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Application of Large Language Models
to automatic classification of vulnerabilities
according to the CVSS 3.1 standard
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Abstract—We evaluated three chatbot models (ChatGPT-4o-
mini, Gemini 2.0 Flash, Deepseek Chat) to automate CVSS 3.1
vulnerability scoring using 4,459 CVE records. Gemini achieved
the highest accuracy across prompt strategies, while ChatGPT
showed vector-score inconsistencies, and Deepseek underesti-
mated severity. Results suggest that chatbots can support analysts
but require validation mechanisms.
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I. INTRODUCTION

YBERSECURITY is increasingly recognized as a crit-

ical factor for the stability of societies, economies, and
everyday digital interactions [1], [2]. The number of disclosed
software vulnerabilities continues to grow year by year, cre-
ating a significant challenge for organizations that rely on
digital infrastructure. According to the National Vulnerability
Database (NVD), more than 39,000 new Common Vulnerabili-
ties and Exposures (CVEs) were registered in 2024, surpassing
previous record years and illustrating the accelerating pace
of security disclosures [3]. This continuous increase is driven
not only by the rapid expansion of software ecosystems but
also by the adoption of automated vulnerability discovery tools
and the growing role of coordinated vulnerability disclosure
programs. Consequently, the identification, evaluation, and
prioritization of vulnerabilities have become a critical part of
security operations for governments, enterprises, and end users
[4], [5].

The Common Vulnerability Scoring System (CVSS) is the
most widely adopted framework for assessing vulnerability
severity. CVSS 4.0, released in late 2023, is the most recent
version [6]; however, it is not yet widely used in practice, with
CVSS 3.1 still being the dominant standard applied across
the industry [7]. One of the persistent challenges is the lack
of complete CVSS 3.1 coverage for all vulnerabilities. Many
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older CVEs are available only with CVSS 2.0 scores, requiring
conversion to CVSS 3.1 in order to be properly integrated into
modern vulnerability management workflows [8]-[10]. Man-
ual calculation of CVSS vectors remains time-consuming and
requires expert knowledge, leading to delays, inconsistencies,
and potential misclassifications [I1]. Furthermore, different
vendors apply proprietary vulnerability prioritization methods
[12]-[15], which lack transparency and may result in deci-
sions based on undisclosed heuristics rather than standardized
scoring [16].

The introduction of machine learning and natural language
processing further advanced this field. Shahid and Debar
proposed CVSS-BERT [17], using deep learning to predict
CVSS metrics from vulnerability descriptions. Kekiil et al.
[18] addressed the issue of missing vectors in the NVD by
applying ML classifiers, while Nowak et al. [9] developed
models to convert CVSS 2.0 to 3.x scores, highlighting the
ongoing transition challenges. These works illustrate the po-
tential of Al but focus primarily on structured ML rather than
generative models.

With the rise of Large Language Models (LLMs) [19],
recent works have explored their applicability to CVSS scor-
ing. Turtiainen et al. [20] evaluated ChatGPT in a zero-
shot setting on 113,000 CVEs, achieving 65% correctness
in severity categories but only 20% exact vector matches.
McClanahan et al. [21] analyzed practical advantages and
risks of ChatGPT in vulnerability management workflows,
emphasizing hallucinations and inconsistency issues. Mar-
chiori et al. [22] compared LLM-based methods with hybrid
embedding approaches, concluding that hybrid models achieve
higher reliability. Liu et al. [23] confirmed that prompt design
significantly influences LLM performance, while Chopra et
al. [24] proposed ChatNVD, an LLM-powered interface for
interactive vulnerability exploration.

Compared to these studies, the work presented in this
paper introduces several novel contributions. First, unlike prior
evaluations that used naturally skewed datasets, this study
applies a balanced dataset across the full CVSS 3.1 spectrum
(0.0-10.0), ensuring fairness across severity levels. Second,
while most prior research examined a single chatbot model
(e.g., GPT), here we perform a multi-chatbot comparative
analysis including ChatGPT-40-mini, Gemini 2.0 Flash, and
Deepseek Chat, revealing model-specific strengths and weak-
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nesses. Third, we extend previous work by systematically
analyzing prompt engineering strategies, demonstrating that
different chatbots react inconsistently to augmented or restric-
tive prompts. Finally, our study provides an in-depth error
analysis highlighting systematic biases, such as ChatGPT’s
inconsistency between vectors and scores, and Deepseek’s
severe underestimation of critical vulnerabilities.

