
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 3, PP. 1–9
Manuscript received March 6, 2025; revised June 2025. doi: 10.24425/ijet.2025.155452

Review of hierarchy in Petri Nets
Michał Markiewicz, and Lesław Gniewek

Abstract—Petri nets are increasingly being used to create
IT and automation systems whose high complexity requires a
new approach to design and implementation. As a result, new
concepts for describing, analyzing, and presenting Petri nets have
been developed, among which the introduction of a hierarchical
network structure holds an important place. This structure allows
for the presentation of a created system (network) at various
levels of abstraction and facilitates the determination of the
properties of its modules (subnetworks) and the all network.
Although hierarchical networks are currently widely used in
research and pracital applications, there is no uniform way of
using them. Therefore, the aim of this article is to identify and
present the basic concepts of applying hierarchy in Petri nets.

Keywords—petri nets, hierarchy, modularization, formal model

I. INTRODUCTION

IN modern information and automation systems, hierarchy,
methods of its analysis, and modularization play an impor-

tant role [1]–[6]. The application of a hierarchical structure
can increase the innovation, functionality, and efficiency of
a system if applied correctly. An essential aspect related to
hierarchy is modularization, which is the process of dividing
a system into subsystems (modules) to increase flexibility and
scalability in the design and implementation of a complex
system. This approach simplifies a system construction and
facilitates its maintenance and updates. All modern software
engineering is largely based on modularization.

An important issue related to hierarchy and modularization
are the top-down and bottom-up approaches [7]–[9]. Both can
be used for designing and creating new systems as well as
analyzing the operation of existing ones. The first one involves
refining the overall operation of the entire system and then
determining how its individual modules work. Lower layers
are defined, specifying more and more detailed operations
of the system. The second approach refers to building and
analyzing the system from its simplest components and grad-
ually combining them into more complex modules. Often, both
strategies are used together in practice to improve and optimize
the operation of the system.

Petri nets (PNs), thanks to their undeniable advantages such
as formal mathematical description, graphical presentation
form, and the ability to model both sequential and concurrent

This article is supported by funds from Rzeszów University of Technol-
ogy.

M. Markiewicz and L. Gniewek are with the Department of Electrical
and Computer Engineering, Rzeszow University of Technology, Poland (e-
mail: mmarkiewicz@prz.edu.pl, lgniewek@prz.edu.pl).

systems, have become a tool widely used in both research and
practical application [10]–[12]. The need to solve increasingly
complex and intricate problems has led to the employment of
new solutions and algorithms. One of these is the introduction
of a hierarchical structure to PNs [13]–[15]. This approach
allows for the modeling of complex systems by dividing them
into interconnected subnetworks (modules). Each subnetwork
can be independently analyzed, which facilitates understanding
and verification of the behavior of the entire system.

From the latest studies [16]–[20], it can be seen that hierar-
chical Petri nets remain a current topic of research. It appears
that as long as Petri nets are a topic of interest, research related
to modularization and hierarchy will be inseparable, as these
aspects are crucial for solving both practical and scientific
problems.

The purpose of this manuscript is to present and identify
various approaches to applying hierarchy in PNs. Based on
the gathered literature (presented later) on PNs, several types
of hierarchical structures are identified and described. It can
be distinguished both concepts of the places and transitions
refinement (section II), as well as techniques for their reduc-
tion (section III). Hierarchical PNs are formally described in
the form of definitions (section IV), which, in the case of
object networks, have characteristics typical of programming
languages (section VII). Hierarchical networks have also found
their place in industrial controller programming standards
and in the methodology of dealing with complex IT systems
(section VI). All these approaches will be covered in the
following sections and summarized in section VIII and IX.

II. REFINEMENT OF PLACES AND TRANSITIONS

One of the first works related to hierarchy in PNs is
the article by R. Valette [21]. It presents the concept of a
macrotransition with one input and one output. The author
defined the concept of a well-formed block and examined the
properties of the hierarchical network such as boundedness,
safeness, and liveness. Figure 1 shows how to convert macro-
transition (MT1), when it is well-formed block. I. Suzuki and
T. Murata [22] continued Valette’s research, extending the
concept of a well-formed block to a k-well-behaved block.
Their research not only focused on macrotransition but also
on determining the properties of a macroplace with one input
and one output. Figure 2 shows how to convert macrotransition
(MT1) to examine subnet N0 properties, when it is k-well-
behaved block. W. Vogler [23] proposed an extension of the
concepts described in [21], [22], involving the connection of

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


2 M. MARKIEWICZ, L. GNIEWEK

subnetworks (so-called daughter networks) with a transition
with multiple inputs and outputs, considering certain structural
constraints. W. Brauer et al. [24] described the extension of
transition functionality for subnetworks with one initial and
one final transition and the method of creating macroplaces.

Fig. 1. Using well-formed block conception to examine a subnet N0

properties (Three dots indicate any network structure that meets the well-
formed block condition)

Fig. 2. Using k-well-behaved block conception to examine a subnet N0

properties (three dots indicate any network structure that meets the k-well-
behaved block condition)

L. Bernardinello and F. De Cindio [25] in their review study
presented and compared various approaches to extending the
functionality of places and transitions. Most of these concepts
use the composition of mutually synchronized subnetworks
with a state machine structure. W. M. Van Der Aalst [26]
described a hierarchical workflow network that has features
such as safeness, liveness, boundedness, free-choice, and well-
structuredness. The network was used to model the control of
various aspects of business processes. H. Huang et al. [27]
proposed a method for extending functionality that ensures
nineteen system properties. Their methodology is used to
create and verify design specifications and includes five classes
of operators: bottom-up extension, composition, functionality
extension, reduction, and merging of places to solve resource-
sharing problems.

The literature also considers extensions of the functionality
of actions/operations [24], [28]–[32]. In this methodology,
actions are assigned to transitions. Each transition associated
with a subnetwork has an action label, which in this subnet-
work is interpreted by more complex processes. This approach
allows for hierarchical modeling of the system and its analysis
at various levels of abstraction.

III. REDUCTION

Another approach to hierarchy in PNs is reduction. This
method allows for determining the static and dynamic prop-
erties of a network based on its reduced equivalent, to which
it has been transformed [33]. The transformation is performed
based on specific rules applied in a certain order. Reduction
is a method that facilitates proving the properties of the all
network. The beginning of research related to it dates back
to the 1970s [34]–[37]. This research was generalized by G.
Berthelot [38], [39], who proposed transformations ensuring
properties such as safety, boundedness, coverage by place
invariants (S-invariant), liveness, marking reachable from any
reachable marking, proper termination, home state, deadlock
freeness, unavoidable states, and abstraction. Among the trans-
formations, one can distinguish: place transformations, tran-
sition fusions, S-decomposition, and T-decomposition, which
are mainly based on static properties and to a lesser extent
on dynamic properties. S-decomposition and T-decomposition
allow dividing a large complex network into smaller subnet-
works and their separate analysis. Berthelot also described
the merging of separate subnetworks through composition.
K. H. Lee et al. [40], [41] proposed a hierarchical reduction
method that uses decomposition. A large network is divided
into smaller subnetworks, which are replaced by macroplaces
and macrotransitions. The method is based on static properties
and ensures the maintenance of properties such as liveness,
boundedness, and proper termination.

