
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2026, VOL. 72, NO. 1, PP. 1–10
Manuscript received July 30, 2025; revised February, 2026. doi: 10.24425/ijet.2026.157871

Performance analysis of tabular
and Fuzzy Q-learning under varying state

and action space resolution
Roman Zajdel

Abstract—Reinforcement learning (RL) algorithms, such as Q-
learning, are widely applied to control tasks involving continuous
state spaces that require discretization or function approxima-
tion. However, the effect of state and action space resolution on
learning efficiency and convergence stability remains a signif-
icant challenge, particularly when comparing classical tabular
approaches with fuzzy function approximations. This study
presents an in-depth experimental analysis of Q(0)-learning and
trace-based Q(λ)-learning, applied to three benchmark control
problems: Cart–Pole, Ball–Beam, and Mountain Car. The exper-
iments systematically investigate how increasing the granularity
of state discretization (number of bins), the number of fuzzy
sets, and the size of the action space influence convergence speed
and result variance. The results clearly demonstrate that Q(λ)-
learning consistently outperforms Q(0)-learning in both tabular
and fuzzy settings, providing faster convergence and greater
stability at higher discretization resolutions. Furthermore, fuzzy
Q(λ)-learning exhibits superior scalability and generalization
capabilities, particularly for complex underactuated systems such
as Ball–Beam. These findings highlight the practical advantages
of combining eligibility traces with fuzzy state representation in
reinforcement learning. This approach supports the design of
more robust controllers for real-world dynamic systems.

Keywords—Reinforcement Learning, Q-learning, Fuzzy Sys-
tems, State Discretization

I. INTRODUCTION

REINFORCEMENT Learning (RL) provides a general
framework for sequential decision-making in dynamic

and uncertain environments [1]. Among various RL algo-
rithms, Q-learning remains one of the most widely studied
methods due to its simplicity and proven convergence under
tabular representations [2]. However, practical applications
involving continuous or high-dimensional state–action spaces
require discretization or function approximation, both of which
significantly affect learning performance and scalability [3],
[4].

Tabular Q-learning assumes a finite number of states and
actions, which makes it highly sensitive to the resolution of
state discretization. Increasing this resolution often leads to
the “curse of dimensionality,” slower convergence, and poor
generalization. To address these limitations, various extensions
have been proposed, such as eligibility traces (resulting in

R. Zajdel is with Faculty of Electrical and Computer Engineering, Rzes-
zow University of Technology, Rzeszow, Poland (e-mail: rzajdel@prz.edu.pl).

Q(λ)-learning) [1], [5], and function approximation techniques
including fuzzy logic systems [6], [7]. These hybrid ap-
proaches aim to improve generalization and stability when
learning in continuous spaces.

The discretization of the action space plays a crucial role
in reinforcement learning (RL), especially in environments
with continuous or high-dimensional state and action spaces.
Several studies have examined how the number of available
discrete actions affects the learning process. For instance,
action representation choices significantly impact both the
convergence speed and the final policy quality [8]. A finer
discretization may increase policy expressiveness but often
leads to slower learning and increased exploration complex-
ity [9]. Adaptive discretization methods have been proposed to
balance these trade-offs by dynamically adjusting action res-
olution during training [10]. In fuzzy reinforcement learning,
the number of fuzzy sets—and hence the effective number
of action rules—also influences convergence and generaliza-
tion [11]. More recently, parameterized action spaces have
been proposed to blend discrete and continuous representa-
tions, further emphasizing the importance of action granularity
in modern RL algorithms [12].

Motivated by this gap, the present study provides a com-
prehensive experimental comparison of classical tabular and
fuzzy Q-learning, with and without eligibility traces, under
different discretization and action space configurations. The
goal is to analyze the impact of increasing state–action space
resolution on learning performance, stability, and scalability,
thereby offering practical insights for the development of more
robust RL controllers for real-world dynamic systems.