Thus, this contribution complements the existing literature
by expanding the scope of evaluation, proposing a method-
ology for fair benchmarking, and identifying new pitfalls in
chatbot-based CVSS scoring. These findings are of practical
relevance for organizations considering the integration of con-
versational Al into vulnerability management processes.

In this contribution, we present a systematic evaluation of
chatbot-based automation for CVSS 3.1 scoring. Building on
the balanced dataset of 4,459 CVEs spanning the full range
of base scores, we compare three modern chatbot platforms:
ChatGPT-40-mini (OpenAl), Gemini 2.0 Flash (Google), and
Deepseek Chat. Our study examines the impact of prompt
engineering on scoring accuracy, identifies systematic biases
across models, and provides a quantitative and qualitative error
analysis.

The remainder of this paper is organized as follows:

o Background - introduces CVSS 3.1 and the fundamentals
of LLM-based chatbots.

« Related Work - summarizes existing approaches to auto-
mated vulnerability scoring and chatbot-assisted security
tasks.

« Methodology - describes the dataset, chatbot models, and
evaluation metrics.

o Results - presents experimental findings, including accu-
racy, Fl-scores, and error analysis.

« Discussion - critically analyzes the results in comparison
with the literature, highlighting practical implications.

o Conclusions - provide a summary of findings and outline
directions for future research.

II. METHODOLOGY

This section describes the methodology adopted in order
to evaluate the applicability of modern chatbot systems for
automated CVSS 3.1 scoring. The research design follows a
structured approach consisting of dataset preparation, chatbot
model selection, prompt engineering, and evaluation proce-
dures.

The dataset used in this study was collected from the
National Vulnerability Database (NVD). A total of 4,459
CVE entries with official CVSS 3.1 vectors were retrieved.
In order to minimize bias introduced by the naturally skewed
distribution of vulnerabilities, the dataset was balanced across
all eleven CVSS base score intervals (0.0-1.0, 1.0-2.0, ...,
9.0-10.0). For each interval, up to 500 CVEs were randomly
selected. This ensured that the evaluation would equally rep-
resent vulnerabilities from low to critical severity, rather than
reflecting the over representation of medium and high scores
observed in real-world distributions.

Each CVE entry included the vulnerability description, the
official CVSS 3.1 vector, and the corresponding base score.
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These records were used as the reference dataset for evaluating
chatbot outputs.

The evaluation of chatbot suitability for CVSS 3.1 scoring
was conducted across three models provided by different ven-
dors. The primary selection criteria included the lowest cost
per token and the shortest response time, as these factors di-
rectly influence the feasibility of large-scale automated assess-
ments. Initially, four models were considered: ChatGPT-4o-
mini (OpenAl), deepseek-chat (DeepSeek), gemini-2.0-flash
(Google), and grok-3-mini (X.ai).

o ChatGPT-40-mini (OpenAl) - a compact version of GPT-
4 optimized for efficiency and cost-effectiveness, widely
available through OpenAI’s API It was selected for its
balance between performance and low pricing, making it
suitable for high-volume experiments.

e Gemini 2.0 Flash (Google) - the most advanced real-
time chatbot available at the time of writing, offering
multimodal capabilities. Its main advantage is very low
latency, combined with competitive pricing and strong
reliability in structured tasks.

o Deepseek Chat (DeepSeek) - an open-source large lan-
guage model aimed at general-purpose reasoning. Al-
though slower than Gemini and ChatGPT, it offered flexi-
bility and transparency, making it an interesting candidate
for evaluation.

API keys were obtained for all platforms, and preliminary
response time measurements were conducted. The average
generation time for grok-3-mini was 15 seconds per query,
which implies a runtime of approximately 18.5 hours for a
single test round (4,459 queries). The faster variant, grok-
3-mini-fast, reduced the average time to 9 seconds, but the
total runtime (around 11 hours) was still considerably longer
than that of the other models, and the associated cost was
significantly higher [25]-[28]

Due to these limitations, the Grok model family was ex-
cluded from further testing. As a result, the final evaluation
focused exclusively on ChatGPT-40-mini, Gemini 2.0 Flash,
and Deepseek Chat.