J. Desel, E. Best, and J. Esparza [42]–[45] described the
reduction of free-choice networks. In the works [42]–[44],
extensions of free-choice networks using four types of reduc-
tions: P-reduction, T-reduction, F-reduction, and A-reduction
were proposed. The authors showed that it is possible to reduce
a free-choice network, after meeting certain conditions, to a
marking graph and a state machine, and even a network con-
sisting of two elements. Desel and Esparza [45] summarized
the results related to free-choice networks and their properties,
including proper formulation. L. Jiao et al. [46], [47] continued
the research of Desel, Best, and Esparza. Their work focuses
on asymmetric free-choice networks.

The reduction technique has also found application in
time PN. R. H. Sloan and U. Buy [48] proposed extending
Berthelot’s reduction techniques [38] for time PN. J. Wang
et al. [49] presented a component reduction method in time
PN, which allows maintaining time properties and significantly
simplifying the network structure by replacing its modules,
e.g., with two places connected by a transition. E. Y. T. Juan et
al. [50] presented the reduction of time PN used for modeling
real-time systems. The authors described the concept of adding
time intervals to the weights of arcs, delaying the movement of
tokens between places and transitions. The reduction technique
can also be significant in Flexible Manufacturing Systems
(FMS), where managing shared resources and avoiding dead-
locks are very important [51], [52].

IV. FORMAL DEFINITION

The introduction of hierarchy in PNs through formal de-
scription and network definition allows for the creation of



REVIEW OF HIERARCHY IN PETRI NETS 3

subnetworks in any way and with any properties, beyond
imposing certain initial constraints (such as the number of
network inputs and outputs).

One of the most complete concepts is the hierarchical
Coloured PN (CPN) proposed by P. Huber, K. Jensen, and
others [14], [53], [54]. In [53], Huber et al. showed various
approaches to hierarchy in CPN, such as creating subnetworks
(so-called pages linked with transitions and places), fusion
sets, substitution of places and transitions, and the hierarchy
graph of pages. Additionally, they introduced the concept
of element instances and hierarchical structures modeled on
object-oriented programming languages. Jensen, who contin-
ued research on CPN [14], [54], introduced a formal de-
scription and selected from the previously presented concepts
those that would be used in practice, i.e., implemented in a
computer simulator of coloured networks. He proposed a def-
inition according to which the network can consist of separate
subnetworks called pages, which are linked with transitions.
The network includes instances of places, transitions, arcs,
and subnetworks. Additionally, it is possible to define so-
called place fusions: global place fusion, place fusion (shown
in Figure 3) for pages of the same instance, and instance
place fusion. Relationships between subnetworks (not related
to place fusion) can be visualized on the hierarchy graph.

Fig. 3. Fusion places concept: BufferC and BufferP are in fact the same place

The concept of CPN is complemented by the CPN Tools
simulator, which allows simulating the operation of a hi-
erarchical network, analyzing the properties of the entire
network and its subnetworks. This tool can be used to solve
practical problems. Examples of industrial implementations
using this tool can be found in the book by Jensen and L.
M. Kristensen [55]. Many authors have eagerly referred to
and continued research related to hierarchical CPN, e.g., by
using this network to create multi-agent systems [56], or by
using an extended version of the network to create decision
systems [57]. Many works on object-oriented networks refer
to colored Petri nets, and they will be presented in section VII.

A different approach to the use of hierarchy was presented
by T. Holvoet and P. Verbaeten [58], namely an alternative
definition of a hierarchical network. Recursion was used for
the formal description. Each subnetwork can contain places

and transitions, inside which there are subnetworks, which can
contain further subnetworks, and so on. X. He [59] introduced
a formal definition of hierarchical PN for modeling large,
complex, and parallel distributed systems using the concepts
of macrotransitions and macroplaces. In the proposed solution,
the hierarchy in the network has a tree structure, which
simplifies the definition. G. Andrzejewski [60] presented a
formal model of a reactive system specification based on a
hierarchical time interpreted PN, which has state memory at
various levels of the network hierarchy. Remembering the
marking of places inside a subnetwork asigned to a macroplace
node, after the token leaves the node, was realized by assigning
a history attribute to the macroplace node. H. Pan and J. Sun
[61] proposed a hierarchical fuzzy PN, which can be used
to model decision systems. The network defines both abstract
places and transitions (macroplaces and macrotransitions).

M. Markiewicz and L. Gniewek [62], [63] proposed Hi-
erarchical Fuzzy Interpreted PN (HFIPN), that can have
macroplaces with several input, output and input-output places.
Moreover, functionality of a macroplace instance was added to
the network. The hierarchical network structure of HFIPN can
be displayed on a hierarchy graph. Authors describe also for-
mal algebraic representation of HFIPN, the rules of conversion
of it to its flat version and the way of the combination of any
two subnets in the hierarchical network. The whole concept is
complemented by a software simulator called HFPIN-SML,
that allows automatic code generation for PLC controllers
based on the network graph [64].

V. HIERARCHICAL NETWORKS IN INDUSTRIAL
STANDARDS

The PN formalism, along with its hierarchical structure,
has found application in industrial controller programming
standards. The use of PN for writing control programs for
PLC controllers was first standardized in France as the Grafcet
standard, which was then described in the international stan-
dard IEC 848:1988 (currently IEC 60848:2013 [65]). Based on
Grafcet, the Sequential Function Chart (SFC) was introduced
into the IEC 1131-3:1992 standard (currently IEC 61131-
3:2013 [66]) as one of the five programming languages for
PLC controllers.

Leading hardware manufacturers have adapted to these stan-
dards. Programming PLC controllers using the SFC language
is supported by commercial companies such as Siemens AG
– Step7 Professional software [67], Omron Corp. – CX Pro-
grammer [68], and Rockwell Automation Inc. (Allen-Bradley)
– Studio 5000 Logix Designer [69]. Schneider controllers
(Modicon, Telemecanique) can be programmed using the SFC
language – Unity Pro software [70] as well as the Grafcet
language – PL7 software [71].

Formal analysis methods proposed by R. David and H. Alla
[72] can be used to analyze the SFC and Grafcet languages.
The theoretical foundations of Grafcet can also be found in
another work by these authors [73]. Both Grafcet and SFC
are based on safe networks, meaning that a maximum of one
token can be stored in each place called a step.

In the Grafcet standard, it is possible to use several function-
alities operating based on hierarchy. The first is the concept of



4 M. MARKIEWICZ, L. GNIEWEK

so-called macro steps, which assumes that a token transferred
to the macro step node is automatically transferred to the
input step of the subnetwork associated with the macro step.
The token can leave the macro step node when the token
in the subnetwork associated with it reaches the output step.
A maximum of one token can be transferred to the macro
step node at a time (subnetwork associated with it). Another
concept is the so-called enclosure, in which the subnetwork is
associated with a single enclosing step. When a token reaches
the enclosing step, the initial steps (marked with an asterisk)
are activated, and when the token leaves the enclosing step, all
steps of the subnetwork associated with it are deactivated. A
different functionality is the ability to force subnetwork states:
freezing and resuming the operation of the subnetwork and
activating and deactivating selected steps. Unlike the enclosure
technique, the states of a given subnetwork can be controlled
using different steps.

In the IEC 61131-3 standard, a hierarchical structure for
the SFC language is not directly defined. However, the way
actions assigned to steps are defined indirectly introduces the
possibility of hierarchical nesting, as actions can be imple-
mented using SFC and other languages from this standard.
This concept is shown in Fig. 4.

Fig. 4. Conception of nesting networks and other programs in SFC

VI. METHODOLOGY FOR HANDLING COMPLEX SYSTEMS

As a separate direction for the application of hierarchy in
PN, one can distinguish the preparation and use of method-
ologies for handling complex systems, such as production
systems. This approach is usually presented in the form of
a general verbal description supplemented with examples and
formal descriptions.

