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Deep learning approach for retinopathy
identification in combined clinical datasets

Michał Zmonarski, Ewa Skubalska-Rafajlowicz, Aleksandra Zgryźniak, and Sławomir Zmonarski

Abstract—This work presents a system for automatic detection
of various stages of diabetic retinopathy (DR) based on fundus
images of patients. The system was built based on a relatively new
and little-used image database: ”Dataset of fundus images for the
study of diabetic retinopathy” version v3 CastilloBenitez21. The
primary dataset was expanded using clinical fundus photographs
acquired from the Department of Nephrology at Wroclaw Med-
ical University. The diagnostic system was developed based on
various variants of convolutional neural networks (CNNs) that
were pre-trained on ImageNet data. The CNN classifier, based on
VGG16 with transfer learning, proved to be effective and gave
a global accuracy of 83.15%. The evaluation of discrimination
between the non-DR and the DR state resulted in an accuracy
of 89.7%, with a sensitivity of 94.9%, a specificity of 88.3%, and
a Matthews Correlation Coefficient of 0.7665.

Keywords—Diabetic retinopathy detection; deep learning;
CNN-VGG16; sequential transfer learning

I. INTRODUCTION

D IABETIC retinopathy (DR) [4], [34] represents a specific
complication of diabetes, frequently remaining asymp-

tomatic during its initial phases. It can lead to vision im-
pairment or even blindness. Research [11], [10] suggests
a correlation between the presence of retinopathy and the
increased susceptibility to nephropathy and cardiovascular
disorders among diabetic patients. Consequently, proactive
detection and management of DR can positively influence the
broader clinical prognosis in diabetes care.

The implementation of large-scale screening and early diag-
nosis is feasible through the computational analysis of fundus
photography, utilizing a synergy of digital signal process-
ing and artificial intelligence algorithms. The necessity for
such automated systems is reflected in the extensive body
of computer science literature dedicated to the classification
of retinal images, addressing both disease identification and
severity grading. With clinical data indicating that nearly
one-third of the diabetic population is affected by DR [11],
automated screening offers a pathway to improved diagnostic

M. Zmonarski and E. Skubalska-Rafajłowicz are with Faculty of In-
formation and Communication Technology, Wroclaw University of Science
and Technology, Wroclaw, Poland (e-mail: michal.zmonarski, ewa.skubalska-
rafajlowicz@pwr.edu.pl).

S. Zmonarski is with Dept. of Nephrology and Transplantation
Medicine, Wrocław Medical University, Wrocław, Poland (e-mail: sla-
womir.zmonarski@umw.edu.pl).
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throughput, cost reduction, and reduced reliance on manual
expert evaluation.

Digital image databases offer insight into typical changes in
diabetic retinopathy and normal retinal structures, visualized
at the pixel level. Representative sets of retinal images of
various retinas are essential for the development and testing of
automated screening algorithms for DR symptoms at different
levels. In the area of automatic DR classification algorithms,
the International Clinical Diabetic Retinopathy (ICDR) Sever-
ity Scale is used [34]. Standard fundus images are divided into
five classes according to the severity of the DR.

TABLE I
GRADING SCALE OF DIABETIC RETINOPATHY SEVERITY USED IN THE

STUDY

Class Label Clinical Description

Class 0 Normal (no signs of DR)

Class 1 Mild Non-Proliferative DR (NPDR)

Class 2 Moderate NPDR

Class 3 Severe NPDR

Class 4 Proliferative Diabetic Retinopathy (PDR)

In [4], Class 5 (Clinically significant macular oedema) is
added. These symptoms are observed as large red disks. In the
case of the EPDRS (Early Treatment of Diabetic Retinopathy
Study) classification [34], the division of DR symptoms is
even more detailed. Occasionally, other detailed classification
systems occur. For example, the taxonomy adopted in [18]
distinguishes six classification levels, defining Class 4 as very
severe NPDR and assigning PDR samples to Class 5. The
fundus image data set for the study of diabetic retinopathy
(DFISDR) [3] consists of 757 color images (DFISDRv2). In
addition, an extended database (DFISDRv3) containing 1,437
images is available. The classification of fundus images has
been done in 7 categories: No DR signs, Non-Proliferative
diabetes Retinopathy (NPDR mild, moderate, severe, very se-
vere), Proliferative diabetes Retinopathy (PDR) and Advanced
PDR.

