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On cofactored verification of EdDSA signatures
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Abstract—EdDSA is a Schnorr signature scheme instantiated
on top of Edwards curves, which admit fast, constant-time
arithmetic, but suffer from the presence of a non-trivial cofactor,
where the order of the group of points is a large prime times
a small integer (4 or 8). Current standards permit for points
present in the signature (commitment and/or public key) to
have a component in the small-order subgroup of the group
of points. This is done by sanctioning two variants of the
signature verification equation and specifying precedence of one
over the other. This last point, however, seems to be widely
misunderstood and the two variants are given equal footing,
allowing different “compliant” implementations to use different
verification algorithms. This in turn lets malicious actors create
signatures which are accepted by some parties, but rejected
by others, threatening, e.g., consensus in a blockchain network
setting. We add to the discussion on practical consequences of
such discrepancies by formulating the consensus problem in the
context of load-shedding attacks. We argue that the standards
are in fact very specific about the set of valid signatures,
despite lacking in explicitness and emphasis. We further show
that two mainstream cryptographic libraries, namely, OpenSSL
and CIRCL, accidentally (and in a manner not immediately
apparent when inspecting the code) use the correct variant of
the verification equation for one parameter set of EdDSA, but
incorrect for another. In OpenSSL, this is traced back to careless
copying of refcode. We conclude by proposing remedies to the
chaotic status quo described.

Keywords—cryptographic standards, cryptographic implemen-
tations, consensus, cofactor

I. INTRODUCTION

EdDSA is a modern instance of the Schnorr signature
scheme with the underlying group structure afforded by the
points on a twisted Edwards curve. Whereas Schnorr required
the group to have prime order, the number of points on
an Edwards curve is always a multiple of four. This gives
rise to a small subgroup of order 4 and 8 in the case of,
respectively, Ed448 and Ed25519, the standard parameter sets
for EdDSA. Signatures produced according to [1] and [2]
(which we henceforth refer to collectively as the standards1)
should use only points lying in the large prime-order subgroup.
Malicious actors have more freedom, however, in their choice
of points, since checking membership of points in the large
subgroup is not enforced by the standards and is typically not
done by implementations. (Membership is explicitly tested in
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1This is not technically accurate, since RFC 8032 is an Informational
RFC, not a standards-track document. We choose to treat it as such, however,
since it is viewed as authoritative by software engineers providing the actual
implementations, and it is the implementations, and the errors made therein,
that we are most concerned with in this paper.

some delicate contexts where Edwards curves are used such
as in Monero, see [3],2 but not in plain EdDSA. Checking
membership naïvely can be costly, and little effort has been
put into optimizing it; see, e.g., [4].)

This raises the question on how such maliciously con-
structed points should be treated. Should the Schnorr veri-
fication take place in the group of points on the curve or
their quotients modulo the small subgroup, i.e., should two
points be considered equivalent if they differ by, say, a point
of order 2? The standards are not explicit enough in this
regard and seemingly endorse both variants (but, as we argue
in Section VI, the intention was different). Importantly, the
set of signatures verifiable using the latter group is strictly
larger than the set of signatures verifiable using the former
(which corresponds to the outputs of the “canonical” signature
creation algorithm prescribed in the standards). Sanctioning
two variants of the verification equation enables malicious
actors to issue signatures that are accepted under one but
rejected under the other, thereby leading to disagreements
between different “compliant” implementations. This has been
alluded to in earlier works [5]–[7], but, to the best of our
knowledge, never systematically reviewed.

Contributions

In this work, we give a comprehensive account of the issues
related to Schnorr signature verification in a group with a non-
trivial cofactor and discuss their practical consequences in the
setting of distributed protocols. We point out what we believe
to be a misphrasing on the part of the EdDSA standards and
argue that most mainstream cryptographic libraries actually
fail to comply with these standards. Those that do comply, do
so inconsistently across parameter sets and only by accident,
due to an undocumented optimization that they employ. We
trace back the presence of this optimization in OpenSSL’s
implementation of Ed448 to the careless copying of Hamburg’s
refcode [8].

II. PRELIMINARIES

A. Edwards Curves

In [9], Edwards introduced his “normal” form of elliptic
curves, later adapted by Bernstein and Lange in [10] to the
computational setting by proposing efficient addition formulae.
Then, in [11], Bernstein et al. generalized the notion of an
Edwards curve to what is known as a twisted Edwards curve.

2This was not always the case and lead to a double-
spending vulnerability; see https://www.getmonero.org/2017/05/17/
disclosure-of-a-major-bug-in-cryptonote-based-currencies.html.
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Going forward, we shall abandon the distinction and only work
with the more general form of twisted Edwards curves, and
instead reserve the terms twisted and untwisted to mean what
they mean in [8], which we recall below. Thus, in general,
an Edwards curve E over a field K of odd characteristic is
defined by the equation:

ax2 + y2 = 1 + dx2y2 , (1)

where d is a non-square in the field, and a is a square. We
denote the set of (K-rational) points (x, y) ∈ K×K satisfying
Equation (1) by E(K). For an appropriately defined map + :
E(K)×E(K) → E(K), the set E(K) forms an abelian group.

