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Abstract—An estimation of the nonlinear degrees for the 

forward and inverse permutations of the Ascon algorithm is made 

in this work. This estimation is made by analyzing higher order 

differentials.  

The obtained results of nonlinear degree are significantly lower 

than the known data. Instead of the generally accepted values sr 

(where s is nonlinear degree of substitution and r is number of 

rounds), the computational experiments demonstrated the value 

s(r-1)+1 in all the considered cases. 

These results allow to clarify the complexity of constructing the 

best known distinguisher - the zero-sum distinguisher - for a multi-

round transformations. Thus, instead of the known complexity 

values of 285 and 2130 for 11 and 12 rounds of transformations, 

according to our data, the complexity for 11 rounds is 235 and for 

12 rounds is 270. 

 

Keywords—Permutation of Ascon; Nonlinear degree; Nonlinear 

degree of substitution; Zero-sum distinguisher 

I. INTRODUCTION 

HE Ascon algorithm was announced as the winner of the 

Lightweight Cryptography competition [1] in 2023. 

Therefore, today much attention of the world cryptographic 

community is focused on the analysis of this algorithm. 

Conventionally, work on the cryptographic analysis of this 

algorithm can be divided into several directions, one of which is 

related to the study of the properties of the multi-round 

permutation p. This p permutation, using the key, associated 

information, and other input information, works in a stream 

mode to produce a bit sequence that will be XORed with the 

plaintext. 

The best distinguishing attacks on this permutation p - a zero-

sum attack [2] or best known key recovery attack - cube attack 

[3] - take advantage of the fact that this transformation p uses 

nonlinear substitutions with a low nonlinear degree (nonlinear 

degree of substitution is 2, nonlinear degree of inverse 

substitution is 3), and therefore also has a low nonlinear degree 

even after a large number of rounds. As a result, in accordance 

with [4], all differentials of degree d for a transformation with 

degree of nonlinearity d will be equal to each other, and 

differentials of degree d+1, accordingly, will be equal to 0. 

However, it is difficult to determine accurately the degree of 

nonlinearity of the multiround transformation p. Well-known 

approaches make it possible to determine the upper bound of the 

degree of nonlinearity based on the nonlinear degree of 

substitutions s and the number of rounds r. However, the 

resulting value sr may be greatly overestimated, and as a result, 

the actual security against the distinguishing attack may be 

significantly lower than expected.  
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In [5], Theorems were proved, which clarify the resulting 

estimate of the degree of nonlinearity. However, these results 

work for a large number of rounds when nonlinear degree is 

close to the threshold value n-1 for an n-bit block. 

II. OBJECTIVES 

In this work, an attempt is made, using the method proposed 

in [4], to estimate the nonlinear degrees for the forward and 

inverse permutations of the Ascon algorithm by analyzing 

higher order differentials. Such refined estimations also make it 

possible to clarify the complexity of the best known 

distinguishing attacks for Ascon permutation - Zero-sum attack 

[2].  

III. THE ASCON ALGORITHM  

A. General information 

The Ascon was developed in 2014 by a team of researchers 

C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer 

from Graz University of Technology, Infineon Technologies, 

Lamarr Security Research, and Radboud University. The cipher 

family was chosen as a finalist of the CAESAR Competition in 

February 2019. The Ascon [7] also had been selected by 

US National Institute of Standards and Technology (NIST) for 

future standardization of the lightweight cryptography in 2023. 

The algorithm uses components that have already been 

proven by use in other well-known cryptographic algorithms. 

Sponge construction and S-box are from Keccak (SHA-3)[5], 

linear layer is from SHA-2 [8]. 

B. Modes of operation and Sponge schemes of Ascon 

There are two main modes of operation of this algorithm: 

AEAD mode (Authenticated Encryption with Associated Data) 

and Hash mode. 

The scheme of Sponge construction of Ascon for AEAD 

mode from [7] is presented on Fig. 1. The sponge scheme is one 

of the most popular schemes among the algorithms-participants 

of the Lightweight Cryptography competition [1] (16 of 32 

participants of Round 2 competition used Sponge scheme).  
 

 
Fig. 1. Sponge construction of Ascon in AEAD mode [7] 
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At the initialization stage (part “Initialization” in the Fig. 1), 

a 320-bit internal state is formed using a 128-bit key K, an initial 

vector IV, 128-bit nonce N, and a 12-round transformation pa. 

