

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 3, PP. 1-7

Manuscript received January 31, 2025; revised July 2025. doi: 10.24425/ijet.2025.153622

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The BLAKE cryptographic hash functions are

efficiently expressed in software; however, their hardware

implementations do not match the speed and power efficiency of

alternative methods. This paper assesses a possible method of

decreasing power consumption in BLAKE3 FPGA

implementations by application of dedicated DSP resources for

binary summations in place of standard adders realized in logic

cells within the programmable array. The analysis considers

various viable configurations of cipher realization: from the

standard iterative architecture (featuring one round instance in

hardware), to organizations with 2, 4, and 6-stage pipelining

employed for high processing efficiency. The power results are

generated by simulating operation of the designs after their full

implementation in a Spartan-7 device. Substituting the standard

adders configured in programmable fabric with 7 series DSP48E1

elements can significantly decrease the high dynamic power

consumption that adversely affected the standard non-pipelined

BLAKE3 implementation, but can also bring some disadvantages

with regard to hardware size or speed. Moreover, it does not offer

any improvement in highly pipelined architectures. In addition to

exploring one approach for reducing power consumption of this

particular cipher, the paper can also serve as another case study

on improving FPGA implementation by leveraging specialized

resources that would otherwise remain unused but are available

in the used device.

Keywords—cryptographic hash function; dynamic dissipated

power; DSP slice

I. INTRODUCTION

INIMIZING power consumption is a vital benefit in

hardware implementations of a cryptographic

algorithm. The BLAKE3 hash function – initially proposed for

the SHA-3 contest ([1]-[3]) and still of active interest ([4]-[5])

– can be efficiently executed in software, yet its hardware

implementations are neither as fast nor as power-efficient as

those of alternative hashing methods. This study examines an

approach for lowering power losses in an FPGA

implementation of this algorithm which consists in utilizing

dedicated DSP resources for binary additions intensively

employed in the cipher transformations, in place of logic cells

within the programmable array. In this practical study the

BLAKE3 compression function is implemented in hardware

using various architectures: starting from the standard iterative

organization requiring one cipher round instantiated in

hardware, high-throughput derivative cases are created by

Jarosław Sugier is with Wrocław University of Science and Technology,

Poland, Faculty of Information and Telecommunication Technology,

Department of Computer Engineering (e-mail: jaroslaw.sugier@pwr.edu.pl).

application of pipelining from 2 through 4 up to 6 stages. Such

collection of architectures is implemented using DSP resources

rather than conventional binary adders, and the resulting size,

speed and power metrics are compared with similar studies of

standard implementations referenced in [6] and [7]. The results

are derived from simulations: once the designs are

implemented in a Spartan-7 device, power estimates are

generated by the implementation tools based on signal activity

traces produced during timing simulation. The findings suggest

that using 7 series DSP48E1 resources in place of the “in-

array” adders is an effective method for decreasing high

dynamic power which was a serious problem of the standard

BLAKE3 implementations. Nevertheless, this approach can

have adverse influence on other implementation parameters

and yields little to no power improvement in highly pipelined

designs.

The set of tested BLAKE3 architectures was adopted from

[6], where iterative and pipelined organizations were assessed

for their size and speed efficiency and demonstrated substantial

improvements achieved by the third version of the cipher

compared to its predecessors. In [7], the evaluation was

broadened to include power analysis, revealing severe issues

caused by excessively intense signal glitches generated by

cipher transformations; it was shown that pipelining could

significantly mitigate them, thereby reducing power losses.

Further analysis of signal behavior and glitch origins was

conducted in [8]. This paper, being an extended version of [9],

explores another method to address this issue: substituting

conventional carry-propagation adders in the programmable

array cells (identified as a potential source and multiplier of the

glitches) with specialized DSP resources positioned outside the

array.

Organization of the paper is as follows. Chapter 2 provides

a concise overview of the BLAKE3 algorithm and explains

how dedicated DSP resources, available in the Spartan-7 device

but often underutilized in cryptographic computations, can be

effectively employed to replace the conventional in-array

resources. Chapter 3 presents the implementation results of the

redesigned BLAKE3 architectures, highlighting key

differences in their speed and size characteristics. In Chapter 4,

a detailed power analysis is conducted to evaluate the

efficiency of the proposed solution. The findings are

summarized in the last chapter, along with a discussion of the

contributions made by this research.

