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Multi-criteria vehicle routing problem for
a real-life parcel locker-based delivery

Radosław Idzikowski, Jarosław Rudy, and Michał Jaroszczuk

Abstract—In this paper, a multi-criteria Vehicle Routing
Problem with distance and capacity constraints for modeling
a delivery system with parcel locker, is considered. The problem
is formulated and two optimization criteria are defined. The
first criterion minimizes the total travel time of all vehicles
and the second criterion minimizes the total penalty for late
delivery of orders. Three solving methods, relying on the con-
cept of Pareto-optimality, are proposed: a greedy constructive
heuristic, a Tabu Search metaheuristic and a Genetic Algorithm.
A number of benchmark instances are created using real-life
parcel locker locations and traveling times, from one of the
major cities in Poland. In preliminary research, sorting strategies
for the greedy method are tested, with the sorting based on
deadline–arrival difference to priority ratio yielding the best
performance in all tested cases. Next, computer experiments
are performed to evaluate the quality of the proposed methods,
using the concept of Hypervolume Indicator. Results confirm that
both Tabu Search and Genetic Algorithm significantly improve
the solution provided by the greedy algorithm, with Genetic
Algorithm being the most effective on average. However, results
also indicate that both Tabu Search and Genetic Algorithm have
different effectiveness in different cases. It is concluded that the
best performance is achieved by both algorithms being used in
parallel, complementing each other.

Keywords—Vehicle Routing Problem; parcel lockers; multi-
criteria optimization; operations research; Pareto optimality;
metaheuristics

I. INTRODUCTION

VEHICLE Routing Problems (VRP) is one of the classic
problems in combinatorial optimization. It is well-known

due to its difficulty (VRP is NP-hard), as well as its various
practical applications which range from more mundane such
as waste management [1] and supply chains [2] through more
unusual like biomass transport [3] and cash transit [4] to
post-disaster delivery of water [5]. Thus, the topic of VRP
has received considerable attention from both the industry
and researchers, with a great number of papers published
every year. This resulted in a large number of different VRP
variations emerging in the literature.
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One of the possible applications of VRP systems in modern
world is delivery service with the use of parcel lockers. Instead
of delivering packages directly to customers and risking their
absence, the delivery is made to a smaller number of parcel
lockers with fixed locations. This allows the customers to pick
up their parcels at their leisure.

While convenient for the customers, such a delivery service
has several characteristics that need to be taken into account.
First, vehicle transporting the parcels have limited capacity
(especially if small cars are employed). Second, travel time of
a vehicle is limited due to working hours of the drivers (e.g.
8 hours a day). Third, parcels might arrive at the central depot
at different times, making a vehicle unable to start making
deliveries, until all of the parcels assigned to it have arrived
and have been loaded. Fourth, multiple orders commonly have
the same parcel lockers as their destination. In a regular VRP
this is can be represented by merging such multiple orders into
one. However in our case, this becomes more complex due
to aforementioned arrival time as parcels headed to the same
locker might become available at different times. As such, it
might be beneficial to deliver them via different vehicles at
different times of the day.

In such a delivery system there are two crucial aspects
that should be optimized. First, is the minimization of vehicle
operations costs (e.g. fuel, salary of drivers). Second, is min-
imization of late delivery of packages. Nowadays, customers
are informed of estimated delivery times ahead of time. As
such, late deliveries reflect poorly on the company, especially
if the customer already waited a long time (e.g. for the parcel
to be shipped from overseas).

In this paper, we propose an optimization approach to the
aforementioned delivery system with parcel lockers, modeled
as a specific VRP variant. The main contributions of this paper
are as follows:

1) A problem of modern delivery service using parcel lock-
ers is formulated and modeled as a variant of a Vehicle
Routing Problem.

2) We consider simultaneous minimization of two criteria:
total time of delivering packages and total penalty for
late deliveries.

3) We propose two metaheuristic solving methods—Tabu
Search (TS) and Genetic Algorithm (GA)—capable of
tackling problem instances of practical size in short
running time, as well as a greedy heuristic method
serving as the baseline.
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4) We propose the sorting strategy for the greedy method,
based on 243 strategies tested in preliminary research.

5) We perform computer experiments using instances based
on real-life data from one of major cities in Poland.

6) We highlight the strengths and limitations of the pro-
posed solving methods and show the synergy achieved
from applying both of them at the same time.