The remainder of this article is structured as follows. Sec-
tion II reviews prior research on fuzzy reinforcement learning
and the use of eligibility traces. Section III-A describes the
considered control environments, followed by Section III-B
and Section III-C, which present the core RL algorithms and
the discretization and fuzzification strategies applied to state
representations. Section III-D outlines the fuzzy Q-learning
framework based on zero-order Takagi–Sugeno models. The
experimental setup and results are detailed in Section IV,
with key observations summarized in Section V. Section VI
discusses the implications of the findings, and Section VII
concludes the paper with final remarks and directions for
future work.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

2 R. ZAJDEL

II. RELATED WORK

Recent advancements in reinforcement learning (RL) have
continued to explore fuzzy and hybrid extensions of the classic
Q-learning algorithm to enhance learning efficiency, robust-
ness, and interpretability in complex control scenarios. Among
these, fuzzy systems—particularly of the Takagi–Sugeno (T–
S) type—have been widely adopted to approximate the action-
value function Q(s, a). A common modeling strategy involves
fixing the antecedent (membership) functions and adapting
only the consequent (typically linear or affine) functions,
resulting in compact and interpretable function approximators.

For instance, Jouffe [13] introduced fuzzy Q-learning based
on fixed fuzzy partitions and linear consequents trained via
temporal-difference (TD) methods. This principle has since
been extended in various domains: Glorennec and Jouffe [14]
applied it to robot navigation, Wen et al. [15] used a T–S fuzzy
controller with parallel distributed compensation (PDC) for
trajectory planning in humanoid manipulators, and Zander et
al. [16] designed T–S-based actor–critic architectures, demon-
strating performance on par with deep Q-networks (DQN)
while preserving interpretability.

More recently, Zahmatkesh et al. [17] proposed a robust
fuzzy Q-learning algorithm for nonlinear flight control, show-
ing resilience against wind disturbances during autonomous
landings. Parallel work by Hostetter et al. [18] introduced
self-organizing fuzzy Q-networks that automatically construct
rule bases while maintaining competitiveness with offline
RL baselines. Zander et al. [19] also confirmed that fuzzy
DQN can outperform standard DQN in interpretability-focused
benchmarks. Additionally, Kozuno et al. [5] revisited Peng’s
Q(λ) and demonstrated that eligibility traces can improve con-
vergence and temporal credit assignment even when integrated
with modern function approximators.

Building on these developments, Tang et al. [20] proposed a
fuzzy actor–critic framework tailored for dynamic load balanc-
ing in smart grids, demonstrating improved energy efficiency
and stability. Similarly, Wang et al. [21] designed a fuzzy
deep reinforcement learning controller for autonomous vehicle
navigation, emphasizing rule interpretability. In 2023, Lei and
Lin [22] proposed a hierarchical fuzzy reinforcement learning
architecture for multi-task control, highlighting scalability and
cross-task generalization.

Collectively, these studies underscore the versatility of fuzzy
Q-learning—particularly with fixed antecedents and learned
consequents—as a robust, scalable, and interpretable alterna-
tive to conventional RL.

While these studies confirm the practical advantages of
fuzzy and trace-based extensions, they primarily focus on the
overall feasibility or hybrid design. Systematic analyses that
examine how the resolution of fuzzy partitions and the number
of discrete actions jointly affect convergence speed, result
variance, and scalability remain scarce. Such aspects are cru-
cial when designing controllers for benchmark environments
with varying state dimensionality, underactuation, and sparse
rewards, such as Cart–Pole, Ball–Beam, or Mountain Car.