Jarosław Sugier

Reducing Power of BLAKE3 implementations

with dedicated FPGA resources

M

https://creativecommons.org/licenses/by/4.0/

2 J. SUGIER

II. THE ALGORITHM AND POSSIBLE ADAPTATION OF DSP

LOGIC

A. The BLAKE Compression Function

Similar to many round-based ciphers, BLAKE3 processes

data through a series of repetitive round transformations

applied to a set of state words (Fig. 1). The BLAKE3 state V

comprises 16 32-bit words (v0 to v15), totaling 512 bits. These

words undergo nR = 7 identical rounds ([3]). The core of the

hardware implementation lies in the realization of the round

transformation, as the surrounding logic primarily handles

multiplexing and has minimal impact on overall performance

and power consumption.

Fig. 1. Iterative organization of the BLAKE3 compression function with

internals of round processing.

Within each round, the 16 state words undergo a sequence of

two transformations using so called G function. Each G

instance operates on four words (plus two 32-bit words mi from

the message being hashed), necessitating four parallel instances

for complete state processing. A round transformation

comprises two cascades of four parallel G modules (G0-3 and

G4-7). All BLAKE3 architectures considered in this paper

require eight G instances. While internally identical, each

instance distinguishes itself through a specific selection of

state/input words (vi/mi); all state words are read by 4 parallel

G modules while all message ones – by 8 such modules, i.e. in

the whole round.

B. Introducing the DSP Slices as 32-bit Adders

As identified in [8], the increased power consumption of

BLAKE3 cores in FPGA implementations is primarily due to

the excessive number of transient signal switching. These

glitches, especially in the long propagation lines of the routing,

lead to significant power losses. With an average of over 1000

glitches per clock cycle in the most unstable signals of the

standard iterative architecture, this parameter remains

substantially unchanged compared to BLAKE2, despite

reduced size and faster speed. Moreover, such value

significantly exceeds number of glitches observed in equivalent

architectures of KECCAK. A potential solution to this problem,

as demonstrated in [7], is pipelining. By dividing the round

processing into multiple stages (the study considered 2, 4, and

6 stages), glitches are prevented from propagating through the

pipeline registers, effectively blocking their avalanche effect at

the stage boundaries. While this approach often leads to

a reduction in power consumption as a side effect besides

improved overall throughput, as discussed in the literature (e.g.,

[10]-[12]), this work proposes a more direct method. We focus

on reducing glitches at their source: the resources responsible

for implementing the summation operations that appear among

the cipher transformations.

Fig. 2 provides a detailed illustration of the internal

operations within the G module. These operations encompass

bitwise XOR, constant rotations (implemented efficiently

through dedicated routing), and 32-bit arithmetic additions.

Locations of 2- and 3-input adders in datapaths of the state

words can be seen in the figure. Since the other elementary

transformations, like bitwise XOR, do not generate transients,

the carry-propagation adders were identified as the primary

source of glitches in previous BLAKE3 implementations

analyzed in [7]-[8].

Fig. 2. Internal transformations of the G function with 2- and 3-input

adders.

In FPGAs, apart from a look-up table (LUT – a rudimentary

Boolean function generator), summations additionally employ

two dedicated, simple primitives within each logic cell: a 2:1

multiplexer and a 2-input XOR gate. All these primitives

together create a 1-bit full adder (one per logic cell) which,

thanks to hardwired routing, feature a very fast carry path. In

the context of the BLAKE3 algorithm, a cascade of 32 such

adders are required for one 2-input summation. While these

adders guarantee sufficient speed, the serial nature of 32-level

carry propagation can introduces numerous transients on their

outputs before settling the final result. The situation gets even

worse if the input arguments are unstable themselves because

in this case their glitches can be multiplicated in an avalanche

effect. In a standard, unpipelined iterative architecture a state

word goes through a combinatorial path including a cascade of

two G modules so in the worst case passes by 8 adders in a

single clock period (va path in Fig. 2 with two 3-input adders,

each constructed from two 2-input ones).

Thus the primary objective of this study is to supplant the

error-prone, in-array adders with auxiliary resources positioned

outside of the configurable array. Commencing with the

Xilinx’s Virtex-II family of FPGA which debuted over 20 years

ago, these devices incorporate dedicated hardwired cores –

known as DSP slices ([13]) – optimized for "multiply and

accumulate" computations which are abundant in digital signal

processing. Each slice, as illustrated in the upper portion of Fig.