In EdDSA, we shall have K be a prime field Fp for a
large prime p, and a ∈ {−1, 1}. The generalization from
the curves as originally introduced by Edwards [9], [10] to
the twisted form [11] amounts to the introduction of the a
parameter; hence, curves with a = 1 are sometimes referred
to as untwisted, and those with a = −1 are explicitly said
to be twisted (cf. [8]). We follow this naming convention in
this paper. Notably, twisted Edwards curves (a = −1) admit
faster algorithms for point addition, introduced by Hisil et al.
in [12]. For p ≡ 3 (mod 4), however, a = −1 is not a square,
limiting the use of twisted Edwards curves over Fp. This point
shall be important and shall be taken up again below.

Edwards curves are attractive for cryptographic use because
of their simple and symmetric group law:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
,

which, for d and a satisfying the conditions above, is complete,
i.e., has no exceptions among the rational points on the
curve. It is also unified, in that it is valid in the case where
(x1, y1) = (x2, y2) (point doubling). The neutral element
under this addition law is (0, 1), and a negative (additive
inverse) of a point (x, y) is the point (−x, y).

Note, however, that, for Edwards curves over Fp, the
number of rational points is divisible by four, whereas for
cryptographic purposes we typically want groups to have
prime order (cf. Schnorr groups). For curves used in practical
applications, we have #E(Fp) = cq, where #E(Fp) denotes
the number of Fp-rational points on a curve E, q is a large
prime, and c is a small cofactor, either 4 or 8, depending on
the curve. We shall normally restrict all computations to be
done in the q-torsion of E(Fp), i.e., the cyclic subgroup of
order q, denoted E(Fp)[q]. From a security standpoint, this
restriction is immediate since the discrete logarithm problem
in a composite-order group is only as hard as in its largest
cyclic subgroup. Coincidentally, it also facilitates using twisted
curves over fields where a = −1 is not a square (i.e., p ≡ 3
(mod 4)), namely, even in that case, the addition formulae
remain complete for points in the q-torsion of E(Fp), so one
way to ensure completeness of the group law is to restrict
the computations to E(Fp)[q] (cf. [8]). Importantly, however,
malicious actors need not follow this restriction and may use
points outside this group; specifically, they may add small-
order components from E(Fp)[c] (the c-torsion of E(Fp)) to
the points they publish. We follow [6] and refer to points P

that have order ord(P ) > q, i.e., have a non-trivial component
in the c-torsion, as being mixed-order.

B. EdDSA

In [13], Bernstein et al. introduced EdDSA, a modern, Ed-
wards curves-based instance of the Schnorr signature scheme.
EdDSA, while attractive for a number of reasons, suffers from
the issue of the cofactor. Specifically, there exists a non-trivial
subgroup E(Fp)[c] of points outside the normal domain of
computation which is the prime-order subgroup (the q-torsion).
The original designers recognized it and, in [13], proposed
two variants of the verification equation, showing that neither
gives an adversary any non-negligible advantage in forging
signatures. Their treatment of the two variants can be viewed
as due scientific diligence, exploring the potential pitfalls that
implementers may find themselves stepping into.

The standards mention both variants, but do not give them
equal footing and instead favour, as we argue in Section VI,
one above the other. The way the standards phrase this,
however, has apparently confused most implementers, opening
a pathway to different implementations disagreeing about the
validity of signatures. We shall argue below that the standards
are written in a way that is actually not ambivalent but
nevertheless difficult to parse and comprehend.

Let B be the distinguished basepoint that generates
E(Fp)[q]. A signature σ = (R, s) ∈ E(Fp)×Z∗

q on a message
M and under a public key A ∈ E(Fp) is accepted (verifiable)
if (but not “only if,” as we shall argue)

[s]B = R+ [h]A , (2)

where h = Hash(R,A,M). Equation (2) corresponds to
cofactorless verification. Let T be a point in E(Fp)[c] dis-
tinct from the identity.3 Note that if R = [r]B + T , but
A ∈ E(Fp)[q], Equation (2) can never hold. The standards,
however, “permit” implementations to instead check that

[c][s]B = [c]R+ [c][h]A , (3)

which we refer to as cofactored verification. If R ∈ E(Fp) \
E(Fp)[q] as above, Equation (3) still holds (assuming s is
computed correctly), whereas Equation (2) does not. This is
because cofactored verification tests not for equality between
Edwards curve points, but between equivalence classes of
points modulo the c-torsion E(Fp)[c]. Legitimate signatures,
produced according to the specification [1], [2], pass both
cofactorless and cofactored verification, and we shall refer
to those that pass only cofactored verification as contentious
signatures. For typical applications, the more restrictive (and
slightly faster) cofactorless verification is usually preferred
(see [6]). We shall argue in Section VI that this is actually
not compliant with the standards.