III. METHODS

A. System Dynamics

Three benchmark systems were considered: the ball-beam
system, the cart-pole swing-up system, and the mountain car.
These classic nonlinear tasks are standard benchmarks for
reinforcement learning algorithms [1], [2], [4].

a) Ball-Beam.: The state variables of the ball–beam
system (Fig. 1) are the position of the ball, x, and its velocity,
ẋ [23]. The discrete-time dynamics of the system are given
by:

xt = xt−1 + τ ẋt−1,

ẋt = ẋt−1 + τg sin(ϕt),
(1)

where τ = 0.02 s is the discretization step and g = 9.81m/s2

is the gravitational constant. Control over the ball’s position
is achieved by varying the tilt angle ϕ of the beam relative
to the horizontal plane. The objective is to balance the ball
at the center of the beam; nevertheless, in reinforcement
learning scenarios, a satisfactory outcome is often defined
as maintaining the ball on the beam for a given period of
time. In the discrete-action implementation of the ball–beam
environment, a three-action set is typically used—tilt left, keep
the beam level, or tilt right—which in practical simulation
code corresponds to actions such as {−π/4, 0, π/4} (e.g. in
ballbeam-gym, with action_mode=discrete) [24].

Ball

Beam
q

x

Fig. 1. Schematic of the Ball-Beam system.

b) Cart-Pole.: The inverted pendulum consists of a rigid
rod of length 1 m mounted on a horizontally moving cart.
The pendulum is constrained to move only within the plane
of the figure, while the cart can travel up to 2.4 m to the
left or right from its central position (see Fig.2). The cart-pole
system is governed by non-linear equations, neglecting friction
coefficients for both the cart and the pendulum [25]:

xt = xt−1 + τ ẋt−1,

ẋt = ẋt−1 + τ
Ft +ml

(
θ̇2t−1 sin(θt−1)− θ̈t−1 cos(θt−1)

)
mc +m

,

θt = θt−1 + τ θ̇t−1,

θ̇t = θ̇t−1 + τ
g sin(θt−1)− cos(θt−1) ·

Ft+mlθ̇2
t−1 sin(θt−1)

mc+m

l
(

4
3 − m cos2(θt−1)

mc+m

)
(2)

where the state vector consists of the following variables:
x (cart position), ẋ (cart velocity), θ (pendulum angle from
the vertical), and θ̇ (angular velocity of the pendulum). The

PERFORMANCE ANALYSIS OF TABULAR AND FUZZY Q-LEARNING UNDER VARYING STATE (...) 3

gravitational constant is g = 9.81m/s2, the cart mass is
mc = 1.0 kg, and the pendulum mass is m = 0.1 kg. The
pendulum length is l = 0.5m (i.e., half the total length),
and the simulation uses a discretization step of τ = 0.02 s.
The system is controlled by applying a horizontal force
F ∈ {−10,+10}N to the cart, resulting in a discrete two-
element action space defined as A = {−10,+10}N. The pole
must be balanced within an angular deviation of |θ| < 12◦

while the cart position is constrained to the track limits
−2.4m < x < 2.4m. The experiment terminates when the
controller is able to balance the pole continuously for 100,000
time steps.

q

F

x
Fig. 2. Schematic of the Cart-Pole system with position and angle constraints.

c) Mountain Car.: The mountain car problem is a clas-
sical RL benchmark for function approximation and policy
learning [1], [2], [4]. The state variables for this system are the
position of the cart, x, and its velocity, ẋ. The values of these
variables are constrained to the intervals [−1.2, 0.5]m and
[−0.07, 0.07]m/s, respectively. The state is updated according
to the following equations:

xt+1 = xt + ẋt+1,

ẋt+1 = ẋt + 0.001 at − 0.0025 cos(3xt), (3)

where a ∈ A denotes the action. The action set A typically
consists of three discrete values, {−1, 0, 1}, which can be
interpreted as ”reverse”, ”neutral”, and ”forward”, respectively.
The goal of the control strategy is to reach the hilltop marked
as the “Goal” in Fig.3. Due to limited engine power, the
car cannot ascend directly and must instead build momentum
by oscillating between slopes, converting kinetic energy into
potential energy to reach the target state.