M. Silva and R. Valette [74] proposed modeling FMS
systems using hierarchical PN. The application of hierarchy in
such systems is possible thanks to the stepwise extension of the
functionality of places/transitions and modular composition.
K. P. Valavanis [75] described a methodology consisting of
three steps for modeling FMS systems using extended PN.
This network includes six types of places, different tokens,
and so-called inhibitor arcs and activator arcs. Additionally,
the author applied decomposition (top-down) and composition
(bottom-up) techniques. M. Zhou et al. [76] proposed a hybrid
methodology (combining top-down and bottom-up analysis),
which allows dividing the network into modules and ensuring

them appropriate properties, such as boundedness, liveness,
and reversibility. According to the concept of Zhou et al.,
decomposition (the creation of modules/subnetworks) is first
carried out in the system. Then, non-shared resources used
within these modules are determined. Finally, during the
bottom-up analysis, shared resources between subnetworks are
determined. M. Silva and R. Valette [74] proposed modeling
FMS systems using hierarchical PN. The application of hi-
erarchy in such systems is possible thanks to the stepwise
extension of the functionality of places/transitions and modular
composition.

M. D. Jeng and F. DiCesare [77] described the use of
PN for modeling automated production systems with shared
resources. The combination of modules is done through tran-
sitions shared by different subnetworks. The properties of the
system that the methodology allows to achieve are liveness
and boundedness. M. Zhou [78] showed a practical example
of modular modeling of a semiconductor production system,
adapted from [77]. The production system, operating based
on a time PN, is divided into processes - subnetworks, in
which various modules, e.g., representing resources, are distin-
guished. Zhou applied various methods, including reduction,
which facilitate finding the properties of the entire system and
described testing, simulating, scheduling, and controlling the
production system.

Based on the cited works, it can be observed that they
combine the concepts presented in the previous sections.

VII. OBJECT-ORIENTED PETRI NETS

In this subsection, an overview of the work on Object-
oriented PNs (OPNs), which are a popular research topic, is
provided. One of the first works introducing object-orientation
to PN is the article by C. Sibertin-Blanc [79], who proposed
replacing the token known from classical PN with a set
of objects (entities). This approach is based on a concept
used in database theory. R. Valette et al. [80] extended the
OPN described by Sibertin-Blanc to a fuzzy time network.
R. Bastide and P. A. Palanque [81] described the application
of Sibertin-Blanc’s network to creating user interfaces.

G. Bruno and A. Balsamo [82] proposed a three-step
methodology for modeling distributed systems (production
systems) based on OPN. First, for each class of objects, e.g.,
machines, a control algorithm and synchronization using PN
are created. Then, information defining the internal states of
objects and the way of communication between objects is
introduced. Finally, connections between objects are created
using a class flow diagram. In [83], G. Bruno and M. Morisio
continued their research and described a programming envi-
ronment for creating specifications, modeling, and prototyping
discrete event system based on OPN.

One of the first works presenting the addition of morphism
to PN is the article by R. Fehling [84]. This author’s research
was later extended by the work of B. Farwer and K. Misra [85],
who proposed combining hierarchical PN using morphism
with features of object-oriented programming languages.

Y. K. Lee and S. J. Park [86] described OPN for modeling
real-time systems. The work focuses on separating communi-
cation between objects and synchronization constraints from



REVIEW OF HIERARCHY IN PETRI NETS 5

the internal structure of objects. A two-step procedure is used
to verify the correctness of a system consisting of hierar-
chically organized objects and relationships between them,
allowing for the reduction of computational complexity.

C. Lakos and C. Keen [87] proposed the textual language
LOOPN++ using OPN to model complex concurrent systems.
This language allows for dynamic object creation. Thanks to
the formal description of LOOPN++, it is possible to convert
OPN to Coloured PN (CPN) and formally analyze the network.
Lakos continued research related to combining object-oriented
concepts and CPN in [88]–[90]. The proposed OPN allows for
the use of inheritance mechanisms and related polymorphism
and dynamic binding. Interaction between subnetworks can
be synchronous and asynchronous. The network allows for
the use of macroplaces, macrotransitions, place and transition
fusions, and polymorphism. Possible application areas for
Lakos’s OPN include modeling information systems, control-
ling applets written in Java, and distributed applications.

R. Bastide [91] described two main trends within object
networks: objects inside networks and networks inside ob-
jects. The solution proposed by the author combines both
approaches. R. Esser [92] proposed a methodology for de-
signing embedded systems. The presented time OPN allows
for the automatic design of complex systems subject to real-
time constraints.

M. Češka et al. [93] described an OPN that uses the RPC
(Remote Procedure Call) mechanism for communication be-
tween objects and the net invocation mechanism known from
the work of P. Huber et al. [53]. Objects in the network have
the functionality of active servers that communicate with other
objects through services (methods). Methods and independent
activities of objects are described using PN. The OPN consists
of networks organized into classes. J. E. Hong and D. H.
Bae [94], [95] presented the definition of hierarchical OPN,
which supports many object-oriented features such as abstrac-
tion, encapsulation, modularization of objects, communication
between objects, polymorphism, and inheritance.

Z. Jiang et al. [96] proposed OPN with a variable structure,
which is realized by modifying the message-passing relation-
ships between separate objects and by adding and removing
objects in the network. In [97], Jiang et al. continued their
research and modified the network to a time OPN with a
variable structure to analyze the performance of the production
system.

M. Dong and F. F. Chen [98] presented the use of OPN
for modular modeling and analysis of the flow of information,
raw materials, products, and services within the Manufacturing
Supply Chain (MSC). MSC includes all business activities
from acquiring raw materials to final delivery to the customer.
The authors use the P-invariant method for analysis.

R. Valk in his works [99]–[101] described OPN, in which
a subnetwork being an object is inside the token (Fig. 5).
Such a subnetwork combines the features of a token and a
regular subnetwork. It can change its position in the network
between places and transitions and its states (marking) during
movement. This approach enables two-level modeling and can
be used in systems requiring agent-oriented programming,
workflow modeling, and task organization, as well as in

network solutions. The properties of the OPN proposed by
Valk were studied by M. Köhler and H. Rölke [102], who
examined the reachability of marking and the boundedness of
the network. The conclusion from their work is that the reach-
ability of marking cannot be predicted, while it is possible to
determine whether an elementary network is bounded.

Fig. 5. Object-oriented network with token subnetworks

D. Moldt and F. Wienberg described [56] an agent-oriented
CPN (with object-oriented features) that can be used to model
multi-agent systems. This network is consistent with the agent
programming concept proposed by Y. Shoham [103]. D. Moldt
and R. Valk [104] proposed a Coloured OPN (COPN) used
for modeling business processes. This network, thanks to the
combination of the OPN concept proposed by Moldt [105] and
Valk [99], takes into account the changing workflow require-
ments in business systems. Modeling these systems requires
dynamic adaptation by adding, replacing, and removing tokens
being subnetworks.

C. Maier and D. Moldt [106] presented COPN that can be
used for dynamic system modeling. In this solution, traditional
UML-based modeling, including state charts, communication
diagrams, and sequence diagrams, is extended. The disadvan-
tage of UML diagrams is their lack of unambiguous conversion
to the implemented application. This problem can be solved
by the formal description of the proposed COPN. J. Saldhana
and S. M. Shatz [107] presented a methodology for analyzing
and validating UML state diagrams using OPN. First, state
diagrams are converted to a flat state machine, based on which
OPN models are generated. These models are then combined
into a UML communication diagram, from which a regular
CPN is obtained.