We remark here on the similarity of this problem and
algorithm substitution attacks. For legitimate signatures, two
implementations using, respectively, Equation (2) and Equa-
tion (3) are indistinguishable, but for adversarial inputs,
namely, contentious signatures, their behaviours diverge. We

3In the case of Ed25519, a standard instance of EdDSA, E(Fp)[c] is
cyclic, so a T exists that generates the whole subgroup.
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elaborate in Section IV on the practical consequences of this
behaviour.

C. Blockchain Networks
Since contentious signatures threaten consensus, we now

turn to a principal application of consensus protocols, namely,
blockchain networks. A blockchain network is a peer-to-peer
network of nodes working together to create a chain of trans-
actions, grouped in blocks tied together with cryptographic
hashes — a blockchain. The transactions express changes to
a global state of the network, e.g., the distribution of money
in the case of cryptocurrencies. In most settings, a transac-
tion must be authenticated by means of a digital signature
by its creator. Validity of this signature, together with the
consistency of other data in a transaction (e.g., spent amount
resulting in a non-negative balance of a user’s cryptocurrency
account), forms the basis of consensus. Indeed, a fundamental
assumption in the analysis of blockchain networks is that
participants in the network agree on what constitutes a valid
transaction and a valid block. They may, however, disagree
about what the most recent blocks of the chain are. Due to the
distributed nature of the system, different nodes see different
blocks first and append them to the tip of the chain. When
two conflicting chains arise, nodes are required by the protocol
to reject the shorter chain. It can then be argued that, under
normal operating conditions, the network should eventually
reach consensus, and all such forks are transient.

A number of consensus mechanisms exist with the most
common being Proof of Work. In a Proof-of-Work blockchain,
blocks get mined by a portion of the network called miners,
who (for a reward) solve cryptographic puzzles associated with
the blocks. The difficulty of the puzzles is set by the protocol
in proportion to the hashrate of the network, which is the
capability of the network for solving puzzles, expressed in
solution attempts (hashes computed) per unit of time, but the
cost of verifying a puzzle solution is constant and small. The
use of cryptographic puzzles is necessary in cryptocurrency
blockchains to prevent double-spending, i.e., creation of an
alternate chain in which a given transaction was not included
and convincing the network to adopt this chain, thereby
making the funds previously spent in a transaction eligible
for spending again. Specifically, the requirement to solve a
puzzle before publishing a transaction protects against Sybil
attacks [14], where an adversary creates multiple accounts to
overwhelm the network, since, now, significant computational
resources must be invested to participate in the protocol.

An adversary that has enough computing power to outpace
the honest nodes, i.e., controls more than 50% of the miners,
can mutate the blockchain at will, since they can always
build the longest chain, which the network must accept as per
the protocol. This attack, termed a 51% attack, in practice,
compromises the blockchain.4

Importantly, all consensus mechanisms, Proof of Work
included, assume that invalid blocks will be rejected by honest

4For examples of successful attacks, see, e.g., the Bitcoin Gold or
Ethereum Classic cases. Importantly, the 51% attack is also applicable to
the Proof of Stake consensus model. There, the adversary needs to control
more than 50% of the staked currency.

nodes, and thus, if the majority of the nodes are honest,
only valid blocks will be added to the chain. If there is a
disagreement between honest nodes about block validity, the
security assumptions for the blockchain protocol are broken,
possibly invalidating further security claims.

III. HAMBURG’S 4-ISOGENY

To address the slowdown incurred by using untwisted
(a = 1) curves on top of fields with characteristic p ≡ 3
(mod 4) (where a = −1 is not a square), Hamburg proposed
in [8] an efficient homomorphism or isogeny from such curves
(in the case when #E(Fp) = 4q, i.e., c = 4) to isogenous
twisted (a = −1) curves which admit faster arithmetic. Under
this isogeny (ϕa in [8]), points in E(Fp)[c] vanish, thus
ensuring that all computations on the isogenous curve (twisted)
are well-defined and the group law is complete. While for
signing purposes this optimization is safe, for verification,
it amounts to (apart from performance increase) switching
from cofactorless to cofactored verification. Indeed, Hamburg
proposes that the verification equation take the form:

[s]ϕa(B) = ϕa(R) + [h]ϕa(A) . (4)

Since ϕa is injective on E(Fp)[q], Equation (4) is equivalent
to Equation (3). If we let R = [r]B + [k]T as before, we
observe that

ϕa(R) = [r]ϕa(B) + [k]ϕa(T ) = [r]ϕa(B) ,

since T ∈ E(Fp)[c] = kerϕa vanishes under ϕa.
One curve to which Hamburg’s 4-isogeny is applicable is

Ed448, introduced by him a year later [15] and standardized in
[1], [2]. Whereas [15] proposes an implementation explicitly
using the Decaf construction [7] to work not with points on
Ed448, but equivalence classes modulo E(Fp)[c], OpenSSL
adopts the isogeny from [8] on its own, without mentioning
Decaf, while also not documenting it explicitly. So does
Cloudflare’s CIRCL. Both libraries use cofactorless verifi-
cation for Ed25519 (another standard instance of EdDSA).
Viewing Ed25519 and Ed448 as parameter sets for the abstract
scheme that is EdDSA (see [16]), we believe this to be an
implementation error that, for different scheme parameters,
different (and incompatible) verification equations are used.
Since the standards [1], [2] are vague, however, both variants
are believed to be compliant. We argue otherwise. Importantly,
engineers and practitioners without background in elliptic
curve theory will not identify the switch to cofactored verifi-
cation in OpenSSL’s and CIRCL’s implementations of Ed448
by simply studying the code. The “clearing” of E(Fp)[c] is
not explicit as in Equation (3), but instead obfuscated in the
computation of the 4-isogeny.