The remainder of this paper is organized as follows. Sec-
tion II presents the literature overview. In Section III the
problem is formulated and matters regarding the goal function
calculation and solution feasibility are discussed. Section IV
describes the proposed solving methods. Section V presents
the result of numerical experiments. Finally, Section VI con-
tains the conclusions.

II. LITERATURE REVIEW

VRP with time travel minimization as well as time and
capacity constraints is a known optimization problem, with
many existing research and extensions being considered due
to their practical applications. Results of some of such works,
can be compared to the multi-criteria parcel locker delivery
VRP, presented in this paper. However, to our best knowledge,
there is only a few articles which focus on multi-objective
VRP, where the criteria are the total travel time and penalty
for late deliveries. We start by discussing several such papers.

A similar VRP variant was examined by Wen et al. [6],
where optimization of delivery cost to self pick-up lockers,
was being compared to a traditional home delivery. The opti-
mization criteria were based on distance, penalty for exceeding
time windows and CO2 emission costs. On the other hand,
Abdullahi et al. [7] formulated a multi-criteria VRP with
the optimization of total transportation costs, environmental
factor and social aspects, but without considering the maximal
vehicle travel time and order deadlines. In their experiments,
the proposed Biased-Radomized Iterated Greedy Local Search
is compared to the best known solutions of adapted VRP
instances. Similarly, environmental factor was one of the
criterion in Gulmez et al. [8] paper. The authors considered
fuel/electricity limitation, instead of travel time constraint.
Four mainstream solving methods are tested in the experiments
with NSGA-II obtaining the best performance. NSGA-II is
also the chosen solving method by Srivastava et al. [9],
where 5 objectives, including the number of vehicles, delay
time and total travel distance, are considered and compared
with existing literature results. Finally, bi-criteria optimization
of the total travel time and the number of vehicles was
investigated by Duan et al. [10]. Differently than in many other
approaches, uncertainty of the travel time and time windows
was considered as well. As solving method, a robust multi-
objective Particle Swarm Optimization was proposed.

We will now focus on existing VRP approaches that are
similar to our research, but which do not consider multi-
criteria optimization. A problem of delivery to parcel lockers
with travel time and vehicle capacity constraints was studied
by Orenstein et al. [11]. The authors presented a formal
Mixed-Integer Linear Programming formulation and proposed
a TS algorithm. Similar VRP variants with time and capacity

constraints were considered by Li et al. [12] and Pan et al.
[13]. Both papers used Adaptive Large Neighborhood Search
to solve the formulated problem, having such properties as
time windows, ready times and service time assigned to each
order. However, the problems in those papers were not applied
to the concept of parcel lockers delivery. An interesting work
was done by Cokyasar et al. [14], where a case study of
a TCVRP variant was examined using benchmarks based on
data from biggest delivery companies in the US. In the paper,
the impact of maximal travel time, vehicle capacity, service
time and vehicle range were analyzed, with goal of minimizing
the total travel distance. Finally, Grabenschweiger et al. [15]
considered a time- and capacity-constrained VRP with delivery
to heterogeneous locker boxes, but without taking into account
order ready time and maximal vehicle capacity.

To summarize, the topic of VRP modeling parcel lockers-
based delivery is not well-researched in the literature. This
is especially true when multi-criteria goal of optimizing total
travel time and total late deliveries penalty and other problem
constraints are considered. The closest the aforementioned
paper [6], but even that differs significantly from our approach
with regards to the assumptions. Furthermore, existing ap-
proaches very rarely conduct experiments using real-life data.
As such, we address those shortcomings in our paper.

III. PROBLEM FORMULATION

The VRP variant considered in this paper is formulated
as an modification to the model shown in [16]. Since the
full mathematical formulation is cumbersome, we will omit
it and use the Giant Tour Representation (GTR) instead. The
summary of the notation is shown in Table I.