X. F. Zha [108] proposed a fuzzy OPN intended for
knowledge-based expert systems implementation. The author
presented a methodology combining design and assembly
planning processes, which uses, among other things, artificial
intelligence concepts based on agents. O. Biberstein et al.
[109] described the CO-OPN/2 network formalism. This OPN
can be used to create specifications for complex concurrent
systems. Object-orientation elements introduced to CO-OPN/2
include concepts such as classes and objects, object references,
and inheritance mechanisms. Classes are treated as networks,
places as attributes, and methods as external parameterized
transitions. S. Chachkov and D. Buchs [110] presented a
method for generating code based on the CO-OPN network.
The proposed methodology uses transactional mechanisms.



6 M. MARKIEWICZ, L. GNIEWEK

X. Meng [111] showed the application of time OPN for
modeling reconfigurable production systems. This network
allows for assessing the change in system performance in
response to, e.g., adding machines to the system or changing
the software of machines and storage tools. Decomposition
and modular composition techniques are employed to achieve
this purpose. The resulting network can be subjected to formal
analysis and validation.

T. Miyamoto and K. Horiguchi [112] proposed a reacha-
bility graph for analyzing the operation of multi-agent PN, a
variant of OPN based on CPN. To study the properties of OPN,
its graph must be transformed into a modular PN and analyzed
using the method proposed by S. Christensen and L. Petrucci
[113]. A. Schumann and K. Pancerz [114] described the use of
OPN for modeling the behavior of Physarum Polycephalum,
a single-celled organism that can be used to solve various
computational problems and serve, for example, to implement
logic gates.

S. Hammami and H. Mathkour [115] proposed using agent-
based OPN to implement an adaptive e-learning system. The
research addresses two important areas: first, the construction
of a multi-agent architecture that adapts to the learner’s
preferences, and second, the analysis and control of the
communication between interacting agents in the system.

Ö. Başak and Y. E. Albayrak [116] described the use of
OPN for designing and implementing a control algorithm
for FMS. This OPN allows for system performance analysis
and increases the effectiveness of production process control.
X. Y. Wu and X. Y. Wu [117] presented the use of extended
OPN to simulate mission reliability in repairable systems with
phased missions. The authors implemented a software tool in
C# that allows for the analysis and simulation of the proposed
network.

Many other works address topics related to OPNs, but
based on the study shown in this section, it can be seen that
OPNs have found applications in many different scientific and
practical fields. This allows to conclude that the use of OPNs
is very versatile and can provide many benefits by combining
the advantages of PN (e.g., formal description of operation
and graphical presentation) with the features of object-oriented
programming languages.

VIII. DISCUSSION

The boundary between the research areas discussed in
this manuscript is not clear, as they often overlap and can
complement each other. For example, an important part of the
methodology for handling large systems can be the reduction
technique [78]. Furthermore, when applying hierarchy, the
decomposition (top-down), composition (bottom-up), and their
combination techniques can be used [33], [73], [118]. In some
cases, high-level hierarchical networks may also have features
of object-oriented programming languages [84], [85], [94],
[99], [101], [119], [120].

Hierarchy in PN can be implemented in various ways. The
mentioned literature distinguishes two main concepts of hier-
archical structure. The first is the use of a macrotransition (also
called an abstract transition), inside which there is a separate

subnetwork. The second is the use of a macroplace (also called
an abstract place), where the subnetwork is placed inside it.
The choice of whether a given network fragment should be
classified as a macroplace or a macrotransition is not clear
for different classes of PN. In both approaches, the decisive
condition is the type of input and output elements. According
to one concept, a given network fragment is classified as a
macroplace if there are places at its input and output, or as a
macrotransition if there are transitions at its input and output
[21], [22], [40], [58]–[60], [65], [84]. In other approaches, it
is exactly the opposite [14], [53], [54], [61].

The possibility of using different types of macros and the
number of their input and output elements also varies for
different PN. In some networks, only macroplaces are used
[60], [65], in others only macrotransitions [14], [53], [54],
while in others both macroplaces and macrotransitions [40],
[58], [59], [61], [84]. Moreover, hierarchical networks use
macros with one input and output element, any number of
input/output elements, and macros that have a strictly defined
number of inputs and outputs [40].

Another aspect of hierarchy is the number of tokens and the
conditions that determine their movement through macros, i.e.,
through subnetworks associated with them. The most common
approaches are two. Any number of tokens can be inserted into
the macro, resulting from the structure of the subnetwork [14],
[53], [54], or only one token [65]. However, in [58], this is
conditioned by the sum of the weights of the input and output
arcs of the macro. Moreover, in the case of steps enclosure
[65], one token is transferred to a step, while the tokens appear
in all initial places of the subnet associated with this parent
node. Forcing subnetwork steps states by command assigned
to the parent node can also be used [65].

Based on the literature cited in the previous subsections,
it can be concluded that the mere application of hierarchy
in PN will not speed up or increase the efficiency of the
system. However, using hierarchy by dividing the system into
components, separate analysis, modification, and simulation
can improve its performance. The hierarchical approach can
also be used at the system design stage, thus speeding up its
creation process by allowing the network to be considered at
different levels of detail.

IX. CONCLUSION

This paper discusses different approaches to introducing hi-
erarchy in PNs. Based on the analyzed literature, the following
group have been identified:

• refinement of places and transitions,
• reduction,
• formal definition,
• hierarchical networks in industrial standards,
• methodology for handling complex systems,
• object-oriented PNs.
The boundary between the these approaches is not clear

and they often share common elements. The application of
hierarchy undoubtedly increases the practical value of PNs
and facilitates the process of implementation and design of
the system based on PNs.



REVIEW OF HIERARCHY IN PETRI NETS 7

The authors claim the following contributions to this
manuscript:

• collecting and analyzing the literature related to hierarchy
in PNs,

• identifying various ways of applying hierarchical struc-
ture and analyzing them,

• drawing conclusions and summarizing the application of
hierarchy in PNs.

ACKNOWLEDGMENT

The authors would like to thank experts for their appropriate
and constructive suggestions to improve this template.

REFERENCES

[1] M. D. Mesarovic, D. Macko, and Y. Takahara, Theory of hierarchical,
multilevel, systems. Elsevier, 2000.

[2] C. Sunder, A. Zoitl, M. Rainbauer, and B. Favre-Bulle, “Hierarchical
control modelling architecture for modular distributed automation
systems,” in 2006 4th IEEE International Conference on Industrial
Informatics. IEEE, 2006, pp. 12–17.

[3] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids
control system,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp.
1963–1976, 2012.

[4] B. P. Zeigler, Object-oriented simulation with hierarchical, modular
models: intelligent agents and endomorphic systems. Academic press,
2014.

[5] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 33, no. 5, pp. 898–916, 2010.

[6] S. Makris, Cooperating robots for flexible manufacturing. Springer,
2021.

[7] X. Zhang, R. Mangal, M. Naik, and H. Yang, “Hybrid top-down
and bottom-up interprocedural analysis,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2014, pp. 249–258.

[8] E. M. Nystrom, H.-S. Kim, and W.-M. W. Hwu, “Bottom-up and
top-down context-sensitive summary-based pointer analysis,” in Static
Analysis: 11th International Symposium, SAS 2004, Verona, Italy,
August 26-28, 2004. Proceedings 11. Springer, 2004, pp. 165–180.