The likely reason for OpenSSL and CIRCL’s mistake (as we
perceive it) is that, to accompany [15], Hamburg only provided
reference code for Ed448 which already used Decaf. It can
be seen in commit history that OpenSSL directly imported
Hamburg’s refcode,5 only to drop references to Decaf during

5See commit 7324473f893ef135693cf983b415f19a0366d539
(Import Curve 448 support).
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integration and refactoring.6 Other libraries (e.g., WolfSSL)
built their Ed448 implementations from the ground up by, e.g.,
adapting Bernstein’s refcode for Ed25519.

IV. PRACTICAL CONSEQUENCES

In this section, we show possible issues arising from the
ambiguity of signature verification algorithms as implemented
in different cryptographic libraries. The problem can have seri-
ous consequences when unaccounted for by system developers
in practical applications that heavily rely on signatures to, e.g.,
achieve consensus.

A. Implementation Fingerprinting

One immediate consequence of applying the isogeny op-
timization in OpenSSL and CIRCL is the existence of an
efficient implementation fingerprinting oracle. Specifically,
given an API that accepts Ed448 signatures, one can submit
signatures (R, s) with R /∈ E(Fp)[q] and observe if they are
accepted.7 If a bug is found in OpenSSL or CIRCL, such
an API would allow hackers to quickly identify vulnerable
servers. For example, the tuple (M,A, σ) in Figure 1 is
verifiable by OpenSSL/CIRCL, but would be rejected by, e.g.,
WolfSSL. The tuple was obtained from the first Ed448 test
vector in [2] by adding the point (0,−1) ∈ E(Fp)[2] to the
commitment [r]B (and recomputing the response s).

message = ""
public_key = \

"5fd7449b59b461fd2ce787ec616a" + \
"d46a1da1342485a70e1f8a0ea75d" + \
"80e96778edf124769b46c7061bd6" + \
"783df1e50f6cd1fa1abeafe82561" + \
"80"

signature = \
"acc5c809441ba8dae0fdc3f27706" + \
"8951d204afb57bc1cb2df8b027dc" + \
"2ae5a6e0d4dcc0fcb09d7d7e0d02" + \
"85dd222b8287d73a642f5de402c6" + \
"00ddc908c93ed05d2f6048e19804" + \
"a4d5f9187f23d53298a2527daf61" + \
"f0d95565eda3cd71cffdc24c31e9" + \
"74d3ceef1042966ea9cdeb1489e4" + \
"0c00"

Fig. 1. A contentious signature that can be used to distinguish between a
verifier running OpenSSL/CIRCL and, say, WolfSSL.

B. Load-Shedding Attack

A fundamental assumption of blockchain networks is that
each block published is either perceived as valid by all
honest nodes or invalid by all honest nodes. Lack of explicit
standardization of EdDSA verification algorithm undermines
this assumption if transactions are signed with EdDSA.

If different miners use different verification variants, trans-
actions with contentious signatures would only be included in
blocks of some of the miners. If the majority of the network

6See commit aeeef83cb536216a414287dee1f424265283da88
(Remove references to libdecaf).

7Note that R cannot belong entirely to E(Fp)[c] as per the standards,
but can have components in both the q-torsion and the c-torsion.

then used cofactorless verification (Equation (2)), this would
mean that some of the miners’ efforts were wasted. Similarly,
if some miners used cofactored verification (Equation (3)),
then malicious actors could publish transactions with con-
tentious signatures, so that the blocks mined by miners running
cofactored verification would be rejected by (some fraction of)
the network.

We observe that this corresponds to a load-shedding attack
introduced by Tiwari and Green in [17]. Emitting contentious
transactions reduces the overall hashrate of the network, so
that the attacker now comprises a higher percentage thereof.
This facilitates the selfish mining strategy [18] and makes
forking the blockchain easier. Specifically, for the 51% attack
introduced in Section II-C, the adversary now only needs to
control more than 50% of one of the subnetworks created by
the fork.

For example, if 40% (in terms of hashrate) of the network
used WolfSSL, where Equation (2) is used, and 60% used
OpenSSL, where Equation (3) is used instead, then an ad-
versary would only need around 30% of the initial network’s
hashrate to control the OpenSSL-based subnetwork. If only
contentious signatures were published, then the WolfSSL-
based 40% of the network would effectively not be participat-
ing in the protocol, and even just one contentious block ac-
cepted and added to the blockchain would make the WolfSSL-
based nodes play a losing game, where they are trying to
build a longer chain with less than half of the network’s
computing resources. This idea is illustrated in Figures 2
and 3. Importantly, having 30% of the network’s hashrate is
not without precedent; in September 2024, the Foundry USA
mining pool had 30.7% of the overall network’s hashrate.8

✓
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✓ ✓

✓

✓

✓

Block i data

Tr1 Sig1
Tr2 Sig2
. . .

