the number of active bits to
3.0. What is worse, it leads to a large unevenness of collision
probabilities for individual leaves – from 8.7 to 16.9%.

A block length of 8 should be used instead, with an
additional rotation by 4 bits. It gives almost the same coverage
as a 32-bit block with minimal differences between collision
probabilities for leaves. Furthermore, Pearson’s correlation
coefficient for two bytes overlapping by 4 bits is only 0.062, so
it would be reasonable to perform this test in a single iteration
for a sequence of overlapping bytes. In such a setup, it would
be possible to implement it even in FPGAs.

For those who were convinced, we present the necessary
probabilities below.

For a collision occurring on a given leaf:
0.12243053, 0.12494422, 0.12406619,
0.12660593, 0.12339690, 0.12592336,
0.12504015, 0.12759272,
probability of collision occurring when k = 0..15 elements
where already placed are:
0.0, 0.0, 0.0, 0.0, 0.13334351,
0.20000763, 0.20635446, 0.17857414,
0.13006809, 0.08182863, 0.04337917,
0.01851266, 0.00616964, 0.00151047,
0.00023484, 0.00001676.

V. CONCLUSION

As shown, the method of determining eigenvectors for all
eigenvalues of the covariance matrix seems important for two
reasons. First, it allows for avoiding repetitions of the sequence
evaluation for consecutive vector lengths and a significant
acceleration of calculations. An additional bonus, described
in our earlier work [8] is the possibility of determining the
test statistic values for all vector dimensions, from 1 to the
assumed t, after one run of the sequence.

Presented methods for analytically determining probability
distributions used in Tree Filling Tests implemented in the

Dieharder package give formulas for discrete cases, not just
continuous ones, and trees of any height can be derived. We
also point out several errors made while implementing both
tests.

The implementation of the presented results will not drasti-
cally improve the quality of the assessments obtained using
these tests, but it will improve their reliability and, in the
second case, increase the detection power of the test.

Further work should lead to strict algebraic proof of the
correctness of the eigenvectors’ construction.

REFERENCES

[1] R. G. Brown, “Dieharder: A random number test suite.” [Online].
Available: https://webhome.phy.duke.edu/∼rgb/General/dieharder.php

[2] G. Marsaglia, “The marsaglia random number cdrom including the
diehard battery of tests of randomness,” 1995. [Online]. Available:
web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/

[3] I. Good, “The serial test for sampling numbers and other tests
for randomness,” Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 49, pp. 276–284, 1953. [Online]. Available:
https://doi.org/10.1017/S030500410002836X

[4] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and
S. Vo, “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” NIST Special
Publication SP 800-22 Revision 1a, 2010. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-22r1a

[5] A. Alhakim, J. Kawczak, and S. Molchanov, “On the class of nilpotent
markov chains, i. the spectrum of covariance operator,” Markov Pro-
cesses and Related Fields, vol. 4, pp. 629–652, 01 2004.

[6] A. Alhakim, “On the eigenvalues and eigenvectors of an overlapping
markov chain,” Probability Theory and Related Fields, vol. 128,
pp. 589–605, 04 2004. [Online]. Available: https://doi.org/10.1007/
s00440-003-0321-z

[7] P. Billingsley, Probability and Measure” (3rd ed.). John Wiley &
Sons, 1995. [Online]. Available: www.colorado.edu/amath/sites/default/
files/attached-files/billingsley.pdf

[8] K. Mańk, “Test czestości dla nakładajacych sie wektorów (in polish:
Frequency test for overlapping vectors),” Cyberprzestepczość i ochrona
informacji – Bezpieczeństwo w internecie tom II, Wydawnictwo Wyższej
Szkoły Menedżerskiej w Warszawie, 2013.

[9] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical testing of
random number generators,” ACM Trans. Math. Softw., vol. 33, pp. 1–40,
01 2007. [Online]. Available: https://doi.org/10.1145/1268776.1268777

[10] G. P. E. and M. S. Nikulin, A guide to chi-squared testing. Wiley,
1996.

https://webhome.phy.duke.edu/~rgb/General/dieharder.php
web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/
https://doi.org/10.1017/S030500410002836X
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.1007/s00440-003-0321-z
https://doi.org/10.1007/s00440-003-0321-z
www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
https://doi.org/10.1145/1268776.1268777

	Introduction
	Frequency test for overlapping vectors
	Test overview
	Construction of eigenvectors for all eigenvalues
	Structure of the count vector and its utilization

	Fill Tree Test for a binary sequence
	Implementation in Dieharder
	Transition probability matrix approach
	Iterative approach
	Comparison with the Dieharder

	Fill Tree Test for a sequence of bit-blocks
	Height 2
	Height 3
	Generalization
	Comparison with the Dieharder
	What is wrong with the DAB Fill Tree Test?

	Conclusion
	References