[9] J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino, and M. Campo,
“Bottom-up and top-down cobol system migration to web services,”
IEEE Internet Computing, vol. 17, no. 2, pp. 44–51, 2011.

[10] K.-Q. Zhou and A. M. Zain, “Fuzzy petri nets and industrial applica-
tions: a review,” Artificial Intelligence Review, vol. 45, pp. 405–446,
2016.

[11] A. Giua and M. Silva, “Petri nets and automatic control: A historical
perspective,” Annual Reviews in Control, vol. 45, pp. 223–239, 2018.

[12] Z. Li, N. Wu, and M. Zhou, “Deadlock control of automated man-
ufacturing systems based on petri nets—a literature review,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 42, no. 4, pp. 437–462, 2011.

[13] J. L. Peterson, “Petri nets,” ACM Computing Surveys (CSUR), vol. 9,
no. 3, pp. 223–252, 1977.

[14] K. Jensen, Coloured Petri nets: basic concepts, analysis methods and
practical use. Springer Science & Business Media, 1997, vol. 1.

[15] R. David and H. Alla, Discrete, continuous, and hybrid Petri nets.
Springer, 2005, vol. 1.

[16] C. Yuan, Y. Liao, L. Kong, and H. Xiao, “Fault diagnosis method of
distribution network based on time sequence hierarchical fuzzy petri
nets,” Electric Power Systems Research, vol. 191, p. 106870, 2021.

[17] M. Figat and C. Zieliński, “Parameterised robotic system meta-model
expressed by hierarchical petri nets,” Robotics and Autonomous Sys-
tems, vol. 150, p. 103987, 2022.

[18] S. Souravlas, S. Anastasiadou, and I. Kostoglou, “A novel method for
general hierarchical system modeling via colored petri nets based on
transition extractions from real datasets,” Applied Sciences, vol. 13,
no. 1, p. 339, 2022.

[19] N. Ali, S. Punnekkat, and A. Rauf, “Modeling and safety analysis
for collaborative safety-critical systems using hierarchical colored petri
nets,” Journal of Systems and Software, vol. 210, p. 111958, 2024.

[20] W. Yue, L. Hou, X. Wan, X. Chen, and W. Gui, “Superheat degree
recognition of aluminum electrolysis cell using unbalance double
hierarchy hesitant linguistic petri nets,” IEEE Transactions on Instru-
mentation and Measurement, vol. 72, pp. 1–15, 2023.

[21] R. Valette, “Analysis of petri nets by stepwise refinements,” Journal of
computer and system sciences, vol. 18, no. 1, pp. 35–46, 1979.

[22] I. Suzuki and T. Murata, “A method for stepwise refinement and
abstraction of petri nets,” Journal of computer and system sciences,
vol. 27, no. 1, pp. 51–76, 1983.

[23] W. Vogler, “Behaviour preserving refinements of petri nets,” in
Graph-Theoretic Concepts in Computer Science, ser. Lecture Notes
in Computer Science, G. Tinhofer and G. Schmidt, Eds. Springer
Berlin Heidelberg, Jun. 1986, no. 246, pp. 82–93. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-17218-1 51

[24] W. Brauer, R. Gold, and W. Vogler, “A survey of behaviour and
equivalence preserving refinements of petri nets,” in Advances in Petri
Nets 1990, ser. Lecture Notes in Computer Science, G. Rozenberg,
Ed. Springer Berlin Heidelberg, Jun. 1989, pp. 1–46. [Online].
Available: http://link.springer.com/chapter/10.1007/3-540-53863-1 19

[25] L. Bernardinello and F. De Cindio, “A survey of basic net
models and modular net classes,” in Advances in Petri Nets 1992.
London, UK: Springer-Verlag, 1992, pp. 304–351. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647749.734386

[26] W. M. Van Der Aalst, “Workflow verification: finding control-flow
errors using petri-net-based techniques,” in Business Process Manage-
ment. Springer, 2000, pp. 161–183.

[27] H. Huang, L. Jiao, and T.-Y. Cheung, Property-Preserving Petri Net
Process Algebra in Software Engineering. World Scientific, 2012.

[28] R. Van Glabbeek and U. Goltz, “Refinement of actions in causality
based models,” in Stepwise Refinement of Distributed Systems Models,
Formalisms, Correctness. Springer, 1989, pp. 267–300. [Online].
Available: http://link.springer.com/chapter/10.1007/3-540-52559-9 68

[29] E. Best, R. Devillers, A. Kiehn, and L. Pomello, “Concurrent
bisimulations in petri nets,” Acta Informatica, vol. 28, no. 3, pp.
231–264, Mar. 1991. [Online]. Available: http://link.springer.com/
article/10.1007/BF01178506

[30] W. Vogler, “Bisimulation and action refinement,” Theoretical Computer
Science, vol. 114, no. 1, pp. 173–200, Jun. 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/030439759390157O

[31] R. Van Glabbeek and U. Goltz, “Refinement of actions and
equivalence notions for concurrent systems,” Acta Informatica,
vol. 37, no. 4-5, pp. 229–327, 2001. [Online]. Available: http:
//link.springer.com/article/10.1007/s002360000041

[32] L. Jiao, “Refining and verifying regular petri nets,” International
Journal of Systems Science, vol. 39, no. 1, pp. 17–27,
2008. [Online]. Available: http://www.tandfonline.com/doi/abs/10.
1080/00207720701621959

[33] C. Girault and R. Valk, Petri nets for systems engineering: a guide to
modeling, verification, and applications. Springer Science & Business
Media, 2013.

[34] M. Hack, “Analysis of production schemata by petri nets,” Mas-
sachusetts Institute of Technology. Cambridge, Mass, Master’s thesis,
1972.

[35] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Communications of the ACM, vol. 18, no. 12, pp. 717–721,
1975. [Online]. Available: http://dl.acm.org/citation.cfm?id=361234

[36] Y. S. Kwong, “On reduction of asynchronous systems,” Theoretical
Computer Science, vol. 5, no. 1, pp. 25–50, aug 1977.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
030439757790041X

[37] W. Kowalk and R. Valk, “On reductions of parallel programs,”
in Automata, Languages and Programming, ser. Lecture Notes in
Computer Science, H. A. Maurer, Ed. Springer Berlin Heidelberg,
jul 1979, no. 71, pp. 356–369. [Online]. Available: http://link.springer.
com/chapter/10.1007/3-540-09510-1 29

[38] G. Berthelot, “Checking properties of nets using transformations,”
in European Workshop on Applications and Theory in Petri Nets.
Springer, 1985, pp. 19–40.