The experiment was designed to test three different prompting
strategies, reflecting the impact of input formulation on chatbot
performance:

e Test 1 - Baseline Prompt: Each CVE description was
provided to the chatbot with the instruction: “Provide
the CVSS 3.1 vector and the corresponding base score.”
This represented a zero-shot scenario without additional
guidance.

e Test 2 - Augmented Prompt: In addition to the CVE
description, the chatbot was provided with a structured
explanation of CVSS 3.1 metric categories and expected
output format. This aimed to reduce syntactic errors and
improve adherence to the CVSS standard.

o Test 3 - Restrictive Prompt: The CVE description was
provided together with explicit instructions prohibiting
the chatbot from using external knowledge sources (e.g.,
databases or training memory), requiring it to rely solely
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on the given description. This tested the chatbot’s ability
to reason without leveraging latent memorization.

In order to assess chatbot performance, several evaluation
metrics were defined:

e Accuracy: The percentage of cases where the chatbot’s
predicted base score exactly matched the official score,
as well as accuracy within a £1.0 tolerance range.

e Fl-Score: Computed for each severity class (Low,
Medium, High, Critical) based on precision and recall,
in order to evaluate classification balance.

o Consistency: The degree to which the generated CVSS
vector corresponded to the declared base score when
recalculated using the official CVSS formula.

o Error Analysis: Systematic categorization of common
mistakes, including underestimation, overestimation, in-
valid vectors, and contradictions between vector and
score.

For each chatbot, the 4,459 CVE descriptions were submitted
under each of the three prompt variants, yielding a total
of 13,377 queries per model. The chatbot responses were
captured and automatically parsed using Python scripts with
regular expressions, ensuring that both vectors and scores
were extracted. Responses failing to comply with the expected
format were flagged as syntactic errors.

Subsequently, each predicted score was compared against
the reference CVSS 3.1 score from NVD. Accuracy and F1-
scores were calculated, while inconsistencies between vectors
and declared scores were separately logged.

All experiments were performed using publicly accessible
chatbot APIs. Data preprocessing and evaluation scripts were
implemented in Python, with Pandas used for dataset handling
and Matplotlib for visualization. Experiments were executed
on a Linux-based environment with sufficient memory and
processing power to handle multiple API requests in parallel.

III. EXPERIMENT

This section presents the findings of the three experiments
described in methodology section. Results are structured by
prompt type and chatbot model.

A. Baseline Test

The baseline test applied the zero-shot instruction. This
experiment served as a reference point for subsequent tests.
The prompt required the chatbot to generate only the Base
Score value and the corresponding CVSS 3.1 vector. The
objective of this test was to obtain reference results against
which deviations in the two subsequent experiments could be
evaluated, as well as to compare the efficiency of the models
in terms of usage cost and total runtime.

1) ChatGPT-40-mini: : The baseline run lasted 1h 32m 58s
at a total cost of $0.20 [25]. Table I shows the distribution
of predicted and vector-based scores compared to the Actual.
Predictions were concentrated in the 5-8 range (82.3%), while
vector-based recalculations produced a more balanced spread.
Eight malformed vectors were recorded.

TABLE I
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR
CHATGPT-40-MINI IN THE BASELINE TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 2 15

3-5 1000 156 682
6-8 2634 3686 2801
9-10 788 615 953

The evaluation of ChatGPT-4o-mini under the baseline
prompt produced two distinct result sets depending on whether
directly predicted scores or vector-based recalculations were
considered.

For the direct predictions, overall accuracy reached 42.4%,
with a weighted precision of 0.58, recall of 0.42, and an F1-
score of 0.36.

By contrast, when recalculated from the generated CVSS
vectors, performance improved modestly. Accuracy increased
to 45.2%, with weighted precision of 0.53, recall of 0.45, and
Fl1-score of 0.44. This improvement stemmed primarily from
better handling of the Critical [9-10] class, where recall rose
from 0.19 to 0.51, yielding an F1-score of 0.56. Nevertheless,
the model still struggled with Low [0-2]-severity vulnera-
bilities (recall of 0.20) and continued to misclassify a large
fraction of them as Medium [3-5] or High [6-8]. In summary,
ChatGPT-40-mini showed a bias toward medium severity,
frequently downgrading critical vulnerabilities. Vector-based
outputs improved alignment but introduced inconsistencies
between scores and vectors.