Next, the "absorption" of the associated data (“Associated data” 

in the Fig. 1) already takes place using a 6-round or 8-round 

transformation pb. Using the same transformation pb, 64-bits or 

128-bits blocks of ciphertext Ci are formed after the encryption 

of corresponding size plaintext blocks Pi (part “Plaintext” in the 

Fig. 1). This process is similar to the stream mode, since each 

block of the cryptogram is formed as a result of XOR adding a 

block of plaintext and bits of the current internal state. The 128-

bits tag T is formed using the 12-round transformation pa and 

the key K in the final part (“Finalization” in the Fig. 1). The 

purpose of tag T is to ensure the integrity of the message. 

Decryption is performed according to the same scheme, 

except that instead of plaintext blocks Pi, cryptogram blocks Ci 

will be added by XOR, and plaintext blocks will be formed. 

The sponge scheme for Ascon in Hash modes is shown in 

Fig. 2. 

 

 
Fig. 2. Sponge construction of Ascon in Hash mode [7] 

 

At the initialization stage (part “Initialization” in the Fig. 2), 

a 320-bit internal state is formed using an initial vector IV and 

a 12-round transformation pa. Next, the "absorption" of the 64-

bits blocks of message (part “Absorb Message” in the Fig. 2) 

takes place using a 8-round or 12-round transformation pb. 

Using the same transformation pb, blocks of hash-code Hi are 

formed (part “Squeeze Hash” in the Fig. 2). Size of hash-code 

is 256 bits. 

The main advantages of Sponge scheme are its versatility and 

the ability to be tuned to achieve good performance in any 

domain, including high-speed implementation, memory-

constrained environments, and regular desktop computers. 

The presence of such an external Sponge scheme allows, by 

adjusting the parameters c and r (see Fig. 1, 2), to find a certain 

compromise between speed and security, leaving the internal 

transformations unchanged. 

 

C. Internal permutation p  

The key to the success of such a scheme is also an efficient 

internal transformation p. This transformation p uses proven 

elements. In addition to the constant addition operation, these 

are the oriented on efficient implementation 5-to-5 bit 

substitution (taken from the Keccak hashing algorithm) and a 

linear transformation that uses rotations and XOR-additions 

(very similar to the transformations from the SHA-2 [8], similar 

linear transformations were also used in the Noekeon 

algorithm [9]).  

From the point of view of efficient implementation, it is 

important that linear transformations can be performed by 

operating on five 64-bit blocks which form the 320-bit internal 

state. If we denote the five input 64-bit blocks as {X0, X1, X2, 

X3, X4}, and the output blocks as {Y0, Y1, Y2, Y3, Y4}, then 

the linear transformation is performed as follows: 

 

Y0 = X0 + (X0 >>> 19) + (X0 >>> 28); 

Y1 = X1 + (X1 >>> 39) + (X1 >>> 61); 

Y2 = X2 + (X2 >>> 1) + (X2 >>> 6); 

Y3 = X3 + (X3 >>> 10) + (X3 >>> 17); 

Y4 = X4 + (X4 >>> 7) + (X4 >>> 41). 

 

As can be seen, the linear transformation can be effectively 

implemented on a wide range of computing platforms. From the 

point of view security, it is stated that the branch number is 4. 

Table I shows a 5-to-5 bit substitution that must be performed 

64 times for a 320-bit block.  

 

The efficiency of this transformation is that these 64 

substitutions for the entire 320-bit block can be performed using 

only 22 logical operations on five 64-bit subblocks [7]. The 

scheme of these logical operations is shown in Fig. 3.  

 

 
Fig. 3. 5-to-5 bit substitution using 22 logical operations on five 64-bit 

subblocks 

 

In addition to the efficient implementation in [7], the 

following properties are claimed for the substitution: 

- Invertible and no fix-points,  

- Each output bit depends on at least 4 input bits,  

-Algebraic degree 2,  

- Maximum differential probability and linear bias 1/4,  

- Differential and linear branch number 3. 

Thus, in addition to the usual requirements of ensuring good 

mixing and a certain level of nonlinearity, the substitution also 

partially solves the problem of ensuring dispersion. 