[39] ——, “Transformations and decompositions of nets,” in Petri Nets:
Central Models and Their Properties, ser. Lecture Notes in Computer
Science, W. Brauer, W. Reisig, and G. Rozenberg, Eds. Springer
Berlin Heidelberg, 1987, no. 254, pp. 359–376. [Online]. Available:
http://link.springer.com/chapter/10.1007/BFb0046845

[40] A. Name, “Hierarchical reduction method for analysis and decom-
position of petri nets,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-15, no. 2, pp. 272–280, March-April 1985.

http://link.springer.com/chapter/10.1007/3-540-17218-1_51
http://link.springer.com/chapter/10.1007/3-540-53863-1_19
http://dl.acm.org/citation.cfm?id=647749.734386
http://link.springer.com/chapter/10.1007/3-540-52559-9_68
http://link.springer.com/article/10.1007/BF01178506
http://link.springer.com/article/10.1007/BF01178506
http://www.sciencedirect.com/science/article/pii/030439759390157O
http://link.springer.com/article/10.1007/s002360000041
http://link.springer.com/article/10.1007/s002360000041
http://www.tandfonline.com/doi/abs/10.1080/00207720701621959
http://www.tandfonline.com/doi/abs/10.1080/00207720701621959
http://dl.acm.org/citation.cfm?id=361234
http://www.sciencedirect.com/science/article/pii/030439757790041X
http://www.sciencedirect.com/science/article/pii/030439757790041X
http://link.springer.com/chapter/10.1007/3-540-09510-1_29
http://link.springer.com/chapter/10.1007/3-540-09510-1_29
http://link.springer.com/chapter/10.1007/BFb0046845


8 M. MARKIEWICZ, L. GNIEWEK

[41] K. H. Lee, J. Favrel, and P. Baptiste, “Generalized petri net
reduction method,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. 17, no. 2, pp. 297–303, 1987. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4309041

[42] J. Desel, “Reduction and design of well-behaved concurrent
systems,” in CONCUR’90 Theories of Concurrency: Unification
and Extension. Springer, 1990, pp. 166–181. [Online]. Available:
http://link.springer.com/chapter/10.1007/BFb0039059

[43] E. Best and J. Desel, “Partial order behaviour and structure of
petri nets,” Formal aspects of computing, vol. 2, no. 1, pp.
123–138, 1990. [Online]. Available: http://link.springer.com/article/10.
1007/BF01888220

[44] J. Esparza, “Reduction and synthesis of live and bounded free
choice petri nets,” Information and Computation, vol. 114, no. 1,
pp. 50–87, 1994. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0890540184710807

[45] J. Desel and J. Esparza, Free choice Petri nets. Cambridge University
Press, 2005, vol. 40.

[46] L. Jiao, T.-Y. Cheung, and W. Lu, “Characterizing liveness of petri nets
in terms of siphons,” in International Conference on Application and
Theory of Petri Nets. Springer, 2002, pp. 203–216.

[47] ——, “On liveness and boundedness of asymmetric choice nets,”
Theoretical Computer Science, vol. 311, no. 1, pp. 165–197, 2004.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0304397503003591

[48] R. H. Sloan and U. Buy, “Reduction rules for time petri nets,” Acta
Informatica, vol. 33, no. 7, pp. 687–706, 1996. [Online]. Available:
http://link.springer.com/article/10.1007/s002360050066

[49] J. Wang, Y. Deng, and M. Zhou, “Compositional time petri nets
and reduction rules,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 30, no. 4, pp. 562–572, aug
2000. [Online]. Available: https://doi.org/10.1109/3477.865173

[50] E. Y. T. Juan, J. J. P. Tsai, T. Murata, and Y. Zhou, “Reduction
methods for real-time systems using delay time petri nets,” IEEE
Transactions on Software Engineering, vol. 27, no. 5, pp. 422–448,
may 2001. [Online]. Available: https://doi.org/10.1109/32.922714

[51] J.-M. Proth and X. Xie, Petri nets: a tool for design and management
of manufacturing systems. John Wiley & Sons, 1996, vol. 6.

[52] M. Uzam, “The use of the petri net reduction approach for
an optimal deadlock prevention policy for flexible manufacturing
systems,” The International Journal of Advanced Manufacturing
Technology, vol. 23, no. 3, pp. 204–219, feb 2004. [Online]. Available:
https://doi.org/10.1007/s00170-002-1526-5

[53] P. Huber, K. Jensen, and R. M. Shapiro, “Hierarchies in coloured
petri nets,” in Advances in Petri Nets 1990, ser. Lecture Notes in
Computer Science, G. Rozenberg, Ed. Springer Berlin Heidelberg,
Jun. 1989, no. 483, pp. 313–341. [Online]. Available: http:
//link.springer.com/chapter/10.1007/3-540-53863-1 30

[54] K. Jensen, “Coloured petri nets: A high level language for system
design and analysis,” in Advances in Petri Nets 1990, ser. Lecture
Notes in Computer Science, G. Rozenberg, Ed. Springer Berlin
Heidelberg, Jun. 1989, no. 483, pp. 342–416. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-53863-1 31

[55] K. Jensen and L. M. Kristensen, Coloured Petri nets: modelling and
validation of concurrent systems. Springer Science & Business Media,
2009.

[56] D. Moldt and F. Wienberg, “Multi-agent-systems based on coloured
petri nets,” in Application and Theory of Petri Nets 1997, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, Jun. 1997,
pp. 82–101. [Online]. Available: https://link.springer.com/chapter/10.
1007/3-540-63139-9 31

[57] J. F. Peters, A. Skowron, Z. Suraj, W. Pedrycz, and S. Ramanna,
“Approximate real-time decision making: concepts and rough fuzzy
petri net models,” International Journal of Intelligent Systems,
vol. 14, no. 8, pp. 805–839, 1999. [Online]. Available:
https://www.researchgate.net/profile/James Peters/publication/
2804691 Approximate Real-Time Decision Making Concepts and
Rough Fuzzy Petri Net Models/links/0fcfd510a880d3eff0000000.pdf

[58] T. Holvoet and P. Verbaeten, “Petri charts: an alternative technique for
hierarchical net construction,” in 1995 IEEE International Conference
on Systems, Man and Cybernetics. Intelligent Systems for the 21st
Century, 1995, vol. 3, pp. 2688–2693.

[59] X. He, “A formal definition of hierarchical predicate transition nets,”
in Application and Theory of Petri Nets 1996, ser. Lecture Notes in
Computer Science, J. Billington and W. Reisig, Eds. Springer Berlin
Heidelberg, Jun. 1996, no. 1091, pp. 212–229. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-61363-3 12

[60] G. Andrzejewski, “Hierarchical petri nets for digital controller design,”
in Design of embedded control systems. Springer, 2005, pp. 27–36.

[61] H. Pan and J. Sun, “Complex knowledge system modeling based on
hierarchical fuzzy petri net,” in 2007 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology-
Workshops. IEEE, 2007, pp. 31–34.

[62] M. Markiewicz and L. Gniewek, “Conception of hierarchical fuzzy
interpreted petri net,” Stud. Inf. Control, vol. 26, pp. 151–160, 2017.

[63] M. Markiewicz, L. Gniewek, and D. Warchoł, “Extended hierarchical
fuzzy interpreted petri net,” Sensors, vol. 21, no. 24, p. 8433, 2021.

[64] M. Markiewicz and L. Gniewek, “A program model of fuzzy interpreted
petri net to control discrete event systems,” Applied Sciences, vol. 7,
no. 4, p. 422, 2017.

[65] International Electrotechnical Commission, “International standard iec
60848:2013: Grafcet specification language for sequential function
charts approach,” International Electrotechnical Commission, Geneva,
CH, International Standard, 2013.

[66] “International standard iec 61131-3: Programmable controllers - part 3:
Programming languages,” International Electrotechnical Commission,
Geneva, CH, International Standard, 2013.