2) Gemini 2.0 Flash: : The run with achieved the lowest
cost ($0.151) [26] and shortest runtime 46m 42s.

Table II compares the distribution of predicted and vector-
based scores generated by Gemini 2.0 Flash against the ground
truth values. The direct predictions were heavily skewed
towards the Medium [6-8] and Critical [9-10] ranges, with
3310 and 942 cases assigned, respectively. This resulted in a
substantial underestimation of the Low class [0-2], where only
202 predictions were made compared to 1000 actual cases.

TABLE II
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR GEMINI
2.0 FLASH IN THE BASELINE TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 5 12

3-5 1000 202 734
6-8 2634 3310 2491
9-10 788 942 1222

The baseline prompt achieved an overall accuracy of 47.6%
for both direct predictions and vector-based recalculations.
The weighted precision was comparable in both cases (0.56
vs. 0.56), as were recall (0.48 vs. 0.48) and Fl-score (0.44
vs. 0.44). These values demonstrate stable performance across
both evaluation modes.

Vector-based results were nearly identical, with slight im-
provements in the stability of classification for Low [0-2] and



Critical [9-10] classes. Importantly, the vector-based approach
did not introduce additional inconsistencies, and the misclas-
sification patterns remained the same as for direct predictions.

In summary, Gemini 2.0 Flash produced the most balanced
performance among the tested chatbots in the baseline setting.
It showed consistent recognition of Critical [9-10] vulnera-
bilities and reliable handling of Medium [3-5] ones, albeit
at the expense of very poor treatment of the Info and Low
categories. Nevertheless, compared to ChatGPT-40-mini and
Deepseek Chat, Gemini achieved the best overall trade-off
between precision and recall.

3) Deepseek Chat: : The run lasted 7h 54m 17s at a
cost of $0.28 [27]. Table III presents the distribution of
predicted and vector-based scores generated by Deepseck
Chat in comparison with the actual ground truth values. The
model exhibited a strong bias towards higher severity classes.
In the case of direct predictions, 2800 vulnerabilities were
classified as Medium [3-5] and as many as 1528 as Critical
[9-10], compared to the reference values of 2634 and 788,
respectively. This represents a near doubling of the Critical
class, clearly illustrating Deepseek’s tendency to overestimate
severity.

TABLE III
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR
DEEPSEEK CHAT IN THE BASELINE TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 1 5
3-5 1000 130 620
6-8 2634 2800 2400
9-10 788 1528 1434

The baseline test produced an overall accuracy of 47.1% for
direct predictions and 46.8% for vector-based recalculations.
Weighted precision remained in the range of 0.54-0.55, with
recall around 0.47 and Fl-scores of 0.44 (predicted) and
0.43 (vector-based). This indicates a consistent but modest
performance across both evaluation modes.

For direct predictions revealed that the model handled
Critical vulnerabilities relatively well, with a recall of 0.78,
but frequently misclassified Low [0-2]-severity cases as either
Medium [3-5] or High [7-8], yielding a very low recall of
0.14 despite high precision (0.84). The Medium class achieved
balanced results with an Fl-score of 0.54, while the Info
class remained poorly represented, with only two correct
identifications out of 15.

Vector-based recalculations produced nearly identical re-
sults, with minor fluctuations: recall for the Critical [9-10]
class dropped slightly from 0.78 to 0.77, while precision for
the Low [0-2] class improved marginally. However, these
changes were within the margin of noise and did not alter
the overall performance profile of the model.

In summary, Deepseek Chat demonstrated a strong bias to-
wards high-severity categories, particularly inflating the num-
ber of Critical [9-10] vulnerabilities, while severely underes-
timating Low [0-2] and Info classes. Compared to ChatGPT-
4o-mini, Deepseek achieved better recall for critical vulner-
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abilities but remained less balanced overall than Gemini 2.0
Flash.

B. Extended Prompt Test

Similar to the baseline test, the discussed prompt required
the chatbot to generate only the CVSS 3.1 Base Score together
with the corresponding vector. However, in this case the full
structure of the vector and all possible parameter values for
the Base Score were explicitly provided. The objective of
this procedure was to completely eliminate the problem of
malformed vectors and to identify potential shifts in scoring
tendencies once supplementary information was supplied.