✓
✓

Fig. 2. The original blockchain network, where the adversary controls 3 out
of 8 equally powerful nodes. Some nodes (dotted circles) use WolfSSL, and
others (solid circles) use OpenSSL. The adversary controls less than 50% of
the network’s computational power.

Note that most blockchains do in fact support multiple
client applications, and, due to distributed trust, it is actually
preferred that clients diversify the cryptographic libraries they
use (to minimize the chance that a vulnerability in one library

8https://btc.com/stats/pool.
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Fig. 3. The network from Figure 2 after introducing a block with a contentious
signature Sigj with components in E(Fp)[c]. The network forks into two
subnetworks: subnetwork 1, where the block is accepted and published, and
subnetwork 2, where the block is rejected. The adversary controls 3 out of 5
nodes in subnetwork 1, enabling a 51% attack.

affects the entire network, i.e., becomes a single point of
failure).

The problem of verification requirements standards for Ed-
DSA signatures in the cryptocurrency space has been identified
before. In particular, the Zcash cryptocurrency addressed the
problem in one of the Zcash Improvement Proposals [5] by
explicitly requiring that cofactored verification be used. The
reasoning behind this, given in [5], was the following:

. . . implementations conformant to RFC 8032 need not
agree on whether signatures are valid. This is unaccept-
able for a consensus-critical application like Zcash.

While we argue in Section VI that the claim is in fact not
entirely correct and being truly conformant to RFC 8032
does guarantee consensus, existing implementations do in fact
disagree about validity of signatures (R, s) with mixed-order
commitments R.

C. Byzantine (Dis)agreements

Consensus protocols in the presence of malicious or faulty
nodes, so-called Byzantine agreement protocols, are a more
general problem, with blockchains being only an example. A
protocol that works correctly (i.e., all honest nodes come to a
consensus) even when t > 0 out of n nodes are malicious is
said to be Byzantine fault tolerant (BFT) [19], [20].

An upper bound on t for unauthenticated schemes is
t ≤ n−1

3 [21], but use of digital signatures and a public key
infrastructure enables secure Byzantine agreement protocols
for t ≤ n−1

2 [22]. For this reason, signature schemes are
often used in Byzantine consensus protocols, and their main
role is to ensure that malicious nodes cannot change the
contents of messages sent by honest nodes (without being
detected). Observe that, if a Byzantine agreement protocol
relies on EdDSA and different nodes use different crypto-
graphic libraries, some of which implement Equation (2),
while others implement Equation (3), then an attack similar
to the above is possible. Specifically, malicious nodes can

introduce contentious signatures into the protocol, which will
be successfully verified by some nodes, call them “cofactored
nodes,” as they use Equation (3), and rejected by others, call
them “cofactorless nodes,” as they use Equation (2).

Consider a Byzantine agreement protocol and assume that
a malicious node only emits contentious signatures (i.e., signs
their messages in the protocol with small-order components
added to the Schnorr commitments R) and otherwise follows
the protocol. At some point in time, the protocol terminates
for “cofactored nodes,” and all of them agree on the same
value, but, for “cofactorless nodes,” the protocol has either
not terminated yet, or its output is different (most likely)
than for the “cofactored nodes.” This naturally breaks the
functionality of Byzantine agreement. The effectiveness of the
attack depends on the ratio of “cofactored” to “cofactorless
nodes” and is highest when the split is even, but, formally,
the scheme is broken when even one honest node rejects a
contentious signature, since a fundamental assumption about
consensus protocols is violated.

A

✓ ViewA = ViewA∪{mj}

× ViewB = ViewB ∪∅

mj , Sigj

Fig. 4. Let Viewi = {m0, . . . ,mj} be the view of node i, i.e., the set of all
messages it has received during all phases of a Byzantine agreement protocol.
Then, a malicious node can produce a contentious signature under an honest
message such that it will be verified and added to their view by “cofactored
nodes” (solid circle) and rejected by “cofactorless nodes” (dotted circle). The
difference in views may lead to different outcomes of the agreement protocol
for the two nodes.

D. Breaking Decentralized Electronic Voting

Another set of consensus-critical protocols can be found in
electronic voting (e-voting). E-voting is a system that allows
a set of eligible users to make a decision based on individual
votes and must meet following security requirements [23]:

1) (Privacy) votes are anonymous,
2) (Fairness) no result is obtainable before the end of the

voting process,
3) (Eligibility) only eligible users can vote at all, and they

can vote exactly once,
4) (Coercion-resistance) an eligible user can cast their

vote despite outside influence,
5) (Individual verifiability) every user has the ability to

check whether their votes were counted,
6) (Universal verifiability9) everyone has the ability to

validate the voting outcome,
There are many cryptographic methods of constructing e-

voting systems, e.g., based on mix-nets, homomorphic en-
cryption, blind signatures, or blockchains (for a systematic

9Required in decentralized e-voting systems.