3, can be configured to employ a pre-adder, a full 25×18

multiplier, and a 48-bit ALU executing addition, subtraction,

2

2

1

REDUCING POWER OF BLAKE3 IMPLEMENTATIONS WITH DEDICATED FPGA RESOURCES 3

accumulation, or logical operations. The resources are located

in the device in vertical columns, are interconnected within

each column by rapid dedicated routing segments (PCOUT to

PCIN) and can be connected to logic cells in the surrounding

programmable fabric. These cores are very proficient in

calculations of e.g. complex FIR filters but the application

considered here needs only a small portion of their capabilities:

bypassing all initial preprocessing, the required summation can

be performed within the ALU. As depicted in Fig. 2, every

instance of the G function applies two 2-input adders (each in

a separate DSP slice) plus two 3-input adders (each would

occupy two contiguous DSP slices, as shown in the lower

portion of Fig. 3). Consequently, one G function calls for 6 DSP

slices, and the entire round instance needs a total of 48. This

amount is valid for all architectures considered in this paper,

whether pipelined or not.

Fig. 3. DSP48E1 slice structure (top) and its configuration as BLAKE3

adders (bottom).

III. IMPLEMENTATIONS

A. The Architectures and Their FPGA Implementations

To maintain consistency with the preceding studies, the

application of DSP resources was tested in six architectures of

the BLAKE3 compression function:

• standard iterative organization (X1): a single, unpipelined

round instance, producing output after nR = 7 clock cycles;

• two-stage pipelined organization (P2): separates processing

of G03 and G47 modules, generating two hashes in 14 clock

cycles;

• four-stage pipelined organization (P4): introduces

additional stage boundary within the G instances located in

front of the second 3-input adder in the va path (Fig. 2), and

produces 4 hashes every 28 clock cycles;

• six-stage pipelined organizations (P6ac) computing

a group of six hashes in 42 clock cycles.

The three P6x variants were replicated subsequent to their

initial introduction in [6]. The first variant, P6a, evenly

distributes the six adders across the three pipeline stages

(2+2+2), which results in the division of the second 3-input

adder in the va path. To circumvent this division, the other two

variants retain the 3-input adder in the middle pipeline segment

and apply alternative distributions in the other two ones: 2+3+1

(P6b) or 3+2+1 (P6c). For further details concerning these

designs, please refer to [6].

All six architectures required a single round logic instance

and utilized a total of 48 DSP slices to accommodate the 32-bit

state word summations. Among the Spartan-7 family ([14]), the

XC7S25, in the csga225 package and -2 speed grade, was

selected as the smallest device with sufficient DSP resources to

meet this requirement. To maintain consistency with previous

methodologies (and to make power simulation of the designs

realistic), basic serial-in, parallel-out circuitry was added to all

six cipher modules. This approach was necessary to ensure

a reasonable I/O pin count because a completely-ported

hashing unit would have required 1152 pins. In this way

complete and functional designs were created and these were

implemented using Vivado 2023.2 tools.

TABLE I

SIZE AND SPEED CHARACTERISTICS OF THE IMPLEMENTATIONS

 X1 P2 P4 P6a P6b P6c

Slices 827 831 1107 1227 1234 1263

LUTs 1693 1397 1717 2306 2280 2264

Registers 2185 3206 4743 5854 5768 5768

DSP48E1 48 48 48 48 48 48

Max Fclk [MHz] 29.2 57.8 110.8 145.0 124.2 125.2

Target Fclk [MHz] 28.0 55.0 100.0 133.0 115.0 115.0

Actual Fclk [MHz] 28.1 51.4 104.7 135.2 116.3 118.9

Route delay 39% 42% 42% 45% 35% 34%

Logic levels 21 11 5 3 4 4

(incl. DSP) (12) (6) (3) (2) (3) (3)

Following the same approach as in [7], two types of studies

were conducted. First, the maximum operational frequency of

each architecture was determined, and only then each design

was implemented with a target frequency reduced by a certain

margin in order to guarantee stable operation. Such

implementations were then subjected to power analysis. Table

I provides results of these implementations, including:

• resource utilization: number of occupied logic slices, LUTs,

and registers;

• number of occupied DSP elements (just confirming that 48

of them were used across all cases);

• speed efficiency: maximum operational frequency,

requested and achieved frequencies for power analysis, and

longest path parameters (routing delay percentage and

count of logic levels, including DSP slices).

B. Evaluation of Speed and Size Efficiency

Before delving into power analysis, it's worth mentioning the

notable changes in implementation efficiency which resulted

from the relocation of summation logic to the DSP resources.