It was observed that under this prompt, the ChatGPT-4o-
mini model periodically returned outputs in a deviating format,
such as inserting the word “Vector” or introducing a space
between the “CVSS” prefix and the rest of the vector (e.g.,
“CVSS 3.1/...7). Such anomalies occurred exclusively in this
test and may be attributed to ambiguities in the response
format implied by the prompt design.

1) ChatGPT-40-mini: With the extended prompt,
ChatGPT-40-mini completed the task in 1h 35m 02s at a total
cost of $0.37. The use of additional instructions successfully
eliminated malformed vectors, which were present in the base-
line test. However, this improvement in syntactic compliance
came at the expense of overall classification performance.
Accuracy and Fl-scores both declined compared to baseline
values, indicating that the extended prompt did not translate
into better semantic understanding of CVSS scoring.

Table IV shows the distribution of predicted and vector-
based scores. As in the baseline test, the model remained
heavily biased toward the Medium severity range (6-8), with
3610 predictions versus the actual 2634 cases. This over-
concentration occurred at the expense of Low - severity
vulnerabilities (3—5), which were severely underrepresented in
direct predictions (200 vs. 1000). Vector-based recalculations
partially corrected the imbalance, raising the Low class to
742 cases and aligning the Critical range (9-10) closer to
the ground truth, but still inflating its frequency (1005 vs.
788). The Info/None category (0-2) remained almost entirely
neglected.

TABLE IV
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR
CHATGPT-40-MINI IN THE EXTENDED TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 4 12
3-5 1000 200 742
6-8 2634 3610 2700
9-10 788 645 1005

Evaluation metrics in Table V confirm this degradation.
Direct predictions yielded a precision of 0.39, recall of 0.38,
and an Fl-score of 0.39. Vector-based scores showed slightly
higher recall (0.41) and F1 (0.42), but precision dropped fur-
ther to 0.37. Compared to baseline results, both configurations
represent a noticeable regression in performance.
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TABLE V
EVALUATION METRICS FOR CHATGPT-40-MINI IN THE EXTENDED TEST

Metric Predicted | Vector-Based
Precision 0.39 0.37
Recall 0.38 0.41
F1-score 0.39 0.42

In summary, while the extended prompt successfully im-
proved syntactic correctness by eliminating malformed vec-
tors, it also reduced the overall classification reliability
of ChatGPT-40-mini. The model continued to overestimate
medium-severity vulnerabilities and failed to improve detec-
tion of low- and information-level cases, confirming its limited
ability to leverage detailed instructions in this task.

2) Gemini 2.0 Flash: : With the extended prompt, Gemini
2.0 Flash completed the evaluation in 46m 16s at a cost
of $0.263. The introduction of detailed instructions not only
eliminated malformed vectors but also improved the balance
of predictions across severity classes compared to the baseline
test.

Table VI shows that direct predictions were still slightly
biased toward the Medium (6-8) and Critical (9—10) ranges,
but the overall distribution more closely approximated the
ground truth than in the baseline. For instance, Low [0-2]-
severity vulnerabilities (3-5) rose to 210 predictions versus
only 202 in the baseline, and vector-based recalculations
further improved this figure to 760, aligning closely with
the reference 1000 cases. Similarly, the Critical [9-10] class
expanded to 1042 direct predictions and 1225 vector-based
scores, both closer to the target 788 than the baseline results.

TABLE VI
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR GEMINI
2.0 FLASH IN THE EXTENDED TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 7 14
3-5 1000 210 760
6-8 2634 3200 2460
9-10 788 1042 1225

Evaluation metrics presented in Table VII confirm this
improvement. Direct predictions achieved a precision of 0.46,
recall of 0.49, and Fl-score of 0.52, while vector-based
results raised recall to 0.52 and the Fl-score to 0.55. Both
sets of results represent a measurable increase over baseline
performance, particularly in terms of F1, which reflects a more
balanced handling of precision and recall.

TABLE VII
EVALUATION METRICS FOR GEMINI 2.0 FLASH IN THE EXTENDED TEST

Metric Predicted | Vector-Based
Precision 0.46 0.45
Recall 0.49 0.52
Fl-score 0.52 0.55

In summary, Gemini 2.0 Flash demonstrated the most
substantial improvement under the extended prompt, achieving
the best overall accuracy and F1 among the tested models. The
elimination of malformed vectors and the more balanced class
distribution confirms that Gemini was uniquely capable of
leveraging extended instructions to enhance CVSS 3.1 scoring
reliability.

3) Deepseek Chat: : With the extended prompt, Deepseek
Chat required 8h 00m 03s to complete the evaluation, at a cost
of $0.38. While malformed vectors were successfully elimi-
nated, overall classification performance degraded compared
to the baseline test.

Table VIII illustrates the distribution of predicted and
vector-based scores. Direct predictions remained skewed to-
ward the Medium (6-8) and Critical (9—10) classes, with 2900
and 1387 cases assigned, respectively, compared to the actual
2634 and 788. This overestimation came at the expense of
Low [0-2]-severity vulnerabilities (3-5), which were severely
underrepresented (170 vs. 1000). Vector-based recalculations
improved the balance slightly, raising the Low class to 680 and
reducing the inflation of the Medium [6-8] and Critical [9-
10] categories, but the distributions still diverged substantially
from the reference.

TABLE VIII
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR
DEEPSEEK CHAT IN THE EXTENDED TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 2 8

3-5 1000 170 680
6-8 2634 2900 2440
9-10 788 1387 1331

Evaluation metrics in Table IX confirm this decline in
performance. Direct predictions achieved precision of 0.37,
recall of 0.42, and an Fl-score of 0.37. Vector-based scores
showed a marginal increase in recall (0.43) and F1 (0.39), but
precision fell further to 0.35. These values are consistently
lower than those obtained in the baseline test, particularly for
the Medium [6-8] class, which experienced the sharpest loss
in accuracy.

TABLE IX
EVALUATION METRICS FOR DEEPSEEK CHAT IN THE EXTENDED TEST

Metric Predicted | Vector-Based
Precision 0.37 0.35
Recall 0.42 0.43
F1-score 0.37 0.39

In summary, although the extended prompt eliminated mal-
formed vectors, it did not improve semantic reliability for
Deepseek Chat. On the contrary, both predicted and vector-
based outputs exhibited worsened performance, reinforcing the
model’s tendency to overestimate higher-severity vulnerabili-
ties and confirming its limited ability to benefit from extended
instruction design.



C. Restricted Prompt Test

In the third test, an experiment was conducted by extending
the baseline prompt with an additional clause explicitly pro-
hibiting the chatbot from using external vulnerability databases
when assigning severity scores.

This approach, however, is subject to inherent limitations.
A language model that has been trained on information
originating from prohibited databases (e.g., CVE) does not
necessarily have a mechanism to fully disentangle such knowl-
edge from the rest of its training corpus [29]. Consequently,
completely disabling the influence of these sources may be
either impossible or difficult to verify in practice. Despite this
uncertainty, the test was carried out because similar restrictions
were applied in the study by [30], discussed in methodology
section, and the results were intended to provide a comparative
verification of the observations reported there.

1) ChatGPT-4o-mini: With the restricted prompt,
ChatGPT-40-mini completed the evaluation in 1h 31m 34s.
Predictions once again concentrated in the Medium (6-8)
severity range, while the number of malformed vectors in-
creased to eleven, representing a regression compared to both
the baseline and extended tests.

Table X shows that the distribution remained highly imbal-
anced. Direct predictions heavily favored the Medium category
(3700 vs. 2634 actual cases), while underestimating Low-
severity vulnerabilities (140 vs. 1000) and largely neglecting
the Info/None range (3 vs. 37). Vector-based recalculations
partially corrected the imbalance, raising the Low class to 700
and increasing the Critical category (1000 vs. 788 actual), but
systematic biases persisted.

TABLE X
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR
CHATGPT-40-MINI IN THE RESTRICTED TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 3 9
3-5 1000 140 700
6-8 2634 3700 2750
9-10 788 616 1000

Evaluation metrics in Table XI confirm the performance
decline. Direct predictions achieved a precision of 0.38, recall
of 0.37, and Fl-score of 0.38. Vector-based results slightly
improved recall (0.40) and F1 (0.41), but precision dropped
further to 0.36. These results are consistently lower than those
observed in the extended test, demonstrating that the restrictive
instructions did not enhance scoring reliability.