458 A. CINAL, O. SOBOLEWSKI

review, see [24]). In our case, the most interesting ones are the
blockchain-based schemes (e.g., [23]) due to their distributed
nature. These systems use a blockchain to store ballots so
that votes, once cast, cannot be deleted or altered. Every node
(both user and voter) is responsible for rejecting fraudulent
votes (analogously to how invalid transactions are rejected
in cryptocurrencies), so that consensus can be maintained in
accordance with the voting rules.

If eligible but malicious nodes inject votes with contentious
signatures on them (in the same manner as in Section IV-B),
the result of the vote (in particular, the vote count) will be
different depending on whether a particular node runs a cryp-
tographic library that implements Equation (2) or Equation (3).
The honest nodes’ decision is then not unanimous, breaking
the requirement of universal verifiability.

V. ADVANTAGES OF COFACTORED VERIFICATION

All signatures produced as prescribed in the standards [1],
[2] are verifiable using Equation (2). This would suggest that
cofactorless verification, which is also faster, albeit marginally,
should be the norm. This is in line with a conservative
approach that is a hallmark of computer security. Notwith-
standing, cofactored verification does come with a number of
advantages which we summarize in this section.

A. Batch Verification

The cost of single-signature verification may be amortized
by using batch verification. Batch verification, already pro-
posed in [13], exploits the linearity of the Schnorr verification
equation by checking it not with a single tuple (R, h, s), but
instead with a random integer linear combination of many such
tuples corresponding to a batch of signatures {(Ri, si)}i on
messages {Mi}i under public keys {Ai}i:[∑

i

zisi

]
B =

∑
i

[zi]Ri +
∑
i

[zihi]Ai . (5)

The zi’s in Equation (5) are drawn uniformly at random from
Z∗
q , and hi = Hash(Ri, Ai,Mi) for each i. Batch verification

amortizes the amount of computation done in the group E(Fp)
by trading it for some extra work in the scalar field Zq ,
where the operations are much cheaper. Specifically, once the
scalars zi,

∑
i zisi (mod q), and

∑
i zihi (mod q) have been

computed, verifying Equation (5) can be done using a multi-
scalar multiplication technique that uses a constant number of
point doublings regardless of the size of the batch.

Notably, however, performing the scalar computations in
Zq implicitly assumes that the points Ri and Ai have order
q, i.e., lie in E(Fp)[q]. As observed by Chalkias et al. in
[6] and (apparently independently) in [5], batch verification
is not compatible with single-signature verification when the
commitments Ri and/or public keys Ai have small-order
components. This is because, with non-negligible probability,
a signature that would be rejected if verified individually using
cofactorless verification (Equation (2)) gets accepted when
verified as part of a batch using Equation (5). Indeed, the
small-order components of the commitments Ri or public keys
Ai may vanish under the multiplication by zi or cancel with

small-order components (scaled by the random zi’s) of other
points. Since the order of any small-order point T ∈ E(Fp)[c]
divides the cofactor c by Lagrange’s theorem, the proba-
bility of such cancellations is non-negligible. Notably, such
discrepancies can occur within a single software library, not
necessarily between distinct implementations, i.e., the same
signature could be accepted or rejected by the same library
depending on whether it was verified individually or in a batch
(and depending on the choice of the random scalars zi in batch
verification, making batch verification non-deterministic).

If a “cofactored variant” of Equation (5) is used, i.e., both
sides are multiplied by c, then batch verification becomes
deterministic and compatible with single-signature verification
(using Equation (3)) in that any signature accepted as part of
a batch is accepted (except with negligible probability) when
treated individually.

B. Reducing the Number of Point Doublings

Antipa et al. in [25] observed that ElGamal-like signatures
can be verified efficiently by considering, instead of the
original verification equation (in the relevant group), a non-
zero scalar multiple thereof. For an appropriate choice of
this scalar, the number of point doublings (squarings) in the
double-and-add (square-and-multiply) algorithm or one of its
many variations. Their result naturally applies to Schnorr
signatures as well, so to EdDSA in particular. Consider again
the Schnorr verification equation. If it holds, then so does any
non-zero scalar multiple of it (indeed, this implication goes
both ways if the underlying group E(Fp) is of prime order).
Let z ∈ Z∗

q and consider the verification equation

[zs]B = [z]R+ [zh]A , (6)

where the scalars are implicitly reduced modulo q before mul-
tiplying the points. Antipa et al. noted that, if we can choose
z so that both z and zh (mod q) are “small” as integers, one
can greatly optimize signature verification. Specifically, if we
can find z such that both z and zh (mod q) have bit lengths
approximately half that of q, then we can cut the number of
point doublings required to check Equation (6) in half. The
length of zs (mod q) is irrelevant. Indeed, since B is a fixed
parameter of the scheme, implementations may precompute
B̃ = [2λ/2]B, where λ = |q|, and split e = zs (mod q) as an
integer into two parts e0 and e1 such that e = e0 + 2λ/2e1.
Signature verification then proceeds by checking that

[e0]B + [e1]B̃ − [z]R− [zh]A = (0, 1) , (7)

where all the scalars have bit lengths approximately λ/2 and
the cost of point doublings (the number of which has already
been cut in half) can be amortized by using multi-scalar
multiplication.