Fig. 4 graphically presents the modifications observed in speed

and size in comparison to [7], i.e. the implementations based on

conventional adders.

Fig. 4. Changes in slice, LUT counts, and maximum frequency due to DSP-

based summations.

+9% +12%
+5% +7%

+3% +5%

-33%
-37% -38%

-34% -34% -35%

-49%
-46%

-37% -33%

-43%
-37%

X1 P2 P4 P6a P6b P6c

Slices

LUTs

Fmax

4 J. SUGIER

Considering the size characteristics (LUT occupancy and

slice utilization), it is evident that the modification primarily

affected logic density. Although the LUT amount was reduced

remarkably (by 33-38%), slice occupancy remained almost

unchanged or slightly increased. This resulted in a significant

fall in logic density measured as an average number of LUT in

one slice – this ratio decreased from 2.95 to 1.80. The reduced

logic density in the programmable array further indicate

elongated routing channels, adversely impacting power and

speed efficiency. The consequences of this observation to

power consumption will be examined later, here – as for speed

efficiency – one should note in Fig. 4 severe degradation in

maximum operating frequencies which declined by 33-49%

across all the architectures.

To comprehend this phenomenon, let’s examine Fig. 5 which

depicts the geometric placement of occupied resources over the

FPGA array in, taken as an example, the iterative architecture.

The novel implementation, illustrated on the left, necessitates

the utilization of 48 of 60 available DSP elements. Because

these elements are arranged in two columns within the array as

marked in the figure, the placement tool endeavored to

distribute the whole design equitably along both of them, and

this resulted in a substantial vertical footprint, spanning 60% of

the matrix height. In comparison to a more concentrated

standard design (shown in the right part) which did not have to

be placed close to the DSP slices, this dispersion contributed to

a much roomier distribution thus longer interconnection lines.

It should be also noted that this wider layout was observed in

designs which used significantly less resources in the

configurable blocks, after transferring all the summation logic

out of them to the DSP resources.

Fig. 5. The programmable array with DSP-based X1 core (above) vs.

standard implementation (below).

1 While this approach is valid for comparison of power requirements of

various BLAKE3 implementations – which is the purpose of this work –

IV. POWER CALCULATIONS

A. Method of Computation

To ensure the accuracy of power estimates, post-route

simulations were conducted on the fully implemented designs

to capture activity of the internal signal. The resulting data was

recorded in SAIF files for subsequent power estimation

procedures ([15]). Given the limitations of the tools which

could only measure an average power consumption over

particular period of simulation time, dedicated test scenarios

and input stimula were developed to maintain the cipher cores

in a fully active state throughout the simulation period. These

scenarios guaranteed continuous data processing, avoiding idle

cycles and ensuring a consistent workload for all pipeline

streams running concurrently in the cores ([8]).

Table II presents the calculated power consumption for all

six architectures operating at their nominal frequencies. The

analysis focuses exclusively on dynamic power which – apart

from clock frequency – is determined only by size and

complexity of the circuit in silicone. Static power, dependent

on factors such as idle matrix characteristics and external

conditions (package thermal resistivity, cooling efficiency,

fluctuations of supply voltages, etc.), is excluded from this

analysis1. The table provides both the overall (dynamic) power

and its breakdown by resource type: clock network, slice logic,

DSP resources, propagation segments, and I/O. The last two

rows include additional synthetic parameters calculated from

the above.

TABLE II

DYNAMIC POWER ESTIMATED FOR MODULES OPERATING AT THEIR NOMINAL

FREQUENCIES

 X1 P2 P4 P6a P6b P6c
FCLK [MHz] 28 55 100 133 115 115

Dynamic power [mW] 579 334 286 331 287 296
Clocks 2 7 18 27 23 24

Slice Logic, incl.: 92 42 34 39 33 30
LUT 92 41 31 33 29 24

Register 0 1 3 6 4 4

DSP 167 109 96 112 104 103
Routing 317 173 133 149 121 134

I/O 1 2 4 4 4 4

PMHz [mW/MHz] 20.7 6.1 2.86 2.49 2.49 2.57
Eh [nJ/hash] 144.7 42.6 20.0 17.4 17.4 18.0

After the implementation, the power analyses of all

architectures were conducted also for various clock

frequencies. The results included in [9] proved that, like in the

standard implementations of [7], the total dynamic power was

a linear function of FCLK – which allowed to describe this

function with a value of proportionality factor PMHz, given in

Table II in mW per MHz. Consequently, this also made

possible to express energy consumed by a single hash

calculation independently from particular clock speed; this

parameter is denoted as Eh and given in nJ per hash in the last

row. The value of Eh can also be understood as the power

dissipated per unit hashing speed, with nJ/hash corresponding

to Watt per million of hashes per second (Mhps). This

parameter is the optimal, cumulative characteristic which

a simple practical task to calculate the device’s operating temperature would

have to consider the static component as well.