TABLE XI
EVALUATION METRICS FOR CHATGPT-40-MINI IN THE RESTRICTED TEST

Metric Predicted | Vector-Based
Precision 0.38 0.36
Recall 0.37 0.40
Fl-score 0.38 0.41

In summary, the restrictive test not only degraded clas-
sification performance but also introduced more malformed
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outputs. ChatGPT-4o-mini showed limited ability to adapt
to prohibitive instructions, reinforcing its tendency to over-
concentrate predictions in the medium-severity range and
confirming its instability when deprived of broader contextual
cues.

2) Gemini 2.0 Flash: : With the restricted prompt, Gemini
2.0 Flash completed the evaluation in 00:48:53. A total of four
malformed vectors were recorded, which represent a minor
formatting issue compared to the extended test. Nevertheless,
overall accuracy declined slightly, particularly in the Medium
severity class, where misclassifications increased.

Table XII presents the distribution of predicted and vector-
based scores compared to the ground truth. Direct predictions
again showed a strong bias toward the Medium range (3320
vs. 2634 actual), while underestimating the Low class (198 vs.
1000). Vector-based recalculations improved balance slightly,
recovering 740 cases in the Low range and increasing the
Critical category (1204 vs. 788 actual), though systematic
deviations persisted.

TABLE XII
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR GEMINI
2.0 FLASH IN THE RESTRICTED TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 6 10

3-5 1000 198 740
6-8 2634 3320 2505
9-10 788 935 1204

Table XIII summarizes the evaluation metrics. Direct predic-
tions achieved precision of 0.44, recall of 0.46, and an F1-score
of 0.48. Vector-based scores showed modest improvements in
recall (0.49) and F1 (0.51), though precision dropped slightly
to 0.43. Compared to the extended test, these results indicate a
small decline across all metrics, but the degradation remained
marginal.

TABLE XIII
EVALUATION METRICS FOR GEMINI 2.0 FLASH IN THE RESTRICTED TEST

Metric Predicted | Vector-Based
Precision 0.44 0.43
Recall 0.46 0.49
F1-score 0.48 0.51

In summary, the restrictive prompt had only a limited
negative impact on Gemini 2.0 Flash. Despite a slight decrease
in accuracy and Fl-score compared to the extended scenario,
Gemini consistently outperformed both ChatGPT-4o0-mini and
Deepseek Chat, maintaining the highest overall reliability and
confirming its robustness under restrictive instruction settings.

3) Deepseek Chat: : With the restricted prompt, Deepseek
Chat completed the evaluation in 7h 52m 40s at a cost
of $0.33. A total of five malformed vectors were recorded,
slightly higher than in the extended test. As in previous scenar-
ios, the model displayed a strong bias toward overestimating
severity, frequently upgrading Medium-level vulnerabilities to
the Critical category.
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Table XIV shows the distribution of predicted and vector-
based scores compared with the actual reference values.
Direct predictions significantly overrepresented the Critical
class (1483 vs. 788 actual), while underrepresenting both the
Low (125 vs. 1000) and Info/None categories (1 vs. 37).
Vector-based recalculations partially corrected the imbalance
by recovering 645 vulnerabilities in the Low category and 1398
in the Critical [9-10] range, but systematic overestimation
persisted.

TABLE XIV
DISTRIBUTION OF PREDICTED AND VECTOR-BASED SCORES FOR
DEEPSEEK CHAT IN THE RESTRICTED TEST

Score Interval ‘ Actual ‘ Predicted | Vector-Based

0-2 37 1 6

3-5 1000 125 645
6-8 2634 2850 2410
9-10 788 1483 1398

The evaluation metrics in Table XV confirm this pattern.
Predicted scores achieved a precision of 0.36, recall of 0.42,
and Fl-score of 0.36, while vector-based results slightly
improved recall (0.43) and F1 (0.38) but reduced precision
(0.34). These values are broadly consistent with the baseline
test, indicating that the restrictive prompt did not meaningfully
alter Deepseek’s performance profile.