A. Input data

We are given a set N = {1, 2, . . . , n} of n delivery orders
and a set L = {0, 1, 2, . . . , l} of l + 1 locations. Locations
1 through l are delivery locations (i.e. parcel lockers), while
location 0 is the depot. For each order i ∈ N we define
its arrival time ai > 0, deadline (due-date) di > ai, goal
(destination) location gi ∈ L\ {0}, weight (mass) wi > 0 and
priority pi > 0. By S > 0 we denote the constant time required
to service a single order (retrieving the package, placing it in
the package locker etc.). Moreover, for each ordered pair of
locations k, l ∈ L we denote the travel time between them
as tk,l ≥ 0. Due to location describing points in a city, it
is usually expected that tk,l ̸= tl,k. Naturally, tk,k = 0 for
all k. Next, we are given a set V = {1, 2, . . . , v} of v ≤ n
identical vehicles. By C > 0, T > 0, and P > 0 we denote
the vehicle capacity, the time limit for vehicle travel (e.g. daily
driver worktime limit) and the time needed for the vehicle to
park and take off from a location respectively.

B. Representation

In order to formally define the goal function or the con-
straints, we will represent the solution using a modified GTR.
A regular GTR is a sequence of all orders/locations with
a number of separating zeroes (indicating change of vehicle),
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TABLE I
NOTATION

Symbol Meaning

Indexes

i, j general indexes and indexes for orders
k, l indexes for locations
r index for vehicles

Input data

N , n sets of orders, number of orders
L, l sets of locations, number of locations
V , v sets of vehicles, number of vehicles
ai arrival time of order i
di deadline (due-date) of order i
gi goal (destination) of order i
wi weight (mass) of order i
pi priority of order i
tk,l travel time from location k to location l
S order servicing time
P time needed for vehicle to park and take off
T time limit for vehicle travel
C vehicle capacity

Solution and its derivatives

π solution
πr sequence of orders assigned to vehicle r according to π
σr sequence of order destinations according to πr

ρr sequence of parking times according to πr

Ar(π) ready time for vehicle r according to π
Di,r(π) delivery time of the i-th order in vehicle r according to π

Other notation

len(x) length (number of elements) of sequence x
x(i) i-the element of sequence x
i ∈ x i is an element of sequence x

mixed in with the orders. In our case, orders are not equivalent
to locations (e.g. there can be multiple orders per location and
there can be locations with no orders), so we will modify how
GTR is interpreted.

Let us consider example shown in Figure 1. Here we have
9 locations (A to I), 10 orders (1 to 10) and 3 vehicles. In
this example, vehicle 1 first visits location F to deliver order
8, then moves to location G to deliver order 5, then delivers
order 1 at location I and finally returns to the depot. For such
an example the corresponding GTR solution π is:

(8, 5, 1, 0, 9, 6, 10, 0, 4, 2, 3, 7). (1)

It should be noted that π stores orders and vehicle separa-
tors only. Locations are not stored in π explicitly. Different
solutions are obtained by re-arranging the elements of π.

We will now derive from π a few symbols to simplify
the notation. By πr, r ∈ V we denote the subsequence
of π containing orders assigned to vehicle r. By σr we
denote a sequence of destinations of orders from πr i.e.
σr(i) = gπr(i). Similarly, by ρr we denote sequence indicating
parking times associated with orders in πr. Parking time is P
if the previous destination is different and 0 otherwise:

ρr(i) =

{
P if i = 1 ∨ σr(i) ̸= σr(i− 1),

0 otherwise.
(2)

Fig. 1. Example tours for 10 orders, 9 locations and 3 vehicles

For the example solution in (1) we have:

π1 = (8, 5, 1) π2 = (9, 6, 10) π3 = (4, 2, 3, 7) (3)
σ1 = (F,G, I) σ2 = (A,B,D) σ3 = (C,D,E,E) (4)
ρ1 = (P, P, P ) ρ2 = (P, P, P ) ρ3 = (P, P, P, 0) (5)

C. Goal function

The goal is to find solution π∗ which minimizes a given
two-criteria goal function F (π):

F (π∗) = min
π

F (π). (6)

F (π) consists of two criteria F1(π) and F2(π). Criterion
F1(π) is the total time taken for all vehicles to deliver all
orders. For a given π this criterion is expressed as follows:

F1(π) =
∑
r∈V

(
t0,σr(1) + tσr(len(σr)),0 + (7)

+

len(σr)∑
i=2

tσr(i−1),σr(i) +

len(πr)∑
i=1

ρr(i)

+ nS,

Formula (7) for each vehicle includes 4 terms:

1) t0,σr(1) – time vehicle takes to travel from the depot to
the first location assigned to it.

2) tσr(len(σr)),0 – time vehicle takes to travel from its last
assigned location back to the depot.

3)
∑len(σr)

i=2 tσr(i−1),σr(i) – time taken for the vehicle to
travel through its assigned sequence of locations.