 

TABLE I  

SUBSTITUTION TABLE 5-TO-5 BITS 

X 0 1 2 3 4 5 6 7 

S(X) 4 B 1F 14 1A 15 9 2 

X 8 9 A B C D E F 

S(X) 1B 5 8 12 1D 3 6 1C 

X 10 11 12 13 14 15 16 17 

S(X) 1E 13 7 E 0 D 11 18 

X 18 19 1A 1B 1C 1D 1E 1F 

S(X) 10 C 1 19 16 A F 17 
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D. Inverse internal permutation p-1  

Normal operation of the Ascon algorithm does not use the 

inverse transformation, but as part of the research, it is necessary 

to analyze and determine the nonlinear degree for the inverse 

internal permutation p-1. 

Materials from [10] were used to implement the inverse 

permutation p-1. Since the normal operation of the Ascon 

algorithm does not use the inverse transformation, it is not 

aimed at fast and efficient implementation. In general, it must 

be performed the inverse transformations in the reverse order to 

get the inverse transformation.  

The inverse linear transformation, like the direct linear 

transformation (see above), contains the operations of rotation 

and XOR-addition, but significantly more number of operations 

than the direct linear transformation. When performing the 

inverse linear transformation, each of the five 64-bit blocks 

requires from 31 to 35 rotations and the same number of XOR-

addition operations (for example, for the first 64-bit block - 31 

rotations and the same number of XOR-addition operations: 

rotations by 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 

27, 30, 33, 36, 38, 39, 41, 42, 44, 45, 47, 50, 53, 57, 60, 63 bits, 

and then adding the results by XOR). Thus, to get inverse 

operation it must be used for about 10 times more operations 

than for direct linear transformations.  

The inverse substitution of 5-to-5 bits must be done 64 times 

for 320-bit block. There is no way to replace these substitutions 

with logical operations on 64-bit blocks. Compared to the 22 

fast logical operations for forward substitution, implementation 

of these inverse substitutions will also be several times slower. 

Thus, software implementation of inverse round 

transformation is much slower than direct transformation (the 

difference in speed is more than 10 times). 

IV. REVIEW OF SECURITY ANALYSIS RESULTS FOR ASCON 

PERMUTATION 

One of the directions of algorithm security analysis is related 

to the search for distinguishing attacks on the multi-round 

internal transformation p. Such distinguishing attacks do not 

indicate the direct vulnerability of the algorithm, but 

subsequently they can lead to the other more dangerous attacks, 

the purpose of which will be to find a secret key or to forge a 

message for which integrity must be ensured. 

The work [7] provides an overview of the best distinguishing 

attacks on the permutation p of the Ascon algorithm. The 

maximum number of rounds that can be distinguished from a 

random transformation for different cryptanalytic methods are: 

Zero-sum attack – 20, Integral attack - 11, Differential attack - 

5, Linear attack - 5, Impossible differential - 5. As can be seen, 

the zero-sum attack is significantly more effective than the other 

distinguishing attacks. 

During the Zero-sum attack [2], a set of input and 

corresponding output blocks is formed for permutation p, the 

sum of these input blocks is equal to 0 and the sum of 

corresponding output blocks is also equal to 0. The Zero-sum 

attack on the Ascon algorithm uses a low nonlinear degree of 

the used inside permutation p substitutions. As a result, all 

differentials of degree d+1 for a function with a nonlinear 

degree d will be equal to 0.  

In [7], the complexity of constructing a zero-sum 

distinguisher for 11 and 12 rounds is estimated to 285 and 2130, 

respectively. The distinguishing Zero-sum attack can be 

extended to more rounds (up to 20 rounds) [2]. 

These estimates are obtained based on the nonlinear degree 

for multi-round transformations, therefore, refining the 

nonlinear degree for direct and inverse transformations will also 

allow us to refine the complexity of Zero-sum attacks. 

V. METHODS FOR ESTIMATING NONLINEAR DEGREE OF 

ENCRYPTION SCHEME 

A. Standard (classical) approach 

Well-known approaches make it possible to determine the 

upper bound of the nonlinear degree based on the nonlinear 

degree of substitutions s and the number of rounds r. However, 

the resulting value sr may be greatly overestimated, and as a 

result, the actual security against some attack may be 

significantly lower than expected. 

Upper bounds of algebraic degree after r rounds of Ascon 

permutation from [7] are presented in Table II. 

 

 

Using this standard approach, an assessment of the nonlinear 

degree was made for rounds 1-8 of the direct transformation 

(s = 2) and for rounds 1-4 of the inverse transformation (s = 3) 

and the results are presented in Table II (corresponding cells of 

table are highlighted by grey color).  