[67] System Manual, STEP 7 Professional V12.0, Siemens AG, 2013.
[68] Operation Manual, SFC Programming, Omron Corporation, 2010.
[69] Programming Manual, Logix5000 Controllers Sequential Function

Charts, Rockwell Automation Publication, 1756-PM006F-EN-P, 2014.
[70] Reference manual, Unity Pro. Program Languages and Structure,

Schneider Electric, 2014.
[71] Reference manual, PL7 Micro/Junior/Pro. Description of the PL7

software, Schneider Electric, 2008.
[72] R. David and H. Alla, Petri Nets and Grafcet: Tools for Modelling

Discrete Event Systems. Prentice Hall, 1992.
[73] ——, Discrete, Continuous, and Hybrid Petri Nets. Springer, 2010.
[74] M. Silva and R. Valette, “Petri nets and flexible manufacturing,”

in European Workshop on Applications and Theory in Petri Nets.
Springer, 1988, pp. 374–417.

[75] K. P. Valavanis, “On the hierarchical modeling analysis and simulation
of flexible manufacturing systems with extended petri nets,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 20, no. 1, pp. 94–
110, jan 1990. [Online]. Available: https://doi.org/10.1109/21.47812

[76] M. Zhou, F. DiCesare, and A. A. Desrochers, “A hybrid methodology
for synthesis of petri net models for manufacturing systems,” IEEE
Transactions on Robotics and Automation, vol. 8, no. 3, pp. 350–361,
1992.

[77] M. D. Jeng and F. DiCesare, “Synthesis using resource control nets for
modeling shared-resource systems,” IEEE Transactions on Robotics
and Automation, vol. 11, no. 3, pp. 317–327, jun 1995. [Online].
Available: https://doi.org/10.1109/70.388774

[78] M. Zhou, “Modeling, analysis, simulation, scheduling, and control of
semiconductor manufacturing systems: A petri net approach,” IEEE
Transactions on Semiconductor Manufacturing, vol. 11, no. 3, pp. 333–
357, aug 1998. [Online]. Available: https://doi.org/10.1109/66.705370

[79] G. Sibertin-Blanc, “High-level petri nets,” Journal of Computer Sci-
ence, vol. 12, no. 4, pp. 345–356, 1985.

[80] R. Valette, J. Cardoso, and D. Dubois, “Monitoring manufacturing
systems by means of petri nets with imprecise markings,” in IEEE
International Symposium on Intelligent Control, vol. 2526. Albany
NY USA., 1989.

[81] R. Bastide and P. A. Palanque, “Petri net objects for the design,
validation and prototyping of user-driven interfaces.” in INTERACT’90
Conference Proceedings, vol. 90, 1990, pp. 625–631.

[82] G. Bruno and A. Balsamo, “Petri net-based object-oriented modelling
of distributed systems,” ACM SIGPLAN Notices, vol. 21, no. 11,
pp. 284–293, Jun. 1986. [Online]. Available: https://doi.org/10.1145/
960112.28725

[83] G. Bruno and M. Morisio, “Petri-net based simulation of manufacturing
cells,” in 1987 IEEE International Conference on Robotics and
Automation Proceedings, vol. 4, Mar. 1987, pp. 1174–1179. [Online].
Available: https://doi.org/10.1109/ROBOT.1987.1087859

[84] R. Fehling, “A concept of hierarchical petri nets with building
blocks,” in Advances in Petri Nets 1993, ser. Lecture Notes in
Computer Science, G. Rozenberg, Ed. Springer Berlin Heidelberg,
Jun. 1991, no. 674, pp. 148–168. [Online]. Available: http:
//link.springer.com/chapter/10.1007/3-540-56689-9 43

[85] B. Farwer and K. Misra, “Modelling with hierarchical object petri
nets,” Fundamenta Informaticae, vol. 55, no. 2, pp. 129–147,
Jan. 2003. [Online]. Available: http://content.iospress.com/articles/
fundamenta-informaticae/fi55-2-04

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4309041
http://link.springer.com/chapter/10.1007/BFb0039059
http://link.springer.com/article/10.1007/BF01888220
http://link.springer.com/article/10.1007/BF01888220
http://www.sciencedirect.com/science/article/pii/S0890540184710807
http://www.sciencedirect.com/science/article/pii/S0890540184710807
http://www.sciencedirect.com/science/article/pii/S0304397503003591
http://www.sciencedirect.com/science/article/pii/S0304397503003591
http://link.springer.com/article/10.1007/s002360050066
https://doi.org/10.1109/3477.865173
https://doi.org/10.1109/32.922714
https://doi.org/10.1007/s00170-002-1526-5
http://link.springer.com/chapter/10.1007/3-540-53863-1_30
http://link.springer.com/chapter/10.1007/3-540-53863-1_30
http://link.springer.com/chapter/10.1007/3-540-53863-1_31
https://link.springer.com/chapter/10.1007/3-540-63139-9_31
https://link.springer.com/chapter/10.1007/3-540-63139-9_31
https://www.researchgate.net/profile/James_Peters/publication/2804691_Approximate_Real-Time_Decision_Making_Concepts_and_Rough_Fuzzy_Petri_Net_Models/links/0fcfd510a880d3eff0000000.pdf
https://www.researchgate.net/profile/James_Peters/publication/2804691_Approximate_Real-Time_Decision_Making_Concepts_and_Rough_Fuzzy_Petri_Net_Models/links/0fcfd510a880d3eff0000000.pdf
https://www.researchgate.net/profile/James_Peters/publication/2804691_Approximate_Real-Time_Decision_Making_Concepts_and_Rough_Fuzzy_Petri_Net_Models/links/0fcfd510a880d3eff0000000.pdf
http://link.springer.com/chapter/10.1007/3-540-61363-3_12
https://doi.org/10.1109/21.47812
https://doi.org/10.1109/70.388774
https://doi.org/10.1109/66.705370
https://doi.org/10.1145/960112.28725
https://doi.org/10.1145/960112.28725
https://doi.org/10.1109/ROBOT.1987.1087859
http://link.springer.com/chapter/10.1007/3-540-56689-9_43
http://link.springer.com/chapter/10.1007/3-540-56689-9_43
http://content.iospress.com/articles/fundamenta-informaticae/fi55-2-04
http://content.iospress.com/articles/fundamenta-informaticae/fi55-2-04


REVIEW OF HIERARCHY IN PETRI NETS 9

[86] Y. K. Lee and S. J. Park, “OPNets: an object-oriented high-level
Petri net model for real-time system modeling,” Journal of Systems
and Software, vol. 20, no. 1, pp. 69–86, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0164121293900494

[87] C. A. Lakos and C. D. Keen, LOOPN++: a new language for object-
oriented Petri nets. Department of Computer Science, University of
Tasmania, 1994.

[88] C. Lakos, “From coloured petri nets to object petri nets,” in
Application and Theory of Petri Nets 1995, ser. Lecture Notes
in Computer Science, G. D. Michelis and M. Diaz, Eds., no.
935. Springer Berlin Heidelberg, jun 1995, pp. 278–297. [Online].
Available: http://link.springer.com/chapter/10.1007/3-540-60029-9 45

[89] ——, “The consistent use of names and polymorphism in the
definition of object petri nets,” in Application and Theory of Petri
Nets 1996, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, jun 1996, pp. 380–399. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-61363-3 21

[90] ——, “Object oriented modelling with object petri nets,” in Concurrent
object-oriented programming and petri nets. Springer, 2001, pp. 1–37.

[91] R. Bastide, “Approaches in unifying petri nets and the object-oriented
approach,” in 1st Workshop on Object-Oriented Programming and
Models of Concurrency, within the 16th International Conference on
Application and Theory of Petri nets, 1995.

[92] R. Esser, An object oriented Petri net approach to embedded system
design. Eidgenössische Technische Hochschule [ETH] Zürich, 1996.

[93] M. Češka, V. Janoušek, and T. Vojnar, “Pntalk — a computerized
tool for object oriented petri nets modelling,” in Computer Aided
Systems Theory — EUROCAST’97, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, feb 1997, pp. 591–610. [Online].
Available: https://link.springer.com/chapter/10.1007/BFb0025078

[94] J. E. Hong and D.-H. Bae, “Hoonets: Hierarchical object-oriented
petri nets for system modeling and analysis,” KAIST Technical Report
CS/TR, pp. 98–132, 1998.

[95] J.-E. Hong and D.-H. Bae, “Software modeling and analysis
using a hierarchical object-oriented petri net,” Information Sciences,
vol. 130, no. 1–4, pp. 133–164, Dec. 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025500000906

[96] Z. Jiang, M. J. Zuo, P. Y. Tu, and R. Y. K. Fung, “Object-oriented
petri nets with changeable structure (opns-cs) for production system
modelling,” The International Journal of Advanced Manufacturing
Technology, vol. 15, no. 6, pp. 445–459, jun 1999. [Online]. Available:
https://link.springer.com/article/10.1007/s001700050089

[97] Z. Jiang, M. J. Zuo, R. Y. Fung, and P. Y. Tu, “Performance modelling
of complex dynamic production systems using temporised object-
oriented petri nets with changeable structure (topns-cs),” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 16, no. 7,
pp. 521–536, 2000.

[98] M. Dong and F. F. Chen, “Process modeling and analysis of
manufacturing supply chain networks using object-oriented petri nets,”
Robotics and Computer-Integrated Manufacturing, vol. 17, no. 1–2,
pp. 121–129, feb 2001. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0736584500000454

[99] R. Valk, “Petri nets as token objects,” in International Conference on
Application and Theory of Petri Nets. Springer, 1998, pp. 1–24.

[100] ——, “Concurrency in communicating object petri nets,” in Concurrent
object-oriented programming and Petri nets. Springer, 2001, pp. 164–
195.

[101] ——, “Object petri nets,” in Advanced Course on Petri Nets. Springer,
2003, pp. 819–848.

[102] M. K”ohler and H. R”olke, “Properties of object petri nets,” pp. 278–
297, 2004.

[103] Y. Shoham, “Agent-oriented programming,” Artificial intelligence,
vol. 60, no. 1, pp. 51–92, 1993.

[104] D. Moldt and R. Valk, “Object oriented petri nets in business process
modeling,” in Business Process Management. Springer, 2000, pp.
254–273.

[105] D. Moldt, H”ohere Petrinetze als Grundlage f”ur Systemspezifikatio-
nen. Department of Computer Science, University of Hamburg, 1996.

[106] C. Maier and D. Moldt, “Object coloured petri nets-a formal technique
for object oriented modelling,” in Concurrent object-oriented program-
ming and petri nets. Springer, 2001, pp. 406–427.

[107] J. Saldhana and S. M. Shatz, “Uml diagrams to object petri net models:
an approach for modeling and analysis,” in International Conference on
Software Engineering and Knowledge Engineering, 2000, pp. 103–110.

[108] X. F. Zha, “An object-oriented knowledge based petri net approach
to intelligent integration of design and assembly planning,” Artificial
Intelligence in Engineering, vol. 14, no. 1, pp. 83–112, 2000.

[109] O. Biberstein, D. Buchs, and N. Guelfi, “Object-oriented nets with
algebraic specifications: the co-opn/2 formalism,” in Concurrent
Object-Oriented Programming and Petri Nets, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2001, pp.
73–130. [Online]. Available: https://link.springer.com/chapter/10.1007/
3-540-45397-0 3

[110] S. Chachkov and D. Buchs, “From formal specifications to ready-
to-use software components: the concurrent object oriented Petri
net approach,” in Proceedings Second International Conference on
Application of Concurrency to System Design, 2001, pp. 99–110.
[Online]. Available: https://doi.org/10.1109/CSD.2001.981768

[111] X. Meng, “Modeling of reconfigurable manufacturing systems based
on colored timed object-oriented Petri nets,” Journal of Manufacturing
Systems, vol. 29, no. 2, pp. 81–90, Jul. 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0278612510000518

[112] T. Miyamoto and K. Horiguchi, “Modular reachability analysis
in fundamental class of multi-agent nets,” in IECON 2011
- 37th Annual Conference of the IEEE Industrial Electronics
Society, Nov. 2011, pp. 3782–3787. [Online]. Available: https:
//doi.org/10.1109/IECON.2011.6119925

[113] S. Christensen and L. Petrucci, “Modular analysis of petri nets,” The
Computer Journal, vol. 43, no. 3, pp. 224–242, 2000.

[114] A. Schumann and K. Pancerz, “Towards an object-oriented program-
ming language for physarum polycephalum computing: A petri net
model approach,” Fundamenta Informaticae, vol. 133, no. 2-3, pp. 271–
285, 2014.

[115] S. Hammami and H. Mathkour, “Adaptive e-learning system based on
agents and object petri nets (AELS-A/OPN),” Computer Applications
in Engineering Education, vol. 23, no. 2, pp. 170–190, 2015. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.21587

[116] Ö. Başak and Y. E. Albayrak, “Petri net based decision system
modeling in real-time scheduling and control of flexible automotive
manufacturing systems,” Computers & Industrial Engineering, vol. 86,
pp. 116–126, 2015.

[117] X.-Y. Wu and X.-Y. Wu, “Extended object-oriented petri net model for
mission reliability simulation of repairable pms with common cause
failures,” Reliability Engineering & System Safety, vol. 136, pp. 109–
119, 2015.

[118] M. C. Zhou and K. Venkatesh, Modeling, simulation, and control of
flexible manufacturing systems, a Petri net approach. World Scientific,
1999.

[119] U. Becker and D. Moldt, “Object-oriented concepts for coloured
petri nets,” in Proceedings of IEEE Systems Man and Cybernetics
Conference - SMC, vol. 3, Oct. 1993, pp. 279–285. [Online].
Available: https://doi.org/10.1109/ICSMC.1993.385024

[120] C. Lakos, “From coloured petri nets to object petri nets,” in Interna-
tional Conference on Application and Theory of Petri Nets. Springer,
1995, pp. 278–297.

http://www.sciencedirect.com/science/article/pii/0164121293900494
http://link.springer.com/chapter/10.1007/3-540-60029-9_45
https://link.springer.com/chapter/10.1007/3-540-61363-3_21
https://link.springer.com/chapter/10.1007/BFb0025078
http://www.sciencedirect.com/science/article/pii/S0020025500000906
https://link.springer.com/article/10.1007/s001700050089
http://www.sciencedirect.com/science/article/pii/S0736584500000454
http://www.sciencedirect.com/science/article/pii/S0736584500000454
https://link.springer.com/chapter/10.1007/3-540-45397-0_3
https://link.springer.com/chapter/10.1007/3-540-45397-0_3
https://doi.org/10.1109/CSD.2001.981768
http://www.sciencedirect.com/science/article/pii/S0278612510000518
https://doi.org/10.1109/IECON.2011.6119925
https://doi.org/10.1109/IECON.2011.6119925
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.21587
https://doi.org/10.1109/ICSMC.1993.385024

	Introduction
	Refinement of places and transitions
	Reduction
	Formal definition
	Hierarchical Networks in Industrial Standards
	Methodology for Handling Complex Systems
	Object-oriented Petri Nets
	Discussion
	Conclusion
	References