The construction of Antipa et al. has already been consid-
ered in [13] and rejected as the overhead was deemed too
large. Pornin in [26], however, proposed an efficient, lattice-
based algorithm for finding the scaling factor z, thus making
the optimization worthwhile. Pornin also discusses in his work
the issue of the cofactor and rightly remarks that rescaling the
verification equation by z may lead to small-order components
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vanishing by virtue of z or zh (mod q) being a multiple of
the cofactor (or just the order of the small-order component).
Thus, verifiers using the optimization of Antipa et al. may
accept signatures that would otherwise be rejected, even
without explicitly clearing the small-order components via
multiplication by c. Settling on using cofactored verification
(Equation (3)) again avoids this problem.

VI. STANDARDIZATION OF EDDSA

As pointed out already, introduction of two verification
equations by the creators of EdDSA should be viewed as
scientific diligence. [13] reads:10

The verifier is permitted to check this stronger equation
and to reject alleged signatures where the stronger equa-
tion does not hold. However, this is not required; checking
that [8][s]B = [8]R+ [8][h]A is enough for security.

Specifically, it says that implementations are permitted to
reject signatures failing to satisfy Equation (2).

Bernstein et al. in [13] are indeed ambiguous about which
verification equation is to be preferred and do not make an
attempt at normalization. Standards’ writers, however, must
have recognized the dangers of consensus underspecification
and write (in both [2] and later [1]) that cofactored verification
equation (Equation (3)) should be checked and that it is
sufficient, but not required to instead check Equation (2).
Specifically, FIPS Digital Signature Standard [1] reads:

Check that the verification equation [cs]B = [c]R+[ch]A
holds. It’s sufficient, but not required, to instead check
[s]B = R + [h]A. Output “reject” if verification fails;
output “accept” otherwise.

Similarly, RFC 8032 [2] reads for Ed25519:
Check the group equation [8][s]B = [8]R + [8][h]A. It’s
sufficient, but not required, to instead check [s]B = R +
[h]A.

For Ed448, [2] says the same thing except 8 is replaced with
4.

We note that the Initial Public Draft (IPD) [27] of [1]
originally read:

Check that the verification equation [cs]B = [c]R+[ch]A
holds. Output “reject” if verification fails; output “ac-
cept” otherwise.

No mention was made of cofactorless verification whatsoever.
It was only changed after a comment from Ruggero Susella
[28]:

. . . this definition seems to disallow the use of the more
commonly used cofactorless verification [s]B = R+[h]A.
Cofactorless verification is significantly simpler than co-
factor verification, avoiding the need of decompressing R,
to multiply by the cofactor and to convert [c]R back to
affine coordinates. Therefore, we would prefer that FIPS
186-5 will more clearly allow, as RFC 8032 does, the
usage of cofactorless verification. In case the intention
was to remove ambiguity between the two verifications by
defining only one, we would favor cofactorless verification
over cofactor verification, as XEdDSA did, because we do
not see meaningful advantages to justify the additional
cost.

10Notation adapted to ours both here and later in the text. Emphasis as in
[13].

We argue against Susella’s argument. It is true that R must
be decompressed, but otherwise [s]B − [h]A needs to be
compressed (or at least converted to affine coordinates) to
check Equation (2). Compression has cost largely comparable
with decompression (one requires an inversion in the field, the
other an exponentiation — both approximately as expensive).
Furthermore, if any of the optimizations of Section V are to be
employed, R has to be decompressed anyway. We argue that
the optimizations known in the literature more than make up
for the cost of decompression. The extra multiplication by the
cofactor is cheap, as the cofactor is always a small power of
two in the standard instances of EdDSA: in the case of Ed448,
the multiplication by c amounts to two point doublings and,
in the case of Ed25519, to three. Finally, the claim that [c]R
must be converted back to affine coordinates for verification
purposes is wrong. Equality between points can be checked
directly in projective representation.

We also do not believe that RFC 8032 [2] endorses the use
of cofactorless verification as understood by Susella. Indeed,
it says (as does the final version of FIPS DSS [1]) that “it’s
sufficient, but not required, to check” the stronger equation.
We argue this is a misphrasing on the part of the document’s
authors, since the phrases “sufficient to check” or “required to
check” are not meaningful in this context. Indeed, the “check”
in question may have different outcomes: the equation may
hold or not, and, in each case, the meaning of “sufficient” and
“required” is different. We believe the authors instead meant
to write: “it’s sufficient, but not required, for the stronger
equation to hold.” This is well-defined and in concert with the
original intention of at least the FIPS DSS authors (see [27]).
If this interpretation is correct, the standards actually give clear
guidelines (as standards should) on how EdDSA verification
should proceed. Indeed, they spell out an implication (but not
an equivalence):

Equation (2) holds =⇒ σ is correct .