Values for other cells are formed with using Theorems 

from [6], which clarify the resulting estimate of the nonlinear 

degree. However, these Theorems work for a large number of 

rounds when degree of nonlinearity is close to the threshold 

value n-1 for an n-bit block. 

B. Knudsen’s method 

In [4] a method for estimating the nonlinear degree of an 

encryption transformation based on an analysis of the values of 

higher-order differentials was proposed. It is known that all 

differentials of degree d for a transformation with degree of 

nonlinearity d will be equal to each other, and differentials of 

degree d+1 will, accordingly, be equal to 0. 

Test for nonlinear order from [4] is presented on Fig. 4. 

________________________________________________ 

Input: Ek – block cipher, k – key, b – the boundary order 

of the differential that can be calculated in a reasonable 

time, plaintexts p1 != p2. 

Output: i <= b – minimum nonlinear order (degree) of 

Ek . 

TABLE II  
UPPER BOUND OF ALGEBRAIC DEGREE AFTER r ROUNDS OF ASCON 

PERMUTATION [7] 

Number of 

rounds, r 

Nonlinear degree for 

direct permutation 

Nonlinear degree for 

inverse permutation 

1 2 3 

2 4 9 
3 8 27 

4 16 81 

5 32 209 
6 64 283 

7 128 307 

8 256 314 
9 298 318 

10 312 319 

11 317  
12 319  
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____________________________________________ 

Let a1, a2, …, ai be linearly independent. 

1) Set i=1. 

2) Compute differentials of order i  

y1=difi(a1, a2, …, ai) Ek(p1) and  

y2=difi(a1, a2, …, ai) Ek(p2). 

3) If y1 = y2 output i and stop. 

4) If i >= b output i and stop. 

5) Set i = i+1 and go to step 2. 

____________________________________________ 

Fig. 4. Test for nonlinear order [4]  

For Test for nonlinear order to work, linearly independent 

difference values a1, a2, …, ai for different levels of 

differentials and an arbitrary input values p1, p2 (p1 is not equal 

to p2) must be selected. The nonlinear degree of the permutation 

can be determined by gradually increasing the degree of 

differentials and checking the equality of their values. 

In the algorithm on Fig. 4 difi(a1, a2, …, ai) Ek(p1) denotes 

the value of the differential of degree i, for the transformation 

Ek, the input value p1, by the values of the difference  

a1, a2, …, ai at different levels of the differential. To calculate 

such differentials of high degrees, the recursion function difn 

was used (see Table III). 

In Table III, the symbol “+” denotes the XOR operation. 

In [4] it is also said that the equality of differentials of some 

order does not immediately mean that the nonlinear degree is 

the same as the order of differentials. There may be other keys 

and other input values for which the differentials are not equal. 

There are no keys in the case of the Ascon permutation, and 

during the experiments we will consider a large number of input 

values. We will also consider differentials of order d and the 

next order d+1; if they are equal, then we will make a conclusion 

about the nonlinear degree. 
 

TABLE III  

FUNCTION difn TO CALCULATE DIFFERENTIAL OF DEGREE n 

Function difn 
Inputs: E – block cipher or some transformation, plaintext p, 

differences for different levels of differential a1, a2, …, ai, order of 

differential n. 

Outputs: difn(a1, a2, …, ai) E(p) – differential. 

1) If (n ==1) 

      {  

         return  

         dif1(a1, a2, …, ai) E(p) = E(p) + E(p + a1); 

       } 

2) else 

       {  

         return difn (a1, a2, …, ai) E(p) =  

                              difn-1(a1, a2, …, ai) E(p) + 

                              difn-1(a1, a2, …, ai) E(p + an-1); 

        } 

VI. COMPUTATIONAL EXPERIMENTS TO DETERMINE THE 

NONLINEAR DEGREE OF MULTI-ROUND ASCON 

PERMUTATIONS 

As it was said in section III, materials from [10] were used to 

implement the inverse permutation p-1. Since the normal 

operation of the Ascon algorithm does not use the inverse 

transformation, it is not aimed at fast and efficient 

implementation, and therefore software implementation of 

inverse transformation is much slower than direct 

transformation (the difference in speed is more than 10 times). 

Using the Knudsen’s method (see previous section), 

experiments were performed to determine the nonlinear degree 

of the direct and inverse multiround permutations of the Ascon 

algorithm. The results are presented in Tables III and IV, 

respectively. 