B. RL Algorithm

Reinforcement learning problems are commonly modeled
as Markov Decision Processes (MDPs), characterized by the
tuple (S,A,P,R, γ), where S is the set of states, A is the
set of actions, P denotes the state transition probability, R is
the reward function, and γ ∈ [0, 1) is the discount factor [26].

A key objective in RL is to discover an optimal policy π∗

that maximizes the expected cumulative reward. One approach
to this is to estimate the action-value function Qπ(s, a), which
defines the expected return when starting in state s, taking
action a, and following policy π thereafter.

Goal

Fig. 3. Schematic of the Mountain Car system.

When the transition model P is unknown or difficult to
compute, model-free methods such as Q-learning [2] can be
employed. Q-learning estimates the optimal action-value func-
tion Q∗(s, a) directly through interaction with the environment
using the Bellman optimality equation as an update rule. A
commonly used variant of Q-learning is Q(0)-learning, which
corresponds to the standard form of the algorithm where only
the currently visited state-action pair is updated at each time
step. The update rule of Q is expressed using the temporal-
difference error δt as follows:

δt = rt+1 + γmax
a

Qt(st+1, a)−Qt(st, at), (4)

Qt+1(st, at) = Qt(st, at) + α δt, (5)

where α ∈ (0, 1] is the learning rate and γ ∈ [0, 1) is
the discount factor. This method updates values incrementally
based solely on immediate experience, which may lead to slow
propagation of value information over longer time scales.

To accelerate learning in environments with delayed re-
wards, the Q(λ)-learning algorithm extends Q(0) by intro-
ducing eligibility traces [1], [2], [5]. These traces allow the
algorithm to assign credit to multiple recently visited state-
action pairs. The eligibility trace et(s, a) keeps track of how
recently and frequently each pair (s, a) has been visited, and
the Q-values are updated according to:

Qt+1(s, a) = Qt(s, a) + α δt et(s, a), (6)

with eligibility traces decaying over time as:

et+1(s, a) =

{
γλet(s, a) + 1, if (s, a) = (st, at),

γλet(s, a), otherwise,
(7)

where λ ∈ [0, 1] controls the decay rate of the traces. The
use of eligibility traces results in faster convergence and
more effective credit assignment across temporally extended
sequences of actions.

C. State Discretization and Fuzzification

This study employs two alternative representations of the
action-value function Q.

4 R. ZAJDEL

-1 1-0.33 0.33
-1

0

1

ẋ

x
(x0 , ẋ0)

(a)

-1 10
-1

0

1

ẋ

x
(x0 , ẋ0)

(b)

Fig. 4. Comparison of two state-space representations of the Ball–Beam
system: (a) crisp discretization of the state variables x and ẋ into 2 and
3 bins, respectively, and (b) fuzzy partitioning of the same variables using
overlapping membership functions — 2 fuzzy sets for x and 3 fuzzy sets for
ẋ.

A common and straightforward approach for representing
Q(s, a) in reinforcement learning is crisp discretization of
the continuous state space. Each continuous state variable is
partitioned into a finite number of bins, typically using uniform
intervals or decision-based splits. The resulting combination of
discrete bin indices uniquely identifies a state, which serves
as a key in a tabular Q(s, a) structure.

Although tabular representations are simple to implement
and enable direct learning and analysis, they suffer from
several well-known limitations [1]. Chief among these is the
curse of dimensionality: the Q-table size grows exponentially
with the number of state variables and actions, leading to
substantial memory and computational demands. Moreover,
tabular methods inherently lack generalization, as updates
affect only visited states, leaving large portions of the state
space unrepresented and unexplored.

Fig. 4 illustrates a local comparison between crisp and fuzzy
state-space representations for the Ball–Beam system, focusing
on a specific region where x ∈ [0, 1] and ẋ ∈ [−0.33, 0.33].
In the crisp discretization (Fig. 4a), this region corresponds to
a single discrete state si resulting from uniform partitioning
of the state variables x and ẋ into 2 and 3 bins, respectively,
yielding 2 × 3 = 6 total discrete states. Any operating point
(x0, ẋ0) in this region is assigned exclusively to one state.