REDUCING POWER OF BLAKE3 IMPLEMENTATIONS WITH DEDICATED FPGA RESOURCES 5

describes the effective power requirement of a hashing

hardware under consideration, and is best for comparisons.

B. Evaluation of Signal Activity

The SAIF files, which were a foundation for estimation of

the power losses, can furthermore be examined in order to get

an insight into level of signal activity in the FPGA fabric. They

include all signals operating in the array after its configuration,

and for each one provide, among others, total number of

transitions over the whole simulation period. From this

parameter, knowing the clock frequency appearing in the

relevant stimulus and overall simulation scenario (e.g. lengths

of initialization vs. activity periods), one can calculate an

average number of signal switches per one clock tick during

hash calculation. Fig. 6 shows a mean value of these numbers

in 5% of the most active signals in each architecture which will

be denoted as gCK; this parameter is the best illustration of

signal glitches across different organizations of the hardware.

In general, the graph confirms that pipelining is an effective

way – apart from its own purposes – of glitch reduction also in

the new BLAKE3 implementations. Like it was analyzed in [7]

and [8], this results from two factors. Firstly, division of long

combinatorial paths into shorter pipeline segments reduces

levels of logic the signals must traverse, hence it is less likely

that propagation times of any two of them arriving at one LUT

generator will be different (which is a central mechanism of

glitch formation). Secondly, any glitches already generated do

not propagate through pipeline registers until a stable value

settles at the end of the clock period, and this prevents their

avalanche multiplication.

Fig. 6. Average number of transitions in one clock period in 5% of the most

active signals (gCLK parameter).

Nevertheless, now this reduction is notably less intense than

it was measured in standard implementations of [8]: while

previously splitting X1 paths into two pipeline stages resulted

in gCK param divided by as much as 29, this time it is only by

4.6. Correspondingly, transition from P2 to P4 now reduces gCK

by 2.9 instead of 6.6. On the other hand, it is also worth noting

the overall small difference brought by transition to P6x

architectures: the reduction of P4’s value is only by 1.3 which

is a rather minor improvement.

Finally, let’s examine changes in the gCK parameter after

introduction of DSP slices within each architecture, which is

presented in Fig. 7. The foremost observation which should be

made here is as follows: while the dedicated adders indeed

improve signal stability – in the extreme case of the X1

architecture the glitch per clock value is reduced to a mere 3%

– this positive effect diminishes with increasing length of the

pipeline. Although the trend looks similar to the one seen in

Fig. 6, these are actually two independent phenomena.

Fig. 7. Reductions in the values of gCK param after application of DSP

adders.

The extraordinary improvement seen in the X1 case is reduced

nearly by half in the P6x cases and is proportionally smaller in

the P2 and P4 organizations. Nevertheless, looking at this sole

parameter, replacing standard in-array adders with dedicated

DSP slices in the X1 architecture improves signal stability as

much as application of 2-stage pipelining described in [8].

C. Analysis of Power Losses

Fig. 8 illustrates the power consumption split into various

types of the FPGA components. In contrast to previous

findings, with DSP elements now replacing carry logic, they

account for 29-38% of the total power. By offloading adder

operations to DSP, LUT stress was substantially reduced, with

their share decreasing from 28÷32% to 9÷16%. This

underscores the significant reliance on LUTs in standard adder

implementations of prior designs and, generally, the

arithmetically intensive nature of BLAKE processing. While

routing remains the primary single generator of losses, for the

first time combined logic (LUT+DSP) emerges as the dominant

power-consuming constituent in most architectures (with the

only exception of X1). This emphasizes the critical role which

the DSP adders has now taken in power distribution.

Fig. 8. Breakdown of power losses by FPGA resource.

Fig. 9 depicts variations in the Eh metrics across the

architectures. While X1 remains the most power-intensive,

now the gap between X1 and P2 has narrowed significantly

compared to the standard implementations: the current ratio is

7:2, down from approximately 20:1. This reduction indicates

that introduction of DSP elements indeed can improve power

predictability for the X1 architecture, even without application

of pipelining.

39,4

8,6

2,9 2,4 2,2 2,1

0

5

10

15

20

25

30

35

40

X1 P2 P4 P6a P6b P6c

gCK

-97%
-82%

-60%

-52% -54% -52%

-100%

-80%

-60%

-40%

-20%

0%

X1 P2 P4 P6a P6b P6c

1% 1% 1%

55%
48% 46% 43% 42% 45%

29%
35% 36% 35% 38%

37%

16% 14%
11%

9% 11% 9%

3% 8% 11% 11% 11%

0%

20%

40%

60%

80%

100%

X1 P2 P4 P6a P6b P6c

Clk+Regs

LUT

DSP

Routing

I/O

6 J. SUGIER

Fig. 9. Energy per hash Eh across all the architectures implementing DSP

additions.

While pipelining can still provide advantages in terms of

power reduction, the gains are diminishing as the number of

pipeline stages increases. This is especially evident when

comparing the P4 and P6x architectures: while switching from

P2 to P4 reduces Eh by more than a half, the next step to P6

brings decrease by approx. 1/10. This drop is even smaller than

the one observed in the gCK parameter. The saturation point for

the power benefits of pipelining seems to be reached sooner

than in the standard implementations: now it is worth

considering whether the extra power savings brought by going

from 4 to 6 pipeline stages justify the increased latency in

producing the results and more complex organization of data

flow in 6 parallel streams.

Fig. 10. Power losses in the main types of components in the pipelined

architectures as percentages of values form the X1 case.

To explain further effects of pipelining, Fig. 10 illustrates the

dynamic power consumption of the primary FPGA components

– LUTs, DSPs, and routing – as a percentage of the X1 baseline.

The data demonstrate that the power savings associated with

increasing pipeline length is marginally more pronounced in

the routing as compared to the logic elements. When examining

the individual components within each architecture, the most

significant power reductions are observed in the LUT

generators, while the DSP adders exhibit the least drop. This

suggests that although now summations do not constitute the

primary source of power dissipation, their inherent internal

processing also results in intensive signal switching.

Consequently, pipelining offers limited benefits in mitigating

their power consumption. The remaining BLAKE logic which

is implemented in LUT generators, along with the routing

fabric, exhibit more substantial power reductions due to the

suppression of glitches at the pipeline registers.

D. Comparison with the Conventional Approach

Fig. 11 assesses the impact of DSP utilization on the

synthetic Eh metric. The results demonstrate excellent

effectiveness of this modification in the X1 organization, where

this parameter is lowered by tenfold, i.e. to 9%. This result

positively verifies the hypothesis which was the starting point

of this work: employing dedicated summation resources in

place of standard in-array adders indeed can enhance signal

stability and significantly reduce power consumption.

However, results of the other architectures indicate that this

positive effect is offset by additional factors that become more

pronounced with longer pipelines: with the P2 organization still

accomplishing a significant reduction by 41%, the extreme

condition is observed in the P6x cases which experience an

increase in the Eh metric instead of decrease. The P4

architecture, on the other hand, maintains the original result,

reflecting a near-perfect balance between the positive and

negative effects of the modification.

To elucidate this counter-effect, Fig. 12 presents

a comparative analysis of changes in individual Eh components,

categorized into three primary groups: combinational logic

(LUT generators plus either DSP or carry elements), routing,

and miscellaneous resources (I/O blocks, registers, and clock

networks). Despite the reduction in glitches, the power

consumption of logic components has not decreased as

significantly with pipelining as in previous implementations.

This suggests that DSP sites, with their intricate 48-bit internal

architecture and substantial computational capacity, are less

power-efficient. Looking at Fig. 12, reductions in power

dissipated by logic components (hence also by DSP elements)

are observed only in the X1 and P2 cases; the P2 experienced

a growth (instead of decrease) by 27%, while the P6x cases –

by 51% to 69%, all compared to conventional implementations.

Such notable increases instead of expected reductions explain

the growths seen in Eh values of Fig. 11.

Fig. 11. Changes in the unit hash energy (Eh) after introducing DSP adders.

While the routing component also exhibits a similar trend,

the impact is less pronounced, with relatively minor increases

of 3% and 18% observed only in the final two P6x modules.

This is despite the significant increase in connection length in

the new designs, as discussed in relation to Fig. 5. This

confirms that the primary benefit of introducing the DSP adders

is in elimination of transient signal instabilities which leads to

reduced power losses despite much longer transmission lines.

However, the widespread design placement depicted in Fig. 5

has led to increased power losses in long clock distribution

lines. The "Other" component, whose value primarily

encompasses clocking losses, is elevated in all six

architectures, regardless of the pipelining level.

144,7

42,6

20,0 17,4 17,4 18,0

0

20

40

60

80

100

120

140

160

X1 P2 P4 P6a P6b P6c

[nJ/hash]

(or [mW/Mhps])

0%

5%

10%

15%

20%

25%

30%

35%

P2 P4 P6a P6b P6c

LUT

DSP

Routing

-91%

-41%

-1%

+14%

+27%
+34%

-100%

-80%

-60%

-40%

-20%

0%

+20%

+40%

X1 P2 P4 P6a P6b P6c

REDUCING POWER OF BLAKE3 IMPLEMENTATIONS WITH DEDICATED FPGA RESOURCES 7

Fig. 12. Changes in Eh components triggered by application of DSP adders.

CONCLUSIONS

This research offered a novel approach to optimizing power

consumption within FPGA implementations of the BLAKE3

cryptographic unit. The proposed methodology involves

replacing 32-bit adders implemented in logic cells of the

configurable array with dedicated summation units residing in

DSP slices. Our findings demonstrated that this approach can

significantly enhance power efficiency, particularly in the

standard iterative implementation which was characterized by

excessive transient glitches arising from sequential nature of

carry calculation in traditional adders. Looking just at signal

stability, indeed this approach offers an improvement which

previously was achieved only by application of 2-stage

pipelining.

While DSP elements are optimized for computational

performance, they do not exhibit the same level of power

efficiency. Consequently, the advantages they offer can be

offset in pipelined architectures where glitches are already

effectively mitigated by stage registers. The results indicated

that the overall energy consumed per one hash calculation,

a standardized metric for comparing architectures

independently from operating frequencies, is not improved in

designs with four pipeline stages and deteriorates in designs

with six stages.

The study also indicated that the DSP elements were

internally too intricate for the needs of this specific problem

and did not align with the significantly higher density of the

remaining logic. While the BLAKE3 round necessitates 48

adders, this amount of DSP slices alone occupied 60% of the

total matrix height, leading to extended transmission lines

whereas the entire cipher circuitry could be substantially more

compact. The elongated design layout resulting from this

approach hindered achievable speed, as evidenced by

a reduction in maximum clock frequency by approximately

one-third. Still, on the other hand, this method demonstrated

remarkable and unquestionable power advantage in iterative or

two-stage pipelined architectures.

While this study offers a practical method for optimizing

power consumption in BLAKE3 hardware implementations,

from a broader perspective it can also be treated as an

illustration of how an FPGA project can be enhanced by

effectively leveraging specialized components, such as DSP

slices, that are often underutilized. By carefully considering

specific requirements of a given application and capabilities of

all resources available in the selected FPGA device, designers

can achieve noteworthy improvements in performance, power

efficiency, or overall system organization.

REFERENCES

[1] J.P. Aumasson, L. Henzen, W. Meier, R.C.-W. Phan “SHA-3 proposal

BLAKE, version 1.3”, https://www.aumasson.jp/blake/blake.pdf, 2010,
last accessed Oct. 2024.

[2] J.P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, C. Winnerlein “BLAKE2:

Simpler, Smaller, Fast as MD5”, in M. Jacobson, M. Locasto,
P. Mohassel, R. Safavi-Naini (eds) Applied Cryptography and Network

Security 2013, Lecture Notes in Computer Science, vol. 7954, pp. 119-
135, Springer, Berlin-Heidelberg, 2013. https://doi.org/10.1007/978-3-
642-38980-1_8

[3] J. O’Connor, J.P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, “BLAKE3:

one function, fast everywhere”, Real World Crypto 2020 (lightning talk),

available at https://github.com/BLAKE3-team/BLAKE3-specs/blob/
master/blake3.pdf, last accessed Oct. 2024.

[4] I.T. Ciocan, E.A. Kelesidis, D. Maimuţ, L. Morogan, “A Modified

Argon2i Using a Tweaked Variant of Blake3”, in Proc. 2021 26th IEEE

Asia-Pacific Conference on Communications (APCC), Kuala Lumpur,
pp. 271-274, IEEE Xplore, 2021.

https://doi.org/10.1109/APCC49754.2021. 9609933

[5] S. Sinha, S. Anand, K.P. K, “Improving Smart Contract Transaction

Performance in Hyperledger Fabric”, in Proc. 2021 Emerging Trends in

Industry 4.0 (ETI 4.0), pp. 1-6, IEEE Xplore, 2021.
https://doi.org/10.1109/ETI4.051663.2021.9619202

[6] J. Sugier, “FPGA Implementations of BLAKE3 Compression Function
with Intra-Round Pipelining”, in W. Zamojski et al. (eds) New Advances

in Dependability of Networks and Systems, Lecture Notes in Networks

and Systems, vol. 484, pp. 319-330, Springer, Cham, 2022.
https://doi.org/10.1007/978-3-031-06746-4_31

[7] J. Sugier, “Power Analysis of BLAKE3 Pipelined Implementations in
FPGA Devices”, in W. Zamojski et al. (eds) Dependable Computer

Systems and Networks, Lecture Notes in Networks and Systems, vol.

737, pp. 295-308, Springer, Cham, 2023. https://doi.org/10.1007/978-3-
031-37720-4_27

[8] J. Sugier, “Comparison of power consumption in pipelined
implementations of the BLAKE3 cipher in FPGA devices”, Int. J. of

Electronics and Telecommunications, vol. 70, no. 1, pp. 23-30, 2017.
https://doi.org/10.24425/ijet.2023.147710

[9] J. Sugier. “Dedicated FPGA Resources in Improving Power Efficiency of

Implementations of BLAKE3 Hash Function”, in W. Zamojski et al. (eds)
System Dependability – Theory and Applications, Lecture Notes in

Networks and Systems, vol. 1026, pp. 283–295, Springer, Cham, 2024.
https://doi.org/10.1007/978-3-031-61857-4_28

[10] E. Boemo, J. Oliver, G. Caffarena, “Tracking the pipelining-power rule

along the FPGA technical literature”, in Proc. 10th FPGAworld
Conference, FPGAworld, 2013. https://doi.org/10.1145/2513683.
2513692

[11] N. Grover, M.K. Soni, “Reduction of Power Consumption in FPGAs - An

Overview”, International Journal of Information Engineering and

Electronic Business, vol. 4, no. 5, pp. 50-69, 2012. https://doi.org/
10.5815/ijieeb.2012.05.07

[12] S.J.E. Wilton, S.S. Ang, W. Luk, “The Impact of Pipelining on Energy
per Operation in Field-Programmable Gate Arrays”, in J. Becker, M.

Platzner, S. Vernalde (eds) Field Programmable Logic and Application

2004, Lecture Notes in Computer Science, vol 3203. Springer, Berlin-
Heidelberg, 2004. https://doi.org/10.1007/978-3-540-30117-2_73

[13] Advanced Micro Devices, Inc., “7 Series DSP481 Slice: User Guide”,
UG479.PDF available at www.amd.com, last accessed Sept. 2024.

[14] Advanced Micro Devices, Inc., “7 Series FPGAs Data Sheet: Overview”,
DS180.PDF available at www.amd.com, last accessed Sept. 2024.

[15] Advanced Micro Devices, Inc., “Vivado Design Suite User Guide: Power

Analysis and Optimization”, UG907.PDF available at www.amd.com,
last accessed Sept. 2024.

 -100%

 -80%

 -60%

 -40%

 -20%

 0%

+20%

+40%

+60%

+80%

X1 P2 P4 P6a P6b P6c

Logic

Routing

Other

https://www.aumasson.jp/blake/blake.pdf
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-642-38980-1_8
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://doi.org/10.1109/APCC49754.2021.%209609933
https://doi.org/10.1109/ETI4.051663.2021.9619202
https://doi.org/10.1007/978-3-031-06746-4_31
https://doi.org/10.1007/978-3-031-37720-4_27
https://doi.org/10.1007/978-3-031-37720-4_27
https://doi.org/10.24425/ijet.2023.147710
https://doi.org/10.1007/978-3-031-61857-4_28
https://doi.org/10.1145/2513683.2513692
https://doi.org/10.1145/2513683.2513692
https://doi.org/10.5815/ijieeb.2012.05.07
https://doi.org/10.5815/ijieeb.2012.05.07
https://doi.org/10.1007/978-3-540-30117-2_73
http://www.amd.com/
http://www.amd.com/
http://www.amd.com/