 
TABLE III  

NONLINEAR DEGREE FOR MULTIROUND ASCON PERMUTATION p 

Number 

of 
Rounds 

Maximum 

nonlinear 
degree 

Total number 

of 
experiments 

Percent of 
experiments with 

maximum nonlinear 

degree 

2 2 100000 100 
3 5 100000 22 

4 8 100000 77 

5 17 1000 74 
6 33 1 100 

 
TABLE IV 

NONLINEAR DEGREE FOR MULTIROUND INVERSE ASCON PERMUTATION p-1 

Number 
of 

Rounds 

Maximum 
nonlinear 

degree 

Total number 
of 

experiments 

Percent of 

experiments with 

maximum nonlinear 
degree 

2 4 100000 100 

3 10 100000 100 

4 28 1 100 

 

Computational experiments have confirmed the possibility of 

estimating differentials for an nonlinear degree of slightly more 

than 30 using calculations of higher order differentials, as stated 

in the work [4]. On an average laptop, calculating the 33rd order 

differential took about 4.5 hours for 6 forward rounds and about 

3 hours to calculate the 28th order differential for 4 inverse 

rounds (approximately 10 times slower inverse transformation 

also significantly slows down the calculation of high-degree 

differentials). 

It seems problematic to make calculation on conventional 

computing equipment for a bigger number of rounds of forward 

and inverse transformations than are presented in the tables III, 

IV.  

For a smaller number of rounds, 100,000 experiments were 

used (the values of nonlinear degree did not change with further 

increasing number of experiments). Each experiment used two 

randomly generated input values p1 and p2 (see algorithm on 

Fig. 4). 

In some experiments, the degree of nonlinearity was less than 

the maximum, so the last column of the tables III, IV shows the 

percentage of experiments with the maximum value of the 

nonlinear degree. In other cases, the nonlinear degree is less by 

one. 

The presented in the tables III, IV results clearly evident that 

the maximum degree of nonlinearity for r-round forward and 

inverse transformations of the Ascon algorithm is upper bound 

by s(r-1)+1 (instead of the traditional value sr), where s is the 

nonlinear degree of the substitution (nonlinear degree of Ascon 

substitution is s=2, nonlinear degree of inverse substitution is 

s=3).  
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That is, using upper bound by s(r-1)+1 for 7 rounds of forward 

direction the value of the nonlinear degree expected to be 65, 

and for 5 inverse rounds - 82. 

VII. THE CLARIFIED COMPLEXITY OF BUILDING ZERO-SUM 

DISTINGUISHER 

Using the algorithm from [7] it can be estimated the 

complexity of building Zero-sum distinguisher. For refined 

nonlinear degrees of multi-round direct and inverse 

permutations (see Tables III, IV), the complexity will be 270 for 

12 rounds (4 inverse rounds, free middle round, and 7 forward 

rounds), 235 for 11 rounds (4 + 1 + 6 rounds, with the data 

complexity a multiple of the S-box size 5 for the free inner 

round). These values are significantly lower than those 

presented in [7]: 2130 for 12 rounds and 285 for 11 rounds. 

We have more confidence in the correctness of complexity 

estimations for building the Zero-sum distinguisher than in 

value of nonlinear degree because exactly this zero-sum 

property is considered during our computational experiments. 

It is also possible to estimate for what number of rounds Zero-

sum distinguisher can be constructed. To do this, we first 

continue tables III and IV for a larger number of rounds using 

values s(r-1)+1 for nonlinear degree (nonlinear degree of Ascon 

substitution is s=2, nonlinear degree of inverse substitution is 

s=3). The results are in Tables V, VI. 

 
TABLE V 

EXPECTED NONLINEAR DEGREE FOR MULTIROUND ASCON PERMUTATION p 

Number of Rounds Expected nonlinear degree 

7 65 

8 125 

9 257 

 
TABLE VI 

EXPECTED NONLINEAR DEGREE FOR MULTIROUND INVERSE ASCON 

PERMUTATION p-1 

Number of Rounds Expected nonlinear degree 

5 82 
6 244 

 

 

Using the data from Tables V and VI, it can be estimated the 

complexity of constructing a Zero-sum distinguisher for the 16-

round Ascon transform in 2260 (6 inverse rounds, free middle 

round, and 9 forward rounds). 