In contrast, the fuzzy representation (Fig. 4b) uses overlap-
ping membership functions—2 for x and 3 for ẋ—resulting
in soft partitions of the same input space. A single point
(x0, ẋ0) activates multiple fuzzy rules to varying degrees.
Unlike the crisp case, even small variations within the region
continuously modulate the degrees of membership, leading
to smooth changes in rule activation. This facilitates gradual
policy updates and improved generalization across the state
space [27], [28].

Fuzzy Rule-Based Approximation: Fuzzy models offer
an interpretable and robust alternative to standard function
approximators, particularly under uncertainty or imprecise
state observations [28]. The continuous state space is covered
by M overlapping fuzzy regions, typically defined by Gaussian
membership functions. Let n denote the dimensionality of the
state space, and j ∈ {1, . . . , n} index the state variables. The
consequent model Q(i)(s, a; q(i)) is parameterized by a vector
q(i) ∈ RK , where K is the number of basis functions used in

the approximation (e.g., for a linear model, K = n+1). Each
fuzzy rule, indexed by i ∈ {1, . . . ,M}, is expressed as:

IF s1 is µ
(i)
1 AND . . . AND sn is µ(i)

n THEN Q(i)(s, a; q(i)),
(8)

where the membership function µ
(i)
j (sj) is defined as:

µ
(i)
j (sj) = exp

(
−
(sj − c

(i)
j)2

2(σ
(i)
j)2

)
, (9)

with c
(i)
j and σ

(i)
j denoting the center and spread of the

Gaussian function.
The (unnormalized) firing strength of the i-th rule is:

w̃i(s) =

n∏
j=1

µ
(i)
j (sj), (10)

and the normalized firing strength is given by:

wi(s) =
w̃i(s)∑M

m=1 w̃m(s)
. (11)

Each local model Q(i) typically has a simple parametric
form:

Q(i)(s, a; q(i)) =
∑
k

q
(i)
k fk(s, a), (12)

where fk(s, a) are basis functions associated with the rule’s
consequent. In the Takagi–Sugeno (T–S) framework, these
functions often correspond to linear components or action-
dependent constants, e.g., fk(s, a) = Ia=ak

(indicator func-
tions). Thus, Q(i)(s, a) may be understood as a local lookup
table of action values per rule, without requiring explicit radial
basis functions or nonlinear terms [1].

The global action-value approximation is then a normalized
weighted sum of the local models:

Q̂(s, a; q) =

M∑
i=1

wi(s) ·Q(i)(s, a; q(i)), (13)

where q denotes the concatenation of all local parameter
vectors q(i).

Learning with Temporal-Difference Updates: To train the
fuzzy Q-function, the temporal-difference (TD) error is defined
as:

δt = rt + γmax
a′

Q̂(st+1, a
′; qt)− Q̂(st, at; qt). (14)

Fuzzy Q(0)-Learning Update Rule: The parameters are
updated via gradient descent:

qt+1 = qt + α · δt · ∇qQ̂(st, at; qt), (15)

where α is the learning rate. The gradient is propagated
through the fuzzy aggregation, in which the normalized firing
strengths wi(st) determine the contribution of each local
model. This form is a general case that encompasses the update
rule in (19) for zero-order T–S models.

PERFORMANCE ANALYSIS OF TABULAR AND FUZZY Q-LEARNING UNDER VARYING STATE (...) 5

Fuzzy Q(λ)-Learning Update Rule: In the fuzzy Q(λ)-
learning variant, an eligibility trace vector et is maintained:

et = γλ · et−1 +∇qQ̂(st, at; qt), (16)

and the parameters are updated as:

qt+1 = qt + α · δt · et. (17)

This formulation combines short-term and long-term learn-
ing effects while maintaining the smooth generalization and
interpretability of the underlying fuzzy rule base [29], [30].
In the special case of zero-order T–S models, this update
reduces to (21) with eligibility traces computed based solely
on normalized rule activations wi(st).