Unlike more serious lesions in the retinal vessels, class 1
is the most difficult to identify. The development of microa-
neurysms (MA) in the retina is the first sign of DR. MA
usually manifests itself as punctate dark red lesions, with
a diameter marginally larger than that of the finest retinal
capillaries [29], [9].
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This paper continues the problem presented in [36]. The
purpose of this paper is to investigate the usefulness of creating
an image database consisting of fundus images obtained
from patients in a nephrology clinic at Wrocław Medical
University (WMU). Unfortunately, that data set was relatively
small, consisting of only 71 images. Therefore, the study
utilized the DFISDRv2 dataset, a recently introduced and less
common collection, distinguished by its rigorous expert an-
notation. Subsequently, a straightforward convolutional neural
network architecture was constructed to evaluate classification
performance within a controlled environment. The average
classification accuracy obtained was 84.7%. The classifier built
on data from a source other than WMU did not correctly
classify WMU images. After combining both sets, the new
classifier was trained on 80% of the images and tested on
the remaining 20%; the classification accuracy was similar
to the previous results. It should be emphasized that the
images from the WMU and the DFISDRv2 database were
divided in the same proportions, and all 13 test images from
Wrocław were correctly classified. In the binary classification
task (Healthy vs. DR), the average accuracy reached 96%. This
result suggests that the algorithm proposed in [36] is effective,
but not fully robust. We believe that the primary limitation is
the relatively small training data set, which reduces confidence,
even for this basic identification task.

In this article, we investigate the properties of a classifier
based on the combination of two datasets from different
sources, with the external set chosen as DFISDRv3 [3], which
is twice as large as DFISDRv2 used in [36] and [3].

The paper is structured as follows. The next section presents
a review of the current literature on automatic systems for
identifying and classifying DR based on fundus images and
publicly available retinal datasets. Information about the data
sets used in our experiments, the DR detection method,
performance metrics, and experiment results is explained in
Section 3. Finally, we discuss our approach and results and
conclude the article.

II. PROBLEM STATEMENT

The purpose of this paper was to investigate the extent
to which it is possible to create our own system for the
automatic classification of patients with nephrology at risk for
the potential or observed development of DR. At the same
time, due to further research concepts, it is essential that the
image database used by the system in the future come from a
population selected for kidney diseases.

Currently, due to the available data from WMU, the main
significant problem is discrimination between asymptomatic
images (no DR) and those indicating the presence of changes
associated with the existence of DR. From this point of view,
the DFISDRv3 database is balanced, as it contains 711 sample
images in class 0, which is about half of all data in this
database containing a total of 1437 images.

The choice of the DFISDRv3 [3] database was driven not
only by its relatively small size, but also by the fact that it
was unlikely to be used as data for an automatic classification
system. This allows both sets of data to be considered new

and unencumbered by any additional prior knowledge beyond
their source.

Limiting the size of the database, which we intend to
treat as a supporting dataset, should allow the construction
of a practical classification algorithm with a relatively small
number of parameters. This algorithm was the CNN VGG16
network mentioned earlier [36] and was presented at the
DepCoS-RELCOMEX 2025 conference.

III. RELATED WORKS

Computational experiments in the field of automatic DR de-
tection are based on many publicly available image databases,
such as Kaggle base DRD [8], APTOS19 [35], MESSIDOR
[7], EyePACS [6], IDRiD [26], Dataset for Diabetic Retinopa-
thy (DDR) [14], among many others. A specific database is the
DeepDRiD database [16], which helps to evaluate and improve
the quality of fundus images intended for the construction of
DR classification systems.

Automated systems for detecting and grading Diabetic
Retinopathy typically utilizes the following computational
strategies:

• image processing algorithms related to improving the
quality of photographs, variation in color attenuation, in-
tensity conversion, denoising, and contrast enhancement

• advanced algorithms for detecting objects, image segmen-
tation, or background analysis,

• classification methods based on machine learning algo-
rithms that analyze the selected features of images subject
to classification,

• deep learning methods such as various variants of con-
volutional networks (CNN),

• hybrid methods, visual transformers.

A. Advances methods of image processing and analysis

Reference [20] describes Computer-Aided Diagnosis (CAD)
frameworks designed specifically for the binary classification
of DR pathology. Computational experiments were conducted
on the Kaggle 2015 dataset. The main component of the algo-
rithm was a combination of image processing with EGMM-
based Retinal Blood Vessel Detection and Segmentation, Blob
analysis and Connected Components Analysis, Retinal Blood
Vessel ROI Identification, Alaxnet-based feature extraction,
Feature Selection, dimensionality reduction, and finally SVM-
based DR classification.

The crucial problem in quickly starting appropriate therapy
is the detection of the early stages of DR symptoms, such as
microaneurysm (MA) lesions (mild NPDR) [9]. Some articles
deal with the detection of MA [18], [22]. The paper [29]
applies traditional image processing methods related to the
occurrence of visual symptoms on a multi-scale in the context
of MA.

B. Machine learning methods

Beyond a general literature survey, reference [12] investi-
gates specific image enhancement protocols and feature ex-
traction techniques used in DR staging. The study evaluates
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a broad spectrum of computational models, ranging from
classical classifiers (SVM, Random Forest, Naive Bayes, k-
NN, k-Means) to neural network architectures, including Auto-
encoders.

C. Deep learning methods

Reference [1] benchmarked 26 distinct pre-trained CNN
architectures using transfer learning. The study utilized the
DRGF dataset, comprising 3,662 Gaussian-filtered images
derived from the APTOS19 archive and resized to 224× 224
pixels. Despite the variety of models tested, the classification
accuracy for DR detection remained below the 80% threshold.

The paper [25] presents a multiclass classification of fundus
images to detect eye diseases (including DR identification)
based on a transfer learning approach and various CNN net-
work architectures. The authors showed that eliminating bad
quality images using an integrated quality evaluation system
improves classification performance.

The study in [33] evaluates both binary detection and multi-
class DR classification. The authors proposed an ensemble
framework integrating established architectures (InceptionV3,
Inception-ResNetV2, Xception) across various input resolu-
tions with data augmentation. Although the reported accuracy
was exceptional, it relied on a massive, non-public dataset.

In contrast, reference [32] focuses on hyperparameter op-
timization. The authors demonstrated that the adjustment of
global parameters could elevate the classification accuracy
from a baseline of 0.48–0.83 to a peak of 0.96. These
experiments utilized the 5-class Kaggle 2015 dataset [8] and
standard backbones (AlexNet, VGGNet, GoogLeNet, ResNet)
facilitated by transfer learning.

In [19] a multitask deep learning framework is introduced
for DR staging. The architecture comprises two distinct com-
ponents: a primary classification network and a stand-alone
regression model. Their outputs are fused and subsequently
processed by a Multilayer Perceptron (MLP) to generate the
final prediction.

D. Hybrid methods

Hybrid methods combine deep learning methods (DL) with
classical methods of digital image processing and analysis. On
the other hand, hybrid models can use CNNs in combination
with simpler machine learning algorithms such as multilayer
perceptron (MLP), support vector machine (SVM), random
forest (RF), transformers and vision transformers (ViT), or
boosting methods. Adaboost, Gradient boost, and Extreme
gradient boost (XGBOOST) are based on combining built se-
quentially simple predictors [1]. Naturally, almost all methods,
even those that we do not call hybrid, use some kind of pre-
processing of input images.

Reference [23] leverages Vision Transformers (ViT) to
capture long-range spatial dependencies within image data.
The methodology was validated on the FGADR dataset,
a recently introduced large-scale repository featuring fine-
grained annotations, which served as the benchmark for both
DR identification and grading tasks. This data set has 1,842
images with pixel-level DR-related lesion annotations, and

1,000 images with image-level labels graded by board-certified
ophthalmologists. Because the FGADR base is an unbalanced
data set, the authors of the paper combined several tech-
niques to deal with this issue. It achieved satisfactory results
compared to the baseline ViT models, namely F1 = 0.825
and accuracy = 0.825. The paper [30] uses for a similar
purpose a dynamic recurrent CNN (R-CNN) solution. In both
works, small image patches are recursively used to determine
long-range dependencies in images. In this work, the authors
achieved very high classification accuracy using the Kaggle
DRD base. The Kaggle DR dataset (DRD) consists of 88,702
color fundus images, including 35,126 samples for training.
After initial preprocessing, all images are processed using
the Gray Level Co-occurrence Matrix (GLCM), the method
proposed by Haralick et.al. in 1973.

The method proposed in [24] is based on the independent
extraction of local information from multiple rectangular im-
age regions. The machine learning system to detect diabetic
retinopathy from fundus images uses a multiple learning
paradigm with an integrated attention mechanism. Reference
[23] leverages Vision Transformers (ViT) to capture long-
range spatial dependencies. The method was validated on the
FGADR dataset—a recently introduced large-scale repository
with fine-grained annotations. Crucially, the architecture em-
ploys an attention mechanism that explicitly localizes patho-
logical regions and DR-induced lesions to facilitate classifica-
tion.

Only selected examples of the methods have been presented
in more detail. The topic of DR diagnostics is very popular,
as evidenced by the large number of review articles published
over the last few years. See, for example, [1], [2], [12], [14],
[18], [21], [19], [22], [27], [28], among many others.

IV. DATA CHARACTERIZATION

The primary training material consists of 1437 color retinal
images from the database DFISDRv3 [3]. These clinical
samples were acquired at the Department of Ophthalmology,
Hospital of Clı́nicas (FCM-UNA), Paraguay. We selected
this recently published repository to assess the feasibility
of automatic DR classification as a training set, we chose
”Dataset from fundus images for the study of DR” (DFIS-
DRv3) described in [3], which is a relatively new set, and we
even found a preliminary examination of its usefulness in the
detection and classification of DR interesting and useful. The
data set containing 1437 color fundus images was acquired in
the Department of Ophthalmology of the Hospital of Clı́nicas,
Facultad de Ciencias Médicas (FCM), Universidad Nacional
de Asunción (UNA), Paraguay. The fundus images are initially
divided by the authors of the database into seven classes:
Normal (no signs of DR)- 711 images, mild (early) NPDR
- 6 images, moderate NPDR - 110 images, severe NPDR -
210 images, very severe NPDR - 139 images, PDR - 116
images, and advanced PDR -145 images. For the purpose of
this study, the original 7-class grading system was assigned
to 5 classes to balance the data set. Specifically, ’Advanced
PDR’ was excluded due to the limited number of samples,
and ’PDR’ was merged with ’Very Severe NPDR’. The ground
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truth in DFISDRv3 base was established by annotation by two
independent ophthalmology specialists. The repository con-
tains JPEG files at a resolution of 2124× 2056 pixels. During
data set construction, samples that exhibited blur, artifacts,
or insufficient quality were rigorously excluded. The primary
objective of this collection is to facilitate research into the
detection of both Non-Proliferative (NPDR) and Proliferative
(PDR) stages.

Figure 1 presents sample photographs from the DFISDRv3
base. The image in the upper left corner is an asymptomatic
example, while the other three illustrate different types of DR
symptoms.

Fig. 1. Example of 4 original, unprocessed images from the DFISDRv3
dataset

The Wrocław Medical University image set WMU consists
of 71 images. All images belong to the same class: Normal
(no signs of DR). Figure 2 presents four photographs from the
WMU base.

Fig. 2. Example of 4 original, unprocessed images from the WMU dataset

A. Data preprocessing

Recognizing the critical role of input fidelity, the study
implemented an automated preprocessing pipeline to ensure
accurate data processing. This stage involved histogram equal-
ization to enhance local contrast, followed by a resizing oper-
ation to standardize the spatial dimensions of the DFISDRv3
dataset against the WMU samples. Due to the different profiles
of the photos from both databases, a special mask was used to
eliminate these differences. A specific preprocessing technique
was applied in which the green channel of the fundus image
was extracted, histogram-equalized to enhance contrast, and
then replicated to form a 3-channel input tensor compatible
with the VGG16 backbone.

B. Metrics for evaluation of the binary classification perfor-
mance

To quantify the performance of the proposed solution, we
adopted the standard set of evaluation metrics widely used in
medical imaging tasks. These include:

a) Recall:

R = TP/(TP + FN)

b) Precision:

P =
TP

TP + FP

c) Specificity:

S =
TN

TN + FP

d) F1 score:

F1 =
2TP

2TP + FP + FN

e) Accuracy:

ACC =
TP + TN

P +N

f) bACC: bACC denotes balanced accuracy and is used
when dealing with imbalanced data

bACC =
R+ S

2

g) MCC: MCC denotes the Matthews Correlation Coef-
ficient [5]. MCC provides a comprehensive evaluation, even
when classes are imbalanced. MCC is usually more informa-
tive than accuracy, F1 score, and balanced accuracy.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where P represents the number of positive examples and
N represents the number of negative examples, respectively.
Positive examples can be classified correctly or erroneously.
TP equals the number of positive examples correctly indicated
by the classifier. TN ( truly negative) refers to the number of
truly detected negative examples. The false positive example
number, FP, represents the number of negative instances clas-
sified as positive and FN represents the number of positive
objects classified erroneously as negative.
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C. Algorithms

The classification system is built on the VGG16 convolu-
tional neural network architecture, using a transfer learning
approach with weights pre-trained on the ImageNet dataset.

The VGG16 architecture was selected for its structural
simplicity and proven robustness in medical imaging tasks.
In contrast to more complex models, VGG16 relies on a
uniform arrangement of small convolutional filters (3 × 3),
which facilitates stable feature extraction and reduces the
risk of overfitting in limited datasets. To adapt the model
to detect diabetic retinopathy, the original fully connected
layers were replaced with a custom classifier block. This block
consists of two dense layers with 4,096 neurons, each followed
by a ReLU activation function and a Dropout layer (rate =
0.5) to mitigate overfitting. The final output layer contains
5 neurons, equivalent to the severity classes labeled (0–4)
defined in the study. The model accepts input images resized
to a resolution of 176 × 176 pixels. The network is optimized
using the CrossEntropyLoss function with label smoothing
(0.1) to improve generalization.

The training process employs a two-stage fine-tuning strat-
egy. Initially, the convolutional base is frozen and only custom
classifier layers are trained to map high-level features to the
5 severity classes of DR. This initial phase prevents the
large gradients typical of randomly initialized layers from
distorting the pre-trained feature extractors (catastrophic for-
getting). Upon reaching the 20th epoch (set specifically for
this experimental setup), the entire network is unfrozen. At
this critical stage, the learning rate is reduced by a factor
of ten. Simultaneously, the AdamW optimizer and scheduler
are re-initialized to update the weights of the full model.
This approach ensures stable adaptation of feature extraction
layers. As evidenced in Table IV (specifically experiment exp
1), this configuration yielded the highest validation accuracy
compared to other experimental setups, confirming the benefits
of the controlled fine-tuning procedure.

D. Optimizers

As an optimization method, we used the AdamW method,
which works faster than its classic version, Adam [15]

AdamW [17] is a fast variant of the Adam optimizer. The
AdamW optimizer distinguishes itself by decoupling weight
decay from gradient adaptation. Unlike the standard L2 reg-
ularization, which modifies the objective function, AdamW
applies the decay term directly to the parameters during the
update step. Separating the regularization from the optimiza-
tion step in AdamW improves its generalization performance.

E. Hyper-parameter selection

The computations were performed on an Nvidia RTX 3000
Ada Generation Laptop GPU using mixed precision (FP16)
to optimize performance. In every training cycle, the model
utilized pixel normalization for input data, along with Dropout
and L2 Regularization (Weight decay) to prevent overfitting.
In addition, we have employed an adaptive learning rate to
ensure stable convergence.

TABLE II
HYPER-PARAMETER SELECTION

Exp 1 Exp 2 Exp 3 Exp 4 Seq 5

Epoch no. 50 100 100 50 50

Batch size 16 64 64 16 16

LR value 3.1e-07 1.95e-08 1.95e-08 7.81e-08 1.56e-07

Train ACC 99.36% 99.36% 99.63% 99.45% 99.54%

Test ACC 83.15% 82.78% 81.68% 80.59% 76.92%

Time 00:11:43 00:11:52 00:11:46 00:11:33 00:11:43

Fig. 3. Confusion matrix for training data

Based on the comparative analysis of the experimental
results presented in Table I, the configuration labeled ’Seq
1’ demonstrated the highest classification performance in the
test set (83.15% accuracy). Consequently, the final model
was established using a batch size of 16 and trained for 50
epochs. The optimization process was driven by the AdamW
algorithm with an initial learning rate of 10−7, which was
dynamically adjusted by the adaptive scheduler to ensure
optimal convergence. A dropout rate of 0.5 was maintained
to effectively regularize the network.

V. EXPERIMENTS

Both sets, DFISDRv3 and WMU, were combined with all
WMU images included in class 0 (no DR). The DFISDRv3
database contains 711 sample images in class 0 and the WMU
consists of 71 images, all of class 0. Thus, a total of 782 im-
ages with no signs of DR are present in the combined database.
Figs. 3 and 4 show the results of training the classifier and
the results of testing in the form of confusion matrices for
training and testing, respectively. Table III presents the results
of discriminating between the class without DR (healthy eyes)
and images representing different classes of DR. These results,
especially the MCC measure, show that the classifier used
has good discriminatory properties. In the examined database,
the number of images without DR (class 0) and images with



6 M. ZMONARSKI et al.

Fig. 4. Confusion matrix for testing data

TABLE III
RESULTS OF TEST CLASSIFICATION - NO DR CLASS IDENTIFICATION

ACC Recall Prec Spec F1 bACC MCC

0.897 0.949 0.882 0.883 0.911 0.916 0.7665

DR symptoms was nearly balanced. We have used a multi-
class classifier to assess the DR detection level, allowing us
to also evaluate the level of identification of the remaining
image classes extracted from the database. The classification
of the remaining classes was more difficult due to the smaller
number of representatives. We used a multi-class classifier to
assess the DR detection level, allowing us to also evaluate the
level of identification of the remaining image classes extracted
from the database. A very low number of images from the
mild NPDR class caused us to decide not to include it in
the evaluation of the classification results. The identification
results for the remaining classes are presented in Table IV in
a similar way to the previous presentation for class 0.

TABLE IV
DISCRIMINATION RESULTS OF SYMPTOMATIC CLASSES

class ACC Recall Prec Spec F1 bACC MCC

m NPDR 0.949 0.545 0.462 0.984 0.632 0.765 0.614

s NPDR 0.908 0.643 0.730 0.957 0.684 0.800 0.632

PDR 0.912 0.765 0.765 0.946 0.765 0.855 0.711

VI. CONCLUSIONS

The main contributions of our article are as follows:
• The study utilized the DFISDRv3 dataset (1,437 images),

supplemented by a unique collection of 71 images from
Wrocław Medical University (WMU). Experiments con-
firmed that combining public datasets with local clinical
data is a viable approach to train automatic screening
systems.

• The CNN classifier, based on VGG16 with transfer learn-
ing, proved to be effective for this specific combination
of data. The optimal configuration (Sequence 1) yielded
a test ACC of 83.15%. This suggests that a standard
architecture with limited parameters is sufficient for this
classification task.

• A important contribution is the validation of a specific
two-stage fine-tuning strategy (involving controlled un-
freezing and optimizer re-initialization). This procedural
adjustment effectively mitigated catastrophic forgetting
and ensured stable convergence, proving critical for
adapting the pre-trained backbone to the limited medical
dataset.

• Detailed analysis showed strong discrimination between
Class 0 (No DR) and Class 4 (PDR/Advanced). This
suggests that the system is particularly robust in distin-
guishing healthy eyes from severe pathology, which is a
primary requirement for medical triage.

• The evaluation of the binary classification task (Healthy
vs. DR) resulted in a test accuracy of 89.7%, with a sensi-
tivity of 94.9% and a specificity of 88.3%. The Matthews
Correlation Coefficient value significantly above 0.7 in-
dicates that the classifier makes a very good, though not
perfect, prediction.

• A remaining challenge is the accurate classification of
early-stage disease, specifically Mild NPDR (Class 1).
We will attempt to incorporate more examples from this
class to establish a comprehensive initial representation.
Future work will focus on enhancing the detection of
these subtle features and expanding the model’s per-
formance across the full seven-level grading scale by
acquiring suitable images from WMU.
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