VIII. POSSIBLE WAYS OF THEORETICAL CONSIDERATION OF 

THE NONLINEAR DEGREE FOR THE ASCON 

PERMUTATION 

The nonlinear degree of the multiround Ascon permutation is 

an important parameter that determines the complexity of 

potential attacks on this algorithm. Therefore, it is desirable to 

have a theoretical information about this parameter. 

The type and parameters of linear transformations, in our 

opinion, do not have a significant effect on the degree of 

nonlinearity. To get such conclusion an additional 

computational experiments were performed. The dispersion of 

linear transformation were increased by using additional linear 

transformation from the Safer algorithm [11]. This 

transformation performs XOR-additions for five 64-bit 

subblocks X0, X1, X2, X3, X4 to produce five output 64-bit 

subblocks Y0, Y1, Y2, Y3, Y4 (see Fig. 5).  

 

 
Figure 5. Additional linear transformation 

 

This additional linear transformation did not lead to a change 

in the values of the nonlinear degree compared to the data 

presented in the Table III.  

Possible ways of theoretical consideration of the nonlinear 

degree for the Ascon permutation, most likely, should be related 

to the analysis of substitution and its Boolean functions. During 

considering the nonlinear degree, it is probably necessary to 

consider what terms are in the Boolean functions and how, 

depending on this, the degree will increase with each additional 

round. This process may be similar to the analysis of terms 

presented in the Boolean functions when choosing cube 

variables in the cube attack [3]. 

Boolean functions for substitution of the Ascon algorithm and 

their analysis can be found in [3,7,10], but even a superficial 

look at Boolean functions allows to see some features. These are 

Boolean functions for a 5-bit column presented in [7]: 

 

y0 = x4 x1⊕x3⊕x2 x1⊕x2⊕x1 x0⊕x1⊕x0, 

y1 = x4⊕x3 x2⊕x3 x1⊕x3⊕x2 x1⊕x2⊕x1⊕x0, 

y2 = x4 x3⊕x4⊕x2⊕x1⊕1,  

y3 = x4 x0⊕x4⊕x3 x0⊕x3⊕x2⊕x1⊕x0,  

y4 = x4 x1⊕x4⊕x3⊕x1 x0⊕x1. 

 

There are following features: 

1) Some Boolean functions do not depend on all arguments 

(for example, y2 does not depend on x0). 

2) A small number of terms of degree 2 (there are only 11 

terms of degree 2 for 5 Boolean functions). Many input 

variables are absent in terms of degree 2. For example, the input 

variable x2 is present in terms of degree 2 only in Boolean 

functions y0 and y1. For the remaining Boolean functions, the 

dependence with x2 is linear. 

3) Unequal participation of input variables in terms of 

degree 2. For example, variable x1 is involved in terms of 

degree 2 approximately two times more often than other input 

variables. As a consequence, with a fixed zero value of variable 

X1 X2 X3 X4 X0 

Y0 Y2 Y3 Y4 Y1 
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x1, Boolean functions y0 and y4 do not contain terms of 

degree 2, i.e., these functions become linear. 

CONCLUSIONS 

1 The computational experiments made it possible to obtain 

more accurate estimations of the nonlinear degree for 

multiround direct and inverse permutations of the Ascon 

algorithm. The presented in Tables III, IV results clearly evident 

that the nonlinear degree for r-round forward (up to 6 rounds) 

and inverse (up to 4 rounds) transformations of the Ascon 

algorithm is upper bound by s(r-1)+1 (instead of the traditional 

value sr), where s is the nonlinear degree of the 5-to-5 bit 

substitution. 

2 The computational experiments have shown that existing 

estimates of the nonlinear degree for the permutation of the 

Ascon algorithm are significantly overestimated. Lower values 

of nonlinear degree result in lower complexity of distinguishing 

and other attacks. For clarified nonlinear degrees of multiround 

direct and inverse transformations (see Tables III, IV), the 

complexity will be 270 for 12 rounds (4 inverse rounds, free 

middle round, and 7 forward rounds), 235 for 11 rounds (4 + 1 + 

6 rounds). These values are significantly lower than those 

presented in [7]: 2130 for 12 rounds and 285 for 11 rounds. 

3 The nonlinear degree of the multiround Ascon permutation 

is an important parameter that determines the complexity of 

potential attacks. A promising direction of research seems to be 

a theoretical consideration of the nonlinear degree for the Ascon 

permutation to obtain more reasonable conclusions.  
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