Importantly, however, Equation (2) not holding does not an
invalid signature make. Equation (2) is a sufficient condition
for the validity of σ, but not a required one. Checking
Equation (2) can only be used in a “happy path” of an EdDSA
implementation. Should it fail to hold, implementations should
be obligated to fall back to checking Equation (3), which is
the “source of truth” about signature validity.

VII. RESOLUTION

We recommend that the standards [1], [2] be revised to
more explicitly define EdDSA signature verification rules,
similarly to how ZIP 215 [5] does it, to make it clear that
only cofactored verification is sanctioned, but implementations
may accept signatures based on Equation (2) holding. It is
incorrect to reject a signature if Equation (2) does not hold,
and Equation (3) must be consulted in that case.

However, since cofactorless verification has its advantages
too, being faster and more conservative, we propose standard-
izing it alongside EdDSA as a separate algorithm and formally
distinguishing between the two variants (similarly to how the
prehashed variant of EdDSA is differentiated from regular
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EdDSA [1], [2]). We believe this can be done within the
ISO/IEC OID framework by assigning to them distinct object
identifiers [29].

We introduce StrictEdDSA which differs from EdDSA de-
fined in [1], [2] in that cofactorless verification must be used.
We proceed to give further restrictions on StrictEdDSA. First,
no optimization techniques that change the order of points
on a non-prime-order curve E are allowed. This includes
the optimization by Antipa et al. [25] refined by Pornin
[26], batch verification, and using Hamburg’s 4-isogeny [8].
Second, note that with each EdDSA signature σ = (R, s),
associated are two “adversarial” points, i.e., points under the
control of an adversary, namely, the commitment R and the
public key A. It is possible that neither point lies in the q-
torsion E(Fp)[q] and yet Equation (2) holds. This can happen
if the small-order components of R and [h]A cancel. So
as to effectively enforce that all points lie in the q-torsion,
implementations should check (in addition to checks defined in
[2]) that [q]A = (0, 1), the identity in E(Fp). If the public key
is cached and reused across multiple signature verifications,
this extra cost gets amortized. We remark, however, that the
consensus assumption, that any signature is either valid as per
the standard (here, the StrictEdDSA standard) for all nodes or
invalid for all nodes, will never be violated even if this check
is omitted.

We propose assigning the following object identifiers [29]
to StrictEdDSA:11

id-StrictEdDSA25519 OBJECT IDENTIFIER ::= { 1 3 101 116 }
id-StrictEdDSA448 OBJECT IDENTIFIER ::= { 1 3 101 117 }
id-StrictEdDSA25519-ph OBJECT IDENTIFIER ::= { 1 3 101 118 }
id-StrictEdDSA448-ph OBJECT IDENTIFIER ::= { 1 3 101 119 }

where “-ph” denotes the prehashed variants of StrictEdDSA,
derived naturally from the corresponding variants of regular
EdDSA.

VIII. RELATED WORK

Below, we summarize related work on the subject of EdDSA
standardization and deployment, as well as consensus.

Chalkias et al. in [6] point to the discrepancy between soft-
ware libraries and the FIPS DSS draft [27] and recognize other
shortcoming of both the standards and the implementations,
giving a comprehensive overview of Ed25519 in the wild.
Notably, the authors interpret RFC 8032 [2] as “allowing an
optionality” in the choice of verification equation.

Brendel et al. in [30] study different variants of EdDSA and
checks performed on the signature values therein. Little em-
phasis is placed on the issue of cofactored versus cofactorless
verification.

Hamburg in [7] proposes Decaf, a point compression format
that naturally (and efficiently) does away with small-order
components.

Tiwari and Green in [17] study how hardware Trojans in
mining rig can be used to launch, among others, a load-
shedding attack.

11See http://www.oid-info.com/get/1.3.101.

IX. CONCLUSIONS

Standardization is a cornerstone of consensus in distributed
systems, and disagreements about what constitutes a valid dig-
ital signature threaten this consensus. If we, as a community,
are not able to decide on how EdDSA signatures are to be
verified, there can be no sound reasoning about the security
or correctness of distributed protocols relying on EdDSA.

Indeed, the (perceived) ambiguity in the standards leads
to new vectors of attack. We have shown, in Section IV-B,
how a load-shedding attack, similar to the one from [17],
can be launched using contentious EdDSA signatures. Our
attack is weaker than the one in [17], but has the advantage of
being practically realizable given the current state of both the
standardization of EdDSA and the implementations available.

The cofactored versus cofactorless debate must be put to
rest, and we must either adopt solutions like Decaf [7] in
place of plain EdDSA or settle on one of the verification
variants. We argued in this work that cofactored verification
should be recognized as standard due to its numerous benefits,
the most significant of which is compatibility with batch
verification (see Section V-A), which already sees use in
numerous applications (and was, in fact, already proposed in
the original Ed25519 paper [13]). We also argued that the
standards [1], [2] do actually enforce the use of cofactored
verification, but the requirement is poorly phrased and thus
widely misunderstood; see Section VI. Finally, we offered a
practical solution to the problem; see Section VII.

We hope for our work to engage the community in a
discussion on EdDSA standardization and lead to changes in
how the specification is formulated.
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