4)
∑len(πr)

i=1 ρr(i) – the time vehicle takes while parking.

This form of function F1 was chosen to directly or indirectly
optimize 1) fuel-usage, 2) man-hours and 3) number of vehi-
cles and their utilization.

The second criterion F2(π) is the total penalty for delivering
orders past their deadline, which is expressed as follows:

F2(π) =
∑
r∈V

len(πr)∑
i=1

max{0, Di,r(π)− dπr(i)} · pπr(i), (8)
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where Di,r(π) is the actual time the i-th order in vehicle r is
delivered:

Di,r(π) =Ar(π) + t0,σr(1) +

i∑
j=2

tσr(j−1),σr(j) + (9)

+

i∑
j=1

ρr(j) + iS.

Here Ar(π) is the time vehicle r can starts its tour i.e. the
time all of its orders have arrived in the depot:

Ar(π) = max
i∈πr

ai. (10)

Formula (9) includes 5 terms:
1) Ar(π) – time vehicle waits before it leaves the depot.
2) t0,σr(1) – time vehicle takes to travel from the depot to

the first location assigned to it.
3)
∑i

j=2 tσr(j−1),σr(j) – time taken for the vehicle to travel
through its tour until (and including) its i-th order.

4)
∑i

j=1 ρr(j) – the time vehicle takes while parking
during its tour until (and including) its i-th order.

5) iS – the time to service the first i orders of the vehicle.

D. Constraints

The goal function F has to be minimized under the follow-
ing constraints:

1) Each order is assigned to exactly one vehicle.
2) Each vehicle with at least one order, starts its tour at the

depot and has to return to the depot after completing its
tour.

3) Each vehicle can only leave the depot after all orders
assigned to it have arrived.

4) Capacity for any vehicle does not exceed C.
5) Total travel time for any vehicle does not exceed T .
Constraints 1) and 2) are ensured by GTR itself. Constraint

3) is already accounted in formulas (7) and (9). Constraint 4)
implies that for all r ∈ V:∑

i∈πr

wi ≤ C. (11)

Finally, constraint 5) for each vehicle r ∈ V sums the travel,
parking and service time for all orders assigned to r:

t0,σr(1) + tσr(len(σr)),0 +

len(σr)∑
j=2

tσr(j−1),σr(j) + (12)

+

len(ρr)∑
j=1

ρr(j) + len(πr)S ≤ T.

E. Solution value and feasibility

Despite the complexity of the formulation, the determination
of a goal function value and feasibility for a given π can be
done in a linear time using the following procedure. We first
initialize necessary variables (empty list of orders, zero current
time, zero vehicle load, zero latest arrival time). We then start
to scan the solution from π(1) to π(len(π)). On encountering

orders, we add them to the list, add order weight to vehicle
load and update the latest (highest) arrival time.

On encountering the end of the current vehicle (i.e. a zero)
we try to ,,complete” the vehicle. If the vehicle load exceeds
its capacity C, the solution is infeasible and the procedure
ends. Otherwise, we set the current time to the latest arrival
order (this cannot be done earlier as we need to know arrival
times for all orders of this vehicle to know when the vehicle
can leave the depot). We then iterate over the orders collected
in the list, advancing time as required (traveling to the next
location, parking, servicing order). For each order we calculate
the tardiness penalty for the order (which is based on the
current time) and add it to the second criterion value. After
all orders of the vehicle have been processed, we check if the
overall vehicle time (counted from the moment it leaves the
depot) exceeds the time limit T . If it does, then the solution is
infeasible and the procedure ends. Otherwise, the vehicle time
(including waiting for all of its orders to arrive) is added to
the first criterion value. After all vehicles have been processed,
the procedure ends, returning values of both criteria. As can
be easily seen, the total running time of this procedure is
O(n+ v) = O(n), since v ≤ n.

The procedure itself checks for the violation of constraints
4) and 5), while also ensuring that constraint 3) is met.
Constraints 1)–2) are not checked explicitly, however, they are
always met as long as GTR is properly formed. If GTR is not
well-formed then other situations (e.g. exceeding the allowed
numbers of vehicles, use of non-existent orders) are possible
as well. In our case, we assume that the solving methods will
operate on well-formed GTRs only. However if necessary, the
appropriate checks could be easily added, while not affecting
the O(n) running time complexity.