D. Fuzzy Q-Learning with Zero-Order T–S Models

This section discusses two specific realizations of fuzzy re-
inforcement learning algorithms used in this work: Fuzzy Q(0)-
learning and Fuzzy Q(λ)-learning. Both approaches utilize
zero-order Takagi–Sugeno (T–S) fuzzy inference systems as
function approximators for the action-value function Q(s, a).
These methods can be viewed as constrained cases of the
general update rules discussed in (15) and (17), where each
fuzzy rule has a scalar consequent associated with a given
action.

For each action a ∈ A, a separate set of scalar parameters
qai ∈ R is maintained. The approximate action-value function
is computed as:

Q̂t(st, a) =

M∑
i=1

wi(st) · qai , (18)

where wi(st) denotes the normalized firing strength of the i-th
fuzzy rule as defined in (11).

In the Fuzzy Q(0)-learning variant, the temporal-difference
error δt is defined as in (14), and the parameters qai for the
selected action at are updated using:

qat
i = qat

i + α · wi(st) · δt. (19)

In the Fuzzy Q(λ)-learning variant, eligibility traces are
maintained for each rule-action pair. The trace for rule i and
action at is updated as:

eat
i = γλ · eat

i + wi(st), (20)

and the parameter update becomes:

qat
i = qat

i + α · δt · eat
i . (21)

These simplified updates preserve the generalization capa-
bility of fuzzy systems in continuous spaces while reducing
computational cost. In contrast to more complex parametric
models (e.g., (13)), the zero-order structure provides an inter-
pretable and efficient approximation of Q(s, a).

IV. EXPERIMENTS

Four experiments were conducted using the three systems
described in Section III-A. The experiments were divided into
two groups: the first addressed discrete representations of state
variables, while the second focused on fuzzy representations.
For each type of representation of the action-value function
Q, the corresponding form of the reinforcement learning
algorithm was applied. In the case of discrete representations,
updates followed equations (4–7), while the fuzzy approxima-
tions were updated according to equations (18–21).

Experiment 1 investigated the impact of varying the num-
ber of discretization bins for the state variables, while keeping
the number of available actions fixed. For the Ball–Beam and
Mountain Car systems, which involve two state variables, the
number of bins was varied independently for each variable
in the range from 2 to 10. For the Cart–Pole system, which
includes four state variables, a simplified binning strategy was
adopted. Specifically, the variables were grouped into two
pairs: (x, θ) and (ẋ, θ̇). Within each pair, both variables shared
the same number of bins, while the number of bins was varied
independently between the pairs.

Experiment 2 also used the discrete representation, but
this time both the number of state discretization bins and the
number of actions were varied. In this configuration, all state
variables shared the same number of bins.

Experiment 3 repeated the structure of Experiment 1, but
with a fuzzy representation of the state space. Instead of bins,
the number of fuzzy sets per variable was varied. For Cart–
Pole, the same paired simplification was applied to the fuzzy
sets.

Experiment 4 mirrored the setup of Experiment 2, ex-
tending it to the fuzzy representation, with both the number
of fuzzy sets per variable and the number of actions varied
uniformly across all state variables.

TABLE I
SUMMARY OF EXPERIMENTAL CONFIGURATIONS

System Exp. Representation Varied Parameters Discretization Strategy

Ball–Beam
and

Mountain Car

1 Discrete Bins only v(x), v(ẋ), c(Actions)

2 Discrete Bins + Actions v(x == ẋ), v(Actions)

3 Fuzzy Fuzzy sets only v(x), v(ẋ), c(Actions)

4 Fuzzy Fuzzy sets + Actions v(x == