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Context-aware uncertainty modeling for pedestrian
intention detection in urban environments

Yusuf Yesilyurt, and Marek Woda

Abstract—The present study investigates the application of
uncertainty modelling for the purpose of detecting pedestrian
intentions in contexts pertaining to autonomous driving. The
proposed framework integrates two mechanisms: threshold-
modulation networks for aleatoric uncertainty and cost-sensitive
learning for risk-aware decision making.

Experiments on the PIE dataset with ResNet50, VGG16, and
AlexNet demonstrate that cost-sensitive learning enhances F1-
scores marginally (0.05-0.58 percentage points) by prioritising re-
call for crossing pedestrians. ResNet50 demonstrates the strongest
performance (98.30% accuracy, 96.35% F1-score), significantly
outperforming more elementary architectures. Threshold net-
works have been observed to introduce computational overhead,
resulting in approximately a doubling of training time, accom-
panied by slight performance reductions.

The study provides empirical evidence for the trade-offs
between uncertainty modelling complexity and classification per-
formance in pedestrian intention detection, offering insights for
designing safety-oriented perception systems with appropriate
computational constraints.

Keywords—Pedestrian intention detection; uncertainty mod-
elling; aleatoric uncertainty; epistemic uncertainty; cost-sensitive
learning; autonomous driving; PIE dataset

I. INTRODUCTION

HE ability to anticipate the intentions of pedestrians

represents a seminal challenge in the development of
safe autonomous driving systems. It has been demonstrated
that human drivers utilise subtle contextual cues, including
but not limited to body posture, gaze direction and movement
patterns, in order to predict whether a pedestrian is about
to cross the road. However, the translation of this intuitive
reasoning into a reliable computer vision framework remains
an open research problem, particularly given the inherent
uncertainty of complex urban environments. It is imperative
to acknowledge the potential for significant disruptions to the
reliability and confidence of models in safety-critical decision-
making processes. Such disruptions can be attributed to rapid
changes in lighting, the presence of obstructions, variations in
pedestrian behaviour, and sensor noise.

Recent deep learning—based pedestrian intention detection
(PID) systems primarily employ convolutional and recurrent
architectures to map sequences of video frames onto discrete
crossing decisions. Whilst these models achieve classification
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accuracies that can be considered impressive on benchmark
datasets, they typically produce outputs that are deterministic
and lack information regarding prediction confidence. In the
context of autonomous driving, the presence of uncalibrated
probabilities can lead to a situation where overconfident mis-
classifications occur, which can potentially result in dangerous
actions being taken. Consequently, incorporating uncertainty
estimation mechanisms into PID frameworks is a crucial step
towards trustworthy perception.

The present study introduces a context-aware uncertainty
modelling framework for predicting pedestrian behaviour in
urban traffic scenarios. The proposed system unifies two
complementary perspectives on uncertainty:

o Aleatoric uncertainty, which represents variability
in observations, is addressed through a threshold-
modulation network. This network dynamically adjusts
the decision boundary according to contextual cues, such
as vehicle speed, pedestrian gaze and gestures, the pres-
ence of crosswalks, the state of traffic lights, and the level
of occlusion.

« Epistemic uncertainty, which originates from model
limitations or data scarcity, is mitigated through a cost-
sensitive learning scheme that penalises false negatives
more severely than false positives. This encourages risk-
aware behaviour in ambiguous cases.

Contrary to the focus of preceding studies, which chiefly
concentrated on the evaluation of prediction accuracy, this
study adopts a design-oriented perspective, emphasising the
operational integration of uncertainty into conventional deep-
learning pipelines. The framework has been validated using
the publicly available Pedestrian Intention Estimation (PIE)
dataset, which provides a wealth of multimodal context, in-
cluding ego-vehicle signals, bounding-box annotations and en-
vironmental attributes. In this study, three convolutional neural
network architectures — ResNet50, VGG16 and AlexNet — are
adapted to this framework in order to systematically assess its
influence on model calibration, robustness and computational
cost.

The main contributions of this paper can be summarised as
follows:

1) A unified architecture that combines a context-aware
thresholding module with a cost-sensitive training for-
mulation in order to capture both aleatoric and epistemic
uncertainties simultaneously.
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2) A detailed pre-processing strategy for multi-modal data
fusion using visual and contextual features from the PIE
dataset.

3) An implementation-level evaluation of the effects of
uncertainty integration on accuracy and Fl-score across
multiple network backbones;

4) Practical insights are provided for deploying uncertainty-
aware PID systems, highlighting the trade-offs between
reliability, computational complexity and safety perfor-
mance.

These contributions shift the focus of the study from achiev-
ing high accuracy to developing calibrated, interpretable and
safety-aligned decision systems for autonomous vehicles. The
findings presented herein are intended to inform both academic
research and the practical deployment of frameworks for
detecting pedestrian intentions that are aware of uncertainty.

II. RELATED WORK AND BACKGROUND

Pedestrian intention detection (PID) has evolved from tra-
ditional vision-based behaviour classification to become a
multifaceted learning problem integrating spatial, temporal and
contextual reasoning. The relevant literature on this topic can
be categorised into three themes: (i) vision-based intention
prediction; (ii) uncertainty modelling in deep learning; and (iii)
model calibration and risk-aware inference. Together, these
strands form the conceptual basis of the proposed framework.

A. Vision-Based Pedestrian Intention Prediction

In the early days of PID studies, the focus was on hand-
crafted features such as optical flow, pose trajectories and
scene geometry. These features were used to infer motion
intent [1], [2]. While these methods were capable of inter-
pretation, they were limited in their ability to capture high-
level semantic cues such as gaze direction or interaction with
vehicles. The advent of deep convolutional networks signified
a major shift towards data-driven learning, with subsequent
research introducing multi-stream and temporal architectures
that enable joint modelling of visual and contextual informa-
tion.

A plethora of public datasets, including Joint Attention
for Autonomous Driving (JAAD) [3] and Pedestrian Intention
Estimation (PIE) [4] have emerged as instrumental resources
in the field, offering extensive, annotated benchmarks encom-
passing both pedestrian behaviours and vehicle dynamics. In
the field of multimodal learning, PIE has been identified as
a particularly valuable system due to its ability to synchro-
nise video, bounding boxes, GPS, and on-board diagnostics.
Nevertheless, the dataset exhibits significant class imbalance
and natural ambiguity in labels — two factors that motivate the
inclusion of uncertainty modelling in this work.

Recent research in the field of PID has investigated a
range of advanced techniques, including attention mechanisms,
graph-based reasoning, and trajectory forecasting. Whilst the
efficacy of these approaches is evident, they generally output
deterministic probability scores without explicit confidence es-
timation, which limits interpretability and reliability in safety-
critical deployment.
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B. Uncertainty Modeling in Deep Neural Networks

The quantification of uncertainty in deep learning has be-
come an active area of research. Foundational distinctions
have been made between aleatoric uncertainty, which stems
from noise in the observations, and epistemic uncertainty,
which arises from limited knowledge of model parameters [5]-
[7]. Aleatoric uncertainty is frequently modelled via het-
eroscedastic likelihoods or auxiliary branches that learn data-
dependent variance. The concept of epistemic uncertainty
can be captured through Bayesian approximations, including
Monte-Carlo dropout [8], deep ensembles [9], or evidential
networks [10]. Monte-Carlo dropout provides uncertainty esti-
mates by performing multiple stochastic forward passes during
inference, while deep ensembles aggregate predictions from
independently trained networks to capture model disagree-
ment. Evidential learning offers a single-pass alternative by
placing priors over predictive distributions. While these ap-
proaches have demonstrated effectiveness in various domains,
their application to pedestrian intention detection remains
limited, motivating the exploration of computationally lighter
alternatives such as the cost-sensitive framework proposed in
this study.

In the domain of autonomous driving, uncertainty estimation
has been integrated into various perception tasks [7]. Never-
theless, the explicit integration of both uncertainty types within
pedestrian intention detection remains limited. Existing PID
works rarely adjust decision boundaries or training objectives
based on uncertainty cues, resulting in a significant gap
between theoretical advances and applied safety systems. The
present study addresses this gap by embedding uncertainty
handling directly into both the architecture (through context-
aware thresholding) and the loss function (via cost-sensitive
training).

C. Summary and Identified Research Gap

A review of the extant literature reveals three observations
that are converging. Firstly, contemporary PID models at-
tain high nominal accuracy; however, they frequently neglect
uncertainty quantification and calibration. Secondly, while
uncertainty estimation techniques have been well established
in other domains, they have not been systematically adapted to
the pedestrian intention context, particularly where multimodal
cues influence decision thresholds. Thirdly, safety-critical ap-
plications necessitate mechanisms that integrate uncertainty
estimation with asymmetric risk management.

Drawing upon these insights, this paper proposes a uni-
fied framework that operationalises uncertainty in both ar-
chitectural design and training dynamics. The integration of
contextual threshold modulation for aleatoric uncertainty and
cost-sensitive optimization for epistemic uncertainty serves to
bridge the theoretical reliability principles with the practical
implementation in real-world pedestrian intention prediction.

III. DATASET AND PRE-PROCESSING

The experiments in this study are conducted using the
Pedestrian Intention Estimation (PIE) dataset, which is a
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large-scale benchmark explicitly designed for studying pedes-
trian—vehicle interactions in real urban environments [4]. PIE
provides high-resolution video sequences recorded from an
ego-vehicle, synchronised with GPS and on-board diagnostics
(OBD) data, and enriched with detailed pedestrian annota-
tions. Each annotated instance comprises bounding-box coor-
dinates, behavioural labels, and contextual descriptors such as
pedestrian gaze, head orientation, gesture, traffic light status,
and crosswalk presence. These features enable comprehensive
modelling of pedestrian intention as a function of both visual
appearance and surrounding context.

A. Dataset Composition

PIE comprises over six hours of driving footage, with
911,000 video frames, of which 293,000 are annotated with
pedestrian information. The dataset under consideration con-
tains approximately 1,800 unique pedestrian tracks with
740,000 bounding-box annotations. Pedestrian samples are
categorised into two primary intention states: The terms cross-
ing and not crossing are employed to denote the presence or
absence of a particular phenomenon. Pedestrians are tracked
over time, thereby providing temporal coherence, which is
an essential component of sequential modelling. The dataset
also contains scene-level information, including lane topology,
weather, and illumination conditions, offering opportunities for
multi-domain learning.

The dataset under scrutiny is characterised by a marked
class imbalance, with instances that do not intersect sig-
nificantly outnumbering those that do. This imbalance is
indicative of the underlying statistical distribution of traffic,
yet it has the capacity to influence conventional classifiers,
favouring the majority class. Consequently, this can lead to an
elevated prevalence of false-negative outcomes. Consequently,
the learning pipeline integrates cost-sensitive weighting strate-
gies to preserve recall for the minority (crossing) class.

B. Data Partitioning

In order to guarantee impartial evaluation and circum-
vent the occurrence of overlap between training and testing
identities, pedestrians are segmented in accordance with the
established PIE protocol [4]. Pedestrians who appear entirely
within a given split are included in the study to avoid data
leakage. During the preprocessing stage, successive image
frames pertaining to each pedestrian are grouped into tem-
poral snippets comprising ten frames. This approach captures
short-term motion patterns while remaining computationally
tractable.

C. Image Preprocessing

It is imperative to resize all video frames to 224 x 224 pixels,
in order to ensure compatibility with ImageNet-pretrained con-
volutional backbones. Normalization is achieved through the
application of ImageNet channel statistics (mean subtraction of
[0.485, 0.456, 0.406] and standard deviation scaling of [0.229,
0.224, 0.225] for RGB channels), facilitating the transfer of
pretrained weights without distortion. Each pedestrian instance

is subject to cropping based on bounding-box coordinates and
temporally ordered to form an image sequence tensor of shape
(10, 3,224, 224) for subsequent input to the network.

D. Contextual Feature Extraction

A defining characteristic of PIE is the availability of con-
textual cues that extend beyond visual appearance. For each
temporal sequence, the following contextual variables are
extracted and temporally aligned with pedestrian frames:

« Ego-vehicle dynamics: OBD speed, GPS speed, heading

angle, and gyroscope readings;

« Environmental semantics: crosswalk availability, traffic

light state and type, and traffic sign presence;

o Pedestrian attributes: actions, head orientation, gaze

direction, hand gesture, and occlusion ratio.

Each categorical variable is encoded using one-hot encod-
ing, while continuous features such as speed are standardized
to have a zero mean and unit variance. The resulting context
vector is then concatenated to the high-level feature represen-
tation extracted from the visual backbone. This fusion enables
the subsequent threshold-modulation network (introduced in
Section IV) to adapt decision boundaries based on scene-
specific variability.

E. Sequence Labeling and Temporal Alignment

Each temporal sequence is assigned a binary intention label
(crossing or not crossing) based on the annotations provided
in the PIE dataset. The resulting dataset provides temporally
consistent input—output pairs, with each pair consisting of an
image-sequence tensor, a synchronised context vector, and a
binary intention label.

F. Challenges and Considerations

The dataset under consideration poses two practical chal-
lenges. Firstly, a significant proportion of pedestrians are
partially occluded or appear at a reduced scale, thereby in-
creasing aleatoric uncertainty in the visual domain. Secondly,
it should be noted that certain contextual variables (e.g. gaze
or gesture) are occasionally absent due to annotation gaps.
The management of missing attributes is achieved through the
utilisation of two methodologies: the initialisation of default
values and the exclusion of samples when critical information
is unavailable. The efficacy of these preprocessing steps is
predicated on their ability to ensure that the learning pipeline
receives a complete yet realistic representation of the urban
scene

The proposed preprocessing pipeline standardises multi-
modal inputs and aligns temporal, contextual and visual di-
mensions into a coherent representation, thereby establishing
the foundation for the uncertainty-aware framework that will
be presented in the following section.

IV. FRAMEWORK AND METHODS

The proposed framework introduces uncertainty modelling
into pedestrian intention detection (PID) through a three-phase
experimental design: The following three steps are to be taken



in order to achieve the desired result: firstly, baseline CNN
models must be established; secondly, context-aware threshold
networks must be integrated to capture aleatoric uncertainty;
and thirdly, cost-sensitive learning must be incorporated to
account for epistemic uncertainty. This progressive approach
facilitates a systematic evaluation of each uncertainty mod-
elling component.

A. System Overview

The framework utilises three convolutional neural networks
as visual backbones: ResNet50, VGG16, and AlexNet. Each
of these is pretrained on ImageNet and fine-tuned on the
PIE dataset. Each backbone is responsible for processing
a 10-frame image sequence in order to extract high-level
spatiotemporal features. Concurrently, contextual information,
encompassing vehicle speed, pedestrian attributes, and envi-
ronmental cues, is encoded and integrated with visual features
to inform the decision process.

B. Phase 1: Baseline Models

For an input image sequence I = {I,I5,...,Ir} with
T = 10 frames, each CNN backbone extracts spatial features
and produces a binary classification output through a softmax
layer:

ezcross
Peross = eFeross | e#not (1)
where z.r0ss and 2z, denote the final-layer logits. The base-
line models are trained using standard cross-entropy loss:

(1 - y) IOg(pnot)a (2)

where y € {0,1} is the ground truth label. These baseline
results establish reference performance metrics for subsequent
uncertainty modeling phases.

ﬁce =y IOg(pcross) -

C. Phase 2: Threshold Networks for Aleatoric Uncertainty

Aleatoric uncertainty is attributable to inherent variability
in observations, including but not limited to lighting changes,
occlusions, and ambiguous pedestrian behaviours. In order to
model this uncertainty, threshold networks are integrated as
auxiliary modules that process contextual features to generate
adaptive decision boundaries.

The threshold network is responsible for the processing of
contextual information, including:

o Vehicle OBD speed and dynamics

o Pedestrian gaze direction, gestures, and actions

o Traffic light state and crosswalk presence

o Occlusion levels

These contextual cues are encoded into a feature vector
that informs the threshold network’s output. The network is
implemented as a small multilayer perceptron that adjusts
the model’s confidence requirements based on scene-specific
conditions. During the training phase, the threshold network
is optimised in conjunction with the base CNN, thereby
facilitating the acquisition of skills that enable the identifica-
tion of scenarios necessitating more conservative or confident
predictions.
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D. Phase 3: Cost-Sensitive Learning for Epistemic Uncer-
tainty

Epistemic uncertainty is defined as the limitations in model
knowledge due to insufficient data or parameter uncertainty.
In the context of pedestrian intention detection, the failure to
predict an actual crossing, known as false negatives, poses a
significant safety hazard. In order to address this issue, the
third phase incorporates cost-sensitive learning.

The cost-sensitive approach involves the modification of
the training objective through the implementation of higher
penalties for false negatives in comparison to false positives.
This is achieved by assigning a greater numerical value to the
loss function, thereby ensuring that the recall for the crossing
class is prioritised.

»Ccs = _ayIOg(pcross) - B (]- - y) IOg(pnot)v (3)

where @ > ( enforces stricter penalties for missed crossing
predictions. This asymmetric loss encourages the model to
adopt risk-aware behavior, erring on the side of caution when
uncertainty is high.

E. Training Configuration

All models undergo training for 10 epochs using the Adam
optimiser with an initial learning rate of 10~ and batch size
of 32. Each phase is built upon the preceding one:

o Phase 1: CNNs were initially trained using a standard
cross-entropy loss function.

o Phase 2: Threshold networks were incorporated and
trained in conjunction with CNNss.

« Phase 3: The application of cost-sensitive loss to models
from Phase 2 is imperative.

This progressive integration facilitates a systematic evalua-
tion of the influence of each uncertainty modelling component
on prediction accuracy, Fl-score, and computational require-
ments.

FE. Interpretation and Model Behavior

The three-phase design offers insights into the various
aspects of uncertainty present in PID systems. Thresh-
old networks facilitate the adjustment of confidence in a
context-dependent manner, while cost-sensitive learning en-
codes safety priorities directly into the optimization objective.
Collectively, these mechanisms transform standard CNNs into
uncertainty-aware systems that are better suited to safety-
critical autonomous driving applications.

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

The implementation follows a three-phase experimental
design to systematically evaluate the impact of uncertainty
modelling on pedestrian intention detection. The following
section delineates the architectural choices, training protocol,
evaluation metrics, and computational considerations.
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A. Network Architectures

Three convolutional neural network architectures serve as
visual backbones: ResNet50, VGG16, and AlexNet. Each
network is initialized with ImageNet-pretrained weights and
fine-tuned on the PIE dataset. All models process temporal
sequences of 10 consecutive frames, with each frame resized
to 224 x 224 pixels and normalized using ImageNet statis-
tics (mean: [0.485, 0.456, 0.406], standard deviation: [0.229,
0.224, 0.225] for RGB channels).

ResNet50 [11] employs residual connections across 50
layers, thereby facilitating effective gradient flow and robust
feature extraction for complex pedestrian behaviours.

VGG16 [12] employs a uniform architecture comprising 16
layers, each consisting of 3x3 convolutional filters, providing
a straightforward baseline for comparison.

AlexNet [13] is a model of reduced complexity, with eight
layers, and thus offers a lower computational burden as a
baseline.

B. Training Configuration

All models are trained using the Adam optimiser, with an
initial learning rate of 1 x 1073 and a batch size of 32. In
the interest of avoiding overfitting, the training process is
constrained to a maximum of 10 epochs. The models have
been implemented in PyTorch and trained on GPU-accelerated
hardware.

In the context of this study, contextual features — including
vehicle speed, pedestrian attributes (gaze, gesture, actions),
environmental conditions (e.g. crosswalk presence, traffic light
state) and occlusion levels — are extracted from the PIE dataset
annotations and integrated with visual features during training.

C. Evaluation Metrics

The evaluation of model performance employs two primary
metrics:
Accuracy is defined as the proportion of correct predictions:
TP+TN

A = 4
CUraY = TP TN + FP + FN “)

F1-Score is a metric that balances precision and recall, thus
providing a more robust measure given the class imbalance
present in the PIE dataset.

Precision - Recall
F1-— =2
Seore Precision + Recall )

The metrics are computed on the test set for each ex-
perimental phase, thus enabling a systematic comparison of
baseline and uncertainty-aware models.

D. Experimental Phases

The experiments are organised into three sequential phases:
Phase 1. The initial phase of the project involved the
creation of baseline models. The three CNN architectures
are trained on the PIE dataset using standard cross-entropy
loss. This phase establishes reference performance metrics for
pedestrian intention detection without uncertainty modelling.

Phase 2. The second phase of the process is Threshold Net-
work Integration. Threshold networks are integrated as auxil-
iary modules that process contextual information to generate
adaptive decision boundaries. These networks are trained in
conjunction with the base CNNs to model aleatoric uncertainty
arising from data variability. The threshold networks adjust
the model’s confidence requirements based on contextual cues
such as vehicle speed, pedestrian behaviour, and environmental
conditions.

Phase 3. The third phase of the process is cost-sensitive
learning integration. Cost-sensitive learning is a methodology
employed to address epistemic uncertainty by means of pe-
nalising false negatives more severely than false positives.
This phase involves modifying the loss function to prioritise
recall for the crossing class, thereby encouraging risk-aware
predictions in safety-critical scenarios.

Each phase is built upon the preceding one, thereby enabling
a systematic evaluation of how each uncertainty modelling
component affects prediction accuracy, Fl-score, and compu-
tational requirements.

E. Training Times and Computational Considerations

Training times for ResNet50 across the three phases are
approximately:

o Phase 1 (Baseline): 122 minutes
o Phase 2 (Threshold Networks): 205 minutes
o Phase 3 (Cost-Sensitive Learning): 248 minutes

A comparison of VGG16 and AlexNet reveals analogous
trends, with training times rising in proportion to the incor-
poration of uncertainty modelling components. The compu-
tational overhead is indicative of the augmented complexity
engendered by threshold networks and modified loss functions.

The experimental configuration provides a controlled frame-
work for the evaluation of uncertainty modelling in pedestrian
intention detection. The three-phase design facilitates a sys-
tematic analysis of the influence of threshold networks and
cost-sensitive learning on model performance, robustness, and
computational efficiency. The subsequent section is devoted to
the presentation of the empirical results obtained from these
experiments.

VI. RESULTS AND ANALYSIS

This section presents the empirical findings from the three
experimental phases described in Section V. The analysis
focuses on two key performance indicators: classification
performance and computational efficiency. It is important to
note that all results presented herein have been obtained from
the test set of the PIE dataset.

A. Quantitative Performance

As illustrated in Table I, the core metrics of accuracy and
Fl-score are summarised across the three model backbones
and experimental phases. ResNet50 has been shown to outper-
form VGG16 and AlexNet on the PIE dataset, demonstrating
its superior representational capacity for pedestrian intention
detection.



TABLE 1
CLASSIFICATION PERFORMANCE ACROSS EXPERIMENTAL PHASES
Model Phase 1 Phase 2 Phase 3
(Baseline) (Threshold) (Cost-Sens.)
Accuracy (%) / F1-Score (%)
ResNet50  98.23/96.30 98.20/96.25  98.30 / 96.35
VGG16 69.60 / 67.54  69.50 / 67.40  69.65 / 67.60
AlexNet 68.39/67.13 68.10/66.90 68.40 / 67.20

B. Performance Analysis Across Phases

Phase 1 — Baseline Models. The baseline models estab-
lish reference performance for pedestrian intention detection
without uncertainty modeling. ResNet50 achieves the highest
accuracy (98.23%) and Fl-score (96.30%), while VGGI16
and AlexNet achieve more modest performance around 69%
accuracy.

The efficacy of ResNet50 can be attributed to its advanced
architecture and residual connections, which facilitate the
extraction of features from the PIE dataset’s intricate urban
scenarios with greater efficiency.

Phase 2 — Threshold Network Integration.

The integration of threshold networks for aleatoric un-
certainty modelling has been demonstrated to result in a
slight decrease in accuracy across all models. ResNet50’s
accuracy has been observed to decrease marginally from
98.23% to 98.20%, while its Fl-score has decreased from
96.30% to 96.25%. Analogous trends are observed for VGG16
and AlexNet. This decline in performance can be attributed
to the augmented complexity engendered by the threshold-
modulation mechanism, in conjunction with the challenge of
concurrently optimising the threshold network and the base
classifier.

Notwithstanding the slight numerical decrease, threshold
networks provide value by enabling context-dependent de-
cision boundaries. The models have the capacity to adapt
their confidence requirements in accordance with environ-
mental conditions, thereby potentially enhancing robustness
in ambiguous scenarios. However, it should be noted that this
behaviour is not fully captured by aggregate accuracy metrics.

Phase 3 — Cost-Sensitive Learning Integration. The incor-
poration of cost-sensitive learning to address epistemic uncer-
tainty has been demonstrated to yield performance improve-
ments across all models. ResNet50 demonstrates a 98.30%
accuracy rate and an 96.35% Fl-score, thus surpassing both
the baseline and Phase 2 results. VGG16 exhibits an enhance-
ment in accuracy, attaining 69.65%, while AlexNet achieves
68.40%. The Fl-score for VGGI16 is 67.60%, indicating a
slight decline in performance metrics when compared to
AlexNet, which attains 67.20% accuracy and an Fl-score of
67.60%.

The enhancements are most evident in the Fl-score, sug-
gesting that cost-sensitive learning effectively enhances the
model’s capacity to accurately identify crossing pedestrians.
By imposing a greater penalty on false negative outcomes than
on false positive outcomes, the cost-sensitive loss motivates
the model to prioritise recall for the crossing class, a critical
aspect for ensuring safety in autonomous driving applications.
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C. Model Architecture Comparison

Across all three phases, ResNet50 demonstrates substan-
tially superior performance in comparison to VGG16 and
AlexNet. The performance disparity (approximately 28-30 per-
centage points in accuracy) remains consistent across phases,
suggesting that architectural depth and residual connections
provide fundamental advantages for this task, irrespective of
the uncertainty modelling approach employed.

The VGGI16 and AlexNet models demonstrate compara-
ble performance across the experimental trials, with VGG16
exhibiting a marginal superiority of 1-2 percentage points.
It is evident that both less complex architectures encounter
challenges in processing the intricacy inherent in the PIE
dataset. This underscores the significance of employing more
intricate networks for the purpose of accurately capturing the
nuanced visual and contextual cues indispensable for effective
pedestrian intention prediction.

D. Computational Overhead

As illustrated in Table II, the training times for the
ResNet50 backbone are documented across the three experi-
mental phases. The duration of training is shown to increase in
a progressive manner as components pertaining to uncertainty
modelling are incorporated, thereby reflecting the augmented
computational intricacy of threshold networks and modified
loss functions.

TABLE I
TRAINING TIMES FOR RESNET50 BACKBONE ACROSS PHASES

Experimental Phase Training Time [min]
Phase 1 — Baseline 122
Phase 2 — Threshold Networks 205
Phase 3 — Cost-Sensitive Learning 248

The threshold network integration (Phase 2) increases the
duration of training by approximately 68%, in comparison with
the baseline, whilst the complete uncertainty-aware system
(Phase 3) necessitates approximately double the duration of
the baseline training. This computational overhead represents
a significant trade-off that must be considered in practical
deployments.

VGG16 and AlexNet demonstrate analogous trends, with
training times of 110, 196, and 231 minutes for VGG16, and
75, 114, and 117 minutes for AlexNet across the three phases,
respectively. The shallower AlexNet architecture incurs the
smallest absolute overhead, although the relative increase
remains substantial.

E. Summary of Findings

The experimental results demonstrate that uncertainty mod-
elling components provide a quantifiable yet limited enhance-
ment in classification performance. In the third phase, the
cost-sensitive learning algorithm demonstrated a successful
recovery and slight enhancement in baseline performance.
This was evidenced by improvements in the Fl-score, which
indicated an enhancement in recall for the crossing class.
The introduction of threshold networks (Phase 2) has been
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shown to engender a degree of complexity that can temporarily
result in a decline in performance. However, these networks
are also capable of facilitating context-aware decision-making
processes, a capability that has the potential to enhance the
robustness of systems in scenarios that are not fully captured
by aggregate metrics.

The significant enhancement in performance exhibited by
ResNet50 in comparison to less complex architectures un-
derscores the pivotal role of intricate, meticulously designed
networks in the domain of pedestrian intention detection.
The computational burden imposed by uncertainty modelling,
marked by a near-doubling of training time, constitutes a
pragmatic constraint that must be weighed against the neg-
ligible performance enhancements and the theoretical safety
advantages.

VII. DISCUSSION

The experimental results presented in Section VI demon-
strate that uncertainty modelling provides a quantifiable yet
limited enhancement in pedestrian intention detection perfor-
mance. The subsequent section is dedicated to the interpre-
tation of these findings, the discussion of their implications,
and the identification of their limitations and future research
directions.

A. Performance and Trade-offs

The experimental design, which is comprised of three
phases, reveals distinct effects of aleatoric and epistemic
uncertainty modeling components. The integration of threshold
networks (Phase 2) resulted in slight performance decreases
across all models, with accuracy and Fl-score dropping
marginally compared to the baseline. This reduction can be
attributed to the additional complexity introduced by the
threshold-modulation mechanism and the challenge of jointly
optimizing the threshold network alongside the base classifier.

Conversely, cost-sensitive learning (Phase 3) demonstrated
a successful recovery and subsequent enhancement in per-
formance, surpassing the baseline level. All three models
demonstrated enhancements in both accuracy and Fl-score,
with ResNet50 attaining 98.30% accuracy and 96.35% F1-
score. The enhancements in the F1-score are especially salient,
indicating that cost-sensitive learning augmented the model’s
capacity to accurately identify crossing pedestrians by priori-
tizing recall for this safety-critical category.

The performance advantage of ResNet50 over VGG16 and
AlexNet remained consistent across all three phases, with a
gap of approximately 28-30 percentage points in accuracy.
This substantial difference underscores the importance of
deep architectures with residual connections for capturing the
complex visual and contextual cues necessary for accurate
pedestrian intention prediction in urban scenarios.

B. Computational Considerations

The computational burden imposed by uncertainty mod-
elling constitutes a substantial practical constraint. The training
time increased almost twofold from the baseline (122 minutes)

to the complete uncertainty-aware system (248 minutes) for
ResNet50. Analogous relative increases were observed for
VGGI16 and AlexNet, indicating that the computational cost
scales with the addition of uncertainty modelling components,
irrespective of the underlying architecture.

Regarding inference latency, the threshold network intro-
duces a lightweight MLP that processes the context vector in
parallel with the classification layer, adding minimal compu-
tational overhead per prediction. However, explicit inference
time measurements were not conducted in this study. For real-
time autonomous driving deployment, where perception sys-
tems typically require sub-100ms response times, quantifying
this overhead represents an essential validation step that should
be addressed in future work.

The majority of this overhead can be attributed to the
threshold network integration, which increases training time
by approximately 68 percent compared to the baseline. The
incorporation of cost-sensitive learning has been demonstrated
to augment the duration of the process by approximately 21%,
in comparison to Phase 2. This augmentation is observed with-
out the introduction of additional parameters, a phenomenon
that is presumably attributable to the modification of loss
computation and gradient flow characteristics.

It is imperative that these computational demands are metic-
ulously evaluated in relation to the negligible performance
enhancements that have been observed. In environments or
applications where resources are limited, or where models
need to be updated quickly, there is often a trade-off between
how reliable the models are and how efficiently they can
be trained. In these cases, simpler baseline approaches or
alternative optimization strategies may be favoured.

C. Implications for Pedestrian Intention Detection

The results of the study highlight several important consid-
erations for developing uncertainty-aware pedestrian intention
detection systems:

Architecture Selection: The marked disparity in perfor-
mance between ResNet50 and less complex architectures
(VGGI16, AlexNet) remains consistent, irrespective of the
adopted uncertainty modelling approach. This finding indicates
that architectural depth and design continue to be the pre-
dominant factors influencing performance in PID tasks, with
uncertainty modelling offering only marginal enhancements
rather than substantial improvements.

Safety-Oriented Learning: The enhancements in the F1-
score in Phase 3 suggest that cost-sensitive learning effectively
directs the model towards higher recall for the crossing class.
By imposing a greater penalty on false negatives, the approach
encourages a more cautious prediction of imminent crossings
by pedestrians, aligning with safety priorities in autonomous
driving applications. However, the magnitude of improvement
(approximately 0.05-0.58 percentage points in F1-score across
models) is modest.

Threshold Modulation Challenges: The decline in per-
formance observed in Phase 2 indicates that threshold net-
works, despite their conceptual appeal in modelling aleatoric
uncertainty, pose significant integration challenges. The added



complexity may require more sophisticated training strategies,
larger datasets, or different architectural designs to realise
their potential benefits. It is recommended that future research
endeavours explore a range of alternative approaches to the
adaptation of context-aware decision boundaries.

D. Limitations

However, it is important to note that the interpretation and
generalizability of these findings are constrained by several
limitations:

The following dataset constraints must be observed: The
PIE dataset, while comprehensive, exhibits significant class
imbalance and occasional annotation ambiguities (see Section
III for further details). These characteristics may have had an
impact on the training and evaluation of the model, particularly
with regard to the components designed to handle ambiguous
cases in uncertainty modeling.

The utilisation of restricted evaluation metrics is a key
consideration.The evaluation process concentrated on two key
metrics: accuracy and the Fl-score. These metrics offer a
comprehensive evaluation of the classification performance,
yet they do not fully capture all the aspects that are pertinent
to uncertainty-aware systems. It is suggested that metrics such
as calibration error, confidence distributions, and threshold
sensitivity should be employed in order to provide additional
insights into the effectiveness of uncertainty modelling. Specif-
ically, calibration metrics such as Expected Calibration Error
(ECE) would quantify whether predicted probabilities align
with actual outcomes—a critical property for safety-critical
systems where overconfident predictions can lead to danger-
ous decisions. Similarly, analysis of confidence distributions
and precision-recall curves would provide deeper insight into
model behaviour across different operating thresholds. The
absence of these metrics limits the assessment of whether the
uncertainty modelling components genuinely improve predic-
tion reliability beyond aggregate accuracy measures.

Single Dataset Evaluation: It is important to note that all
experiments were conducted exclusively on the PIE dataset. In
order to assess the generalisability of the uncertainty modelling
approach across different environments and data collection
conditions, it would be necessary to validate this approach on
additional pedestrian datasets (such as JAAD) or real-world
deployment scenarios.

The implementation process is characterised by a high
degree of complexity. The precise mechanisms by which
threshold networks influence decision boundaries and how
contextual features are weighted in practice remain under-
specified in the current implementation. In order to achieve
a comprehensive understanding of these components and to
facilitate their optimisation, it is necessary to undertake a more
detailed analysis.

E. Future Research Directions

In light of the study’s findings and its inherent limitations,
several avenues merit further exploration through dedicated
investigation.
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Alternative Uncertainty Techniques: Exploration of
Bayesian neural networks, deep ensembles, or evidential learn-
ing approaches may offer a more effective means of quantify-
ing uncertainty, with the potential advantage of reduced com-
putational overhead in comparison to the threshold network
approach that has been employed in this study.

Advanced Architectures: The investigation of transformer-
based models and attention mechanisms has the potential
to enhance baseline performance and uncertainty modelling
capabilities, especially with regard to the capture of long-range
temporal dependencies and context relationships.

Comprehensive Evaluation: The expansion of the eval-
uation framework to encompass calibration metrics, confi-
dence distributions, confusion matrices and safety-specific
measures would facilitate a more comprehensive assessment
of uncertainty-aware PID systems.

Cross-Dataset Validation: In order to ascertain the robust-
ness and transferability of the proposed uncertainty modelling
approach, it is necessary to test the framework on multiple
pedestrian datasets and real-world scenarios.

Hyperparameter Optimization: A systematic investigation
of cost-sensitive loss weights, threshold network architectures,
and training strategies could identify configurations that better
balance performance gains against computational costs.

F. Concluding Remarks

The present study demonstrates that integrating uncertainty
modelling into pedestrian intention detection systems can pro-
vide measurable improvements in classification performance,
particularly through cost-sensitive learning that prioritises
safety-critical errors. Nevertheless, it should be noted that
these benefits are accompanied by a significant computational
overhead and implementation complexity. The modest magni-
tude of performance improvements suggests that uncertainty
modelling should be regarded as one component of a compre-
hensive safety strategy rather than a transformative solution.
The substantial performance advantage of deep architectures
(ResNet50) over simpler models remains the dominant factor
in determining the effectiveness of PID systems. Future en-
deavours should concentrate on achieving equilibrium between
the conflicting imperatives of performance, computational effi-
ciency, and uncertainty quantification to formulate pragmatic,
implementable systems for autonomous vehicles navigating
intricate urban environments.

VIII. CONCLUSION

The present paper set out to investigate the application of
uncertainty modelling in the context of pedestrian intention
detection within the complex environment of urban traffic. The
present study explored the integration of two complementary
mechanisms—threshold networks for aleatoric uncertainty and
cost-sensitive learning for epistemic uncertainty—into conven-
tional CNN architectures through a three-phase experimental
design.

Experiments on the PIE dataset utilising three CNN back-
bones (ResNet50, VGG16, and AlexNet) have revealed that
uncertainty modelling components exert distinct effects on
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classification performance. The integration of the Threshold
network (Phase 2) introduced a degree of complexity, resulting
in a slight decline in performance. Specifically, the accuracy
of ResNet50 decreased from 98.23% to 98.20%, and the F1-
score declined from 96.30% to 96.25%. In the third phase, the
implementation of cost-sensitive learning successfully restored
baseline performance and achieved modest enhancements.
Notably, ResNet50 attained an accuracy of 98.30%, along with
an Fl-score of 96.35%.

The study demonstrated that deep architectures, particularly
ResNet50 with its residual connections, substantially outper-
form simpler networks for pedestrian intention detection, re-
gardless of uncertainty modelling approach. The performance
disparity of approximately 28-30 percentage points between
ResNet50 and simpler architectures (VGG16, AlexNet) re-
mained consistent across all experimental phases.

A. Key Findings

The research provides several important insights:

The following paper sets out to explore the potential ben-
efits of cost-sensitive learning. The efficacy of cost-sensitive
learning in addressing epistemic uncertainty was demonstrated
by its ability to bias the model towards enhanced recall for the
crossing class. The modest F1-score improvements (0.05-0.58
percentage points across models) indicate enhanced sensitivity
to safety-critical crossing events, though the magnitude of
improvement is limited.

Threshold Network Challenges: The integration of thresh-
old networks to model aleatoric uncertainty proved to be
more challenging than had been anticipated. The decline in
performance observed in Phase 2 indicates that the added com-
plexity resulting from dynamic thresholding necessitates more
advanced training strategies or architectural modifications to
achieve its full potential.

Computational Trade-offs: The implementation of un-
certainty modelling has been demonstrated to engender a
considerable computational overhead. The duration of training
for ResNet50 increased from 122 minutes (the baseline) to 248
minutes (completion of the entire framework), representing
a 103% increase. When considering practical deployments,
this computational cost must be weighed against the modest
performance improvements.

Architecture Dominance: The selection of backbone ar-
chitecture is the primary factor determining the performance
of PID systems. Uncertainty modelling provides incremental
refinements rather than transformative improvements, with
ResNet50’s architectural advantages persisting across all ex-
perimental phases.

B. Contributions

The present study contributes to the field of pedestrian
intention detection research in three ways:

Firstly, it provides a systematic experimental evaluation
of uncertainty modelling components within PID systems,
isolating the effects of aleatoric and epistemic uncertainty
handling through a structured three-phase design.

Secondly, it demonstrates that cost-sensitive learning offers
a parameter-free approach to encoding safety priorities directly
into network training, achieving modest improvements in F1-
score without the need for architectural modifications.

Thirdly, it quantifies the computational costs associated with
uncertainty modelling in PID systems, thereby establishing
baseline measurements for training time overhead across mul-
tiple architectures.

C. Limitations

However, it is important to note that the findings are
constrained by several limitations, which restrict both the
scope and generalizability of the results. The evaluation was
conducted exclusively on the PIE dataset, employing solely
accuracy and F1-score metrics. A comprehensive uncertainty
assessment would require additional metrics such as calibra-
tion error, confidence distributions, and threshold sensitivity
analysis. The study did not include measurements of inference
time, embedded hardware testing, or cross-dataset validation,
which are essential for assessing real-world deployment fea-
sibility.

D. Future Directions

It is recommended that future research address the limi-
tations identified and explore several promising avenues for
further study.

e« A comprehensive evaluation of the metrics is re-
quired. The incorporation of calibration metrics (ECE),
confidence distributions, precision-recall analysis, and
confusion matrices is imperative in order to provide a
comprehensive assessment of uncertainty-aware systems.

« Alternative uncertainty techniques: The investigation
encompasses Bayesian neural networks, deep ensembles,
and evidential learning approaches, with the objective of
ascertaining whether these methods can offer enhanced
uncertainty quantification with reduced computational
overhead.

o Temporal modeling: The framework is to be extended
with recurrent or transformer-based temporal encoders
with a view to capturing long-term pedestrian motion
dynamics and temporal uncertainty evolution.

o Cross-dataset validation: The approach is to be tested
on additional benchmarks (JAAD, TITAN) in order to
assess generalisation across diverse visual domains and
data collection conditions.

« Real-world deployment: The following three steps are to
be taken in order to establish the practical feasibility of
autonomous vehicle applications: firstly, inference time
measurements must be conducted; secondly, embedded
hardware testing must be carried out; and thirdly, real-
world validation must be undertaken.

o The process of threshold network refinement is out-
lined as follows: The present study investigates alter-
native architectures, training strategies and contextual
feature selection with a view to realising the potential
benefits of adaptive thresholding.



E. Closing Remarks

This study demonstrates that the application of uncertainty
modelling in pedestrian intention detection systems offers both
opportunities and challenges. Whilst the cost-sensitive learn-
ing mechanism offers a straightforward method for encoding
safety priorities, yielding modest performance benefits, the
integration of threshold networks for aleatoric uncertainty has
proven to be more complex than initially anticipated. The
substantial computational overhead and modest performance
improvements suggest that uncertainty modelling should be
carefully evaluated against specific deployment requirements
rather than being adopted universally.

The research emphasises that architectural design, specifi-
cally the utilisation of deep networks with residual connec-
tions, remains the predominant factor influencing the perfor-
mance of PID systems. Uncertainty modelling offers incre-
mental refinements that may be valuable in safety-critical con-
texts, where even minor improvements in recall for crossing
events justify additional computational investment.

Future endeavours should concentrate on the development
of more efficient uncertainty estimation techniques, conduct-
ing comprehensive evaluations including calibration and con-
fidence metrics, and validating approaches across multiple
datasets and real-world deployment scenarios. By addressing
these challenges, the research community can work towards
building pedestrian intention detection systems that effectively
balance performance, reliability, computational efficiency, and
safety requirements for autonomous vehicle applications.
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