IV. SOLVING METHODS

Due to large problem sizes encountered in practice (hun-
dreds or thousands of orders), the exact solving methods are
inapplicable in real-life parcel delivery. Thus, in this section
we propose three heuristic solving methods for the considered
problem: (1) a greedy constructive method, (2) Tabu Search
method and (3) Genetic Algorithm.

A. Greedy heuristic

The greedy heuristic starts by creating “empty” solution π
that contains only empty vehicles:

π = (0, 0, . . . , 0︸ ︷︷ ︸
v−1 times

). (13)

Next, the set of orders N is sorted according to a chosen
strategy. After this initial phase, the algorithm proceeds iter-
atively. In each iteration we try to insert the next order (as
according to the chosen sorting strategy) into the partial GTR.
We tentatively insert the order into all available positions and
evaluate the goal function for each possibility. The order is
ultimately inserted into the position that yields the best result.
However, we need to choose one insert position and the goal
function is two-criteria. Thus, we need a way to be able to
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compare each result. A well-known TOPSIS [17] method, able
to rank multi-criteria solutions is used for this.

The last iteration proceeds differently. Since only one order
remains to be inserted, each insertion will result in a complete
GTR. Thus, we consider and evaluate all possible insertion
points and collect them into one set. Solutions that are
dominated (according to the Pareto-optymality principle) are
removed from the set. The remaining non-dominated solutions
are returned by the method. Since v ≤ n, the total running time
of the greedy method is O(n3).

B. Tabu Search

Tabu Search (TS) is a well-known local-search metaheuris-
tic. It has been successfully applied for solving a wide range
of optimization problems including VRP [11], scheduling [18]
and bin packing [19]. TS starts from an initial solution and
tries to iteratively improve it, until a chosen stopping condition
is met. In each iteration a neighborhood of the current solution
is searched and the best found solution replaces the current
one. In order to avoid re-visiting past solutions, the algorithm
uses short-term memory, called the tabu list, to mark certain
solutions as forbidden.

In our case, the initial Pareto front P is provided by the
greedy algorithm from the previous subsection. Next, TOPSIS
method is used to choose a single solution from P that will
act as our current solution π. In our implementation the move
consists of swapping elements in π i.e. neighboring solution
π′ is created by swapping π(i) and π(j) for some i and j.
Since swapping π(i) with π(j) is the same as swapping π(j)
with π(i) we assume that j > i. Also, swapping when i = j
does not change the solution and is thus ignored. The size of
the resulting neighborhood is:

len(π)(len(π)− 1)

2
∈ O(len(π)2) = O(n2). (14)

The TS method considers all neighbors π′ as follows.
Neighbors created from the moves that are currently forbidden
are ignored. The rest of the neighbors is evaluated and checked
for feasibility. Infeasible neighbors are also ignored. The
remaining (i.e. feasible and not forbidden) neighbors create
a separate Pareto set of candidates C. TOPSIS method is then
used to select from C the best candidate πc. Next, we try to
update the Pareto front P with πc. Namely, πc is added to
P if πc is not dominated by any solution in P . Similarly, all
solutions in P dominated by πc are removed from P . Finally,
πc becomes the current solution π for the next iteration.

The tabu list is in the form of a matrix M of size
len(π) × len(π). Element Mi,j = z indicates that the move
swapping π(i) and π(j) is forbidden up until iteration z. In
the beginning Mi,j = 0 (i.e. all moves are allowed). Every
time a best candidate πc is chosen, we forbid the move that
led from π to πc by setting Mi,j to it + cad, where it is the
current iteration number and cad is the number of iteration
for which the move will be forbidden (i.e. cadence). In our
implementation we set:

cad =
⌊√

len(π)
⌋
=
⌊√

n+ c− 1
⌋
. (15)

The algorithm completes after a given time has elapsed and
then returns the obtained Pareto front approximation P .

C. Genetic Algorithm

In the case of large problem instances, a general approach
is the use of a Genetic Algorithm (GA) [20], which has been
successfully applied to VRP [21] and other combinatorial opti-
mization problems like scheduling [22]. Inspired by Darwin’s
theory of evolution, GA operates on an entire pool of solutions,
called the population, instead of a single solution like TS.

The initial population is created in three steps. In step 1,
the greedy method described earlier is performed, yielding
a number of solutions (a Pareto set). In step 2, each solution in
the initial population is created from a random solution from
the greedy Pareto set. Since that introduces many repetitions
(clones), in step 3 each solution is modified by performing
n
10 random feasible swaps, increasing genetic diversity. Af-
terwards the algorithm proceeds iteratively. In each iteration
genetic operators (selection, crossover and mutation) are ap-
plied, after which the Pareto front P must be updated.

Parent solutions for the crossover operator are chosen using
the tournament method. The size of the tournament is square
root of the population size, rounded to an integer. TOPSIS
method is used to rank the solutions in the tournament and
the best one wins. In the crossover process, each parent is
randomly paired with another parent. Two crossover points are
randomly selected in the first parent. The resulting fragment
between the points is put as the starting portion of the child.
If the fragment ended with 0 (vehicle end), we proceed
immediately. Otherwise, we try to pack more orders into the
current vehicle using the orders from the second parent (in
order of appearance). Each time the current vehicle becomes
infeasible, we close it and the order that created infeasibility
is assigned to the next (empty) vehicle instead. Only orders
that have not yet been used are added this way. This process
repeats until all remaining orders are assigned to vehicles. The
crossover probability is always 100%. Mutation is achieved
by performing a single random swap move and the resulting
solution is kept if it is feasible. The mutation probability is
set to 15%. This is higher than usual in order to account for
infeasible solutions.

After crossover and mutation are applied, the old population
is replaced by children, except that the best 3% of the old
population are kept regardless, a mechanism that is called
elitism. Like TS, the stopping criterion is a time limit, and
the Pareto front P is returned as a result.

V. COMPUTER EXPERIMENT

In this section we present the results of the numerical
experiment using instances based on real-life data as well as
preliminary research for the greedy algorithm. The research
methodology is described as well.

A. Instances, implementation and environment

In order to verify the effectiveness of the algorithms in
a more realistic scenario, we have prepared a number of
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Fig. 2. Distribution of parcel lockers locations against the map of the city of
Wrocław

problem instances based on real-life data. To this end, we have
collected locations of 344 parcel lockers and 3 possible depot
locations used by a real-life delivery company operating in
and around the city of Wrocław, Lower Silesia, Poland. Open
Street Map [23] was then used to obtain realistic travel times
tk,l between all location pairs. The city of Wrocław was used
due to its geographical and infrastructure features that make
the problem more challenging (many rivers and waterways,
111 bridges and many one-way streets). With this data we can
generate problem instances with up to 344 parcel lockers.

For our experiment we generated the testing problem in-
stances as follows. We consider 7 values for the number of or-
ders n ∈ {500, 1000, 1500, . . . , 3500}. For each n we consider
three different numbers of vehicles v ∈ {0.1n, 0.3n, 0.5n} and
three different numbers of locations l ∈ {75, 150, 300}. This
results in 63 instance groups. For each group we generate 10
instances, meaning 630 instances in total. By x ∼ U{a, b} we
denote that x follows a uniform integer distribution from a
(inclusive) to b (inclusive). Then each instance is generated
under the following further assumptions:

1) All l locations are randomly chosen from the original
344 possibilities (wihout repetitions).

2) Depot is chosen randomly from the 3 available options.
3) ai ∼ U{300, 720}. In minutes since midnight. Indicates

that orders are arriving between 5am and noon.
4) di ∼ U{ai + 60, ai + 180}. In minutes since midnight.

Indicates that order deadline is 1 to 3 hours.
5) gi ∼ U{1, l}.
6) wi ∼ U{1, 20}. In kilograms.
7) pi ∼ U{1, 10}.
8) S = 2 i.e. order service time is 2 minutes.
9) P = 2 i.e. vehicle time to park and leave is 2 minutes.

10) C = 1000. In kilograms (i.e. vehicle can take up to
1 metric ton of cargo).

11) T = 480. In minutes (i.e. vehicle time limit is 8 hours).
All algorithms were implemented in C# v. 12 programming

language, compatible with .NET 8.0. All computer experi-
ments were conducted on a DGX A100 machine with AMD
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20

25

30

35

40

45
Z

f1(π)

f 2
(π
)

Fig. 3. Illustration of HVI with two fronts. Front indicated with squares has
higher HVI

EPYC 7742 3.2 GHz processor with 64 physical cores, 128
threads and 503 GiB of RAM working under Ubuntu 20.04.6
LTS operating system. The stopping condition for both TS and
GA solving methods was set to 0.1n i.e. for n = 1000 the
algorithm stops after 100 seconds. The implementation code
is available at Github [24].