TABLE XV
EVALUATION METRICS FOR DEEPSEEK CHAT IN THE RESTRICTED TEST

Metric Predicted | Vector-Based
Precision 0.36 0.34
Recall 0.42 0.43
F1-score 0.36 0.38

In summary, the restrictive prompt had little impact on
Deepseek Chat. The model continued to suffer from systematic
severity overestimation and occasional erroneous zero assign-
ments for critical vulnerabilities. Although recall remained
relatively high, the long runtime, increased number of mal-
formed vectors, and low precision limit the model’s practical
applicability in automated vulnerability assessment workflows.

IV. CONCLUSION

The experimental results clearly indicate that the current
generation of chatbot-based Large Language Models cannot
yet function as fully autonomous experts for vulnerability
severity assessment. While the evaluated models demonstrated
the ability to generate syntactically valid CVSS 3.1 vectors in
most cases, significant discrepancies with the reference values
were observed. The nature of these discrepancies was model-
dependent. Specifically, ChatGPT-40-mini exhibited a strong
bias towards clustering predictions in the medium range (5-8),
whereas Gemini 2.0 Flash and Deepseek Chat systematically
overestimated vulnerability severity.

Although ChatGPT-40-mini produced syntactically valid
vectors, recalculated scores rarely aligned with either the

ground-truth values or the model’s own direct predictions,
confirming the problem of logically inconsistent vectors. In
contrast, Gemini 2.0 Flash and Deepseek Chat produced
outputs with greater internal consistency, with Gemini 2.0
Flash consistently outperforming the other models in terms
of accuracy and Fl-score across all experimental settings.

An analysis of operational parameters revealed a marked
advantage of Gemini 2.0 Flash, which completed tasks in the
shortest time and at the lowest cost. Conversely, Deepseek
Chat was the slowest and most expensive model, though
it achieved relatively high classification recall for critical
vulnerabilities. Across eight of the nine trials, recalculated
scores from generated vectors proved marginally closer to the
reference values than the direct predictions; however, these
differences were not substantial.

The restrictive prompt, designed to prevent models from
leveraging external knowledge, did not have a statistically sig-
nificant impact on the distribution of results. Only a marginal
increase in errors and a slight decrease in performance met-
rics were observed, well within the margin of measurement
uncertainty. This outcome suggests that current LLMs cannot
meaningfully distinguish between training knowledge and ex-
ternal information, and such restrictions become relevant only
in the context of “reasoning models” that explicitly search
external sources with controllable scope.

The extended prompt, which introduced explicit definitions
of CVSS vector components, had heterogeneous effects across
models. A notable improvement in classification quality was
observed only in the case of Gemini 2.0 Flash, which achieved
the highest F1 scores in all nine trials. For both ChatGPT-4o-
mini and Deepseek Chat, this modification had a regressive
effect, reducing classification accuracy. Nevertheless, the in-
clusion of explicit vector structure completely eliminated the
few syntactic errors observed in the baseline test.

One of the most critical issues identified was the erroneous
assignment of a CVSS score of 0.0 to vulnerabilities of high or
critical severity, a problem particularly evident in the outputs
of Deepseek Chat. Such errors pose a serious operational
risk if chatbot-generated results were to be applied without
validation in production vulnerability management systems.
This finding underlines the necessity of independent verifi-
cation mechanisms when integrating LLM-based automation
into vulnerability assessment workflows.

Overall, the results obtained show that while chatbot sys-
tems show promise in supporting human analysts-especially
in terms of reducing manual workload-they cannot currently
replace expert-driven vulnerability scoring. Their practical
applicability lies in semi-automated scenarios, where LLM-
generated results are subjected to systematic validation and
cross-checking.

Future research should extend this work in several direc-
tions:

o Evaluation of next-generation LLMs with improved rea-
soning capabilities.

o Replication of experiments using “reasoning models”
that support explicit and controllable external knowledge
retrieval.



o Migration of the evaluation framework to CVSS 4.0 once

a representative number of vulnerabilities has been scored
in the new standard.

« Extension of analysis beyond base metrics to include

Temporal and Environmental CVSS components.

Finally, this study shows that while chatbots powered by
LLMs hold promise as supportive tools for vulnerability
management, they remain unsuitable as autonomous decision-
makers. Their integration into security workflows should
therefore focus on augmenting, rather than replacing, human
expertise.
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