B. Measure of quality

There are several issues regarding how to compare the re-
sults of the proposed algorithms. Firstly, the algorithms return
Pareto fronts (or rather the approximation of the real Pareto
front), which can contain multiple solutions. To compare such
results we use the concept of Hyper-Volume Indicator (HVI)
[25]. For a two-criteria case and fronts {F1,F2,F3} the HVI
of front Fi is calculated as the area of a figure constrained by
points from Fi and a reference (or ,,nadir”) point Z. The point
Z is calculated by taking the worst values from all considered
fronts and multiplying them by some constant (common value
is 1.2, which is the same in our case). The concept of HVI is
illustrated in Figure 3. Not that the higher HVI is, the better.

Secondly, the HVI provided by the tested algorithms should
be compared to some baseline HVI. Such normalization will
also remove the issue of different instances having vastly
different HVIs. Thus, for a given instance I we calculate the
Percentage Relative Deviation (PRD) as follows:

PRDTS(I) = 100%
HVITS(I)−HVIref(I)

HVIref(I)
, (16)

where HVITS(I) is the HVI value achieved by TS algorithm
for instance I and HVIref(I) is HVI value for reference solu-
tion. Since considered problem sizes are too large to employ
exact methods, we cannot use the actual (optimal) Pareto front.
Instead, we use the HVI of the front obtained by the greedy
method as our reference HVI. Thus, PRDTS(I) = 30% will
indicate that TS obtained 30% larger HVI for instance I . The
value for the GA methods is calculated similarly:

PRDGA(I) = 100%
HVIGA(I)−HVIref(I)

HVIref(I)
. (17)
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TABLE II
BEST AND WORST SORTING STRATEGIES FOR THE GREEDY ALGORITHM

Average relative HVI Sorting strategy formula

Best 5 strategies

1.000 (di − ai)/pi

0.970 1/(aidipi(di − ai))

0.911 di/(ai(di − ai))

0.899 (dipi)/(aiwi(di − ai))

0.881 (di(di − ai))/ai

Worst 5 strategies

0.509 diwipi

0.500 di

0.494 ((di − ai)pi)/ai

0.410 aidi(di − ai)

0.410 aipi(di − ai)

C. Preliminary research

We have conducted a preliminary research to find out
the best order sorting strategy for the greedy algorithm. We
considered 5 order parameters that can be used as part of the
sorting key: 1) ai, 2) di, 3) wi, 4) pi and 5) di − ai. In other
words the sorting is done according to the following key:

(ai)
α · (di)β · (wi)

γ · (pi)δ · (di − ai)
ϵ. (18)

where α, β, γ, δ, ϵ ∈ {1,−1, 0}. It means that each variable
either goes into the numerator, goes into the denominator or is
removed from the sorting key altogether, respectively. We have
assumed that all sortings are in non-decreasing order, since
the reverse is achieved simply by swapping the numerator
with the denominator. All 35 = 243 combinations were
tested by comparing relative average HVI obtained by them
on 1000 smaller instances (different than those presented in
earlier subsection). The results for the best five and worst five
combinations are shown in Table II

The results indicate that the best strategy is to sort orders
according to the non-decreasing time remaining per priority
ratio i.e.:

di − ai
pi

. (19)

Curiously, this strategy turned out to be the best in all tested
cases. We can also see that this sorting strategy allows up to
2.5 times improvement over some other strategies and twice
the improvement over sorting by deadlines alone.

D. Main research

The primary research was conducted on the 630 instances
described earlier. The aggregated results for various instance
groups (with regards to n, v and l) as well as for all instances
overall, are shown in Table III. We will start with the analysis
of the first three columns which show the specific scenario
in question and the average PRD values of TS and GA for
instances in the considered scenario, respectively.

We first observe that both TS and GA outperformed the
greedy method on regular basis by 15.6% and 18.8% on

average respectively. Thus, considering all tested instances,
both algorithms achieved similar performance, with GA being
slightly ahead. However, the situation becomes more complex
where specific instance groups are considered. The results for
various number of orders strongly suggest that the effective-
ness of TS decreases as n increases and becomes low for
n > 2000. For GA the effect seems to be opposite, though
the relation is less obvious. Nonetheless, it should be noted
that average GA improvement compared to the greedy method
does not drop below 14%. It should be also noted that while
the performance of TS drops with increase in n it remains
higher than the performance of GA up to n = 1000. A similar
observation can be made with regards to changing number of
vehicles. As v increases, the performance of TS slightly drops
and performance of GA significantly increases.

Curiously, with regards to the number of locations, the re-
lationship between TS and GA reverses: TS slightly improves
with increase in l while GA slightly drops in performance.
This is not the only advantage of TS over GA. While GA
seems to be more reliable on average, TS allows for better
improvements as can be seen for cases with n = 500.
Specifically, the highest PRDGA value over all instances was
2.363 (meaning HVI over twice higher than for the greedy
method), while the highest PRDTS was 5.887, which is over
twice as much. The maximal PRD values for each instance
groups are shown in the 5th and 6th columns of Table III.
Those results indicate that in almost all scenarios (except for
higher n values) the maximal PRDTS is significantly higher
than PRDGA, even if such values are obtained rarely.

The above observations lead us to the conclusions that both
of the proposed algorithms excel in different scenarios, most
likely with accordance to the No Free Lunch Theorem. The
TS lower performance for higher numbers of orders could
be caused by its difficulty to overcome getting trapped in
local optima effectively, while GA can do so easier due to its
probabilistic nature. On the other hand, TS searches the entire
neighborhood and is deterministic, leading to better results on
smaller instances with smaller solution space.

While both algorithms can be used separately, the observed
results indicate that TS and GA could work well in tandem,
covering for each other’s weaknesses. In order to research
this, we have assumed a scenario where both algorithms are
run in parallel and the best out of the two obtained PRD
values is chosen and denoted PRDBEST. The results of this
experimented are shown in the 4th column of Table III. This
allowed for a significant improvement in almost all cases
except for n = 500 and n = 3500. The average improvement
over standalone TS and GA is over 11% and 14%, respectively.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered a variant of the time-
and capacity-constrained Vehicle Routing Problem with multi-
criteria goal function, in order to model a modern delivery
system based on parcel lockers. Two-criteria goal function was
used to minimize the total travel time as well as the total
penalty for late delivery of parcels. Real-life data taken from
existing parcel lockers location in the city of Wrocław, Poland
was used to create benchmark problem instances.
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TABLE III
AVERAGE AND MAXIMAL PRD VALUES OF TS AND GA SOLVING METHODS AGGREGATED OVER VARIOUS INSTANCE GROUPS

Scenario Average PRDTS Average PRDGA Average PRDBEST Maximal PRDTS Maximal PRDGA

Over all groups

1.156 1.188 1.319 5.877 2.363

With regards to number of orders

n = 500 1.632 1.159 1.696 5.877 1.905
n = 1000 1.223 1.141 1.324 3.126 1.972
n = 1500 1.086 1.209 1.270 2.141 2.259
n = 2000 1.106 1.242 1.338 3.025 2.363
n = 2500 1.026 1.202 1.222 1.788 2.095
n = 3000 1.017 1.158 1.172 1.418 1.960
n = 3500 1.003 1.209 1.209 1.019 1.787

With regards to number of vehicles

v = 0.05n 1.182 1.104 1.263 5.877 1.645
v = 0.1n 1.165 1.214 1.349 3.714 1.905
v = 0.2n 1.122 1.248 1.345 4.094 2.363

With regards to number of locations

l = 75 1.146 1.198 1.317 4.094 2.074
l = 150 1.149 1.188 1.309 3.714 2.363
l = 300 1.173 1.179 1.331 5.877 2.284

We have proposed two metaheuristic solving methods—
a Tabu Search method and a Genetic Algorithm—which we
compared with each other and a heuristic greedy method. We
have also proposed an effective sorting strategy for the greedy
method. The results indicated that the Genetic Algorithm was
slightly better overall and when the number of orders and
vehicles increased, while Tabu Search was better when the
number of locations increased. We have also shown that both
algorithms complement each other and provide significantly
better results in almost all tested instances.

We consider several possible directions for future work.
Firstly, the problem could be extended to allow for pickup of
orders instead of just deliveries. Secondly, more real-life data
from other cities could be collected to simulate other real-
life settings for this problem. Finally, the existing algorithms
could be further improved (i.e. adding a long-term memory to
Tabu Search, using a Memetic Algorithm or employing parallel
computing for both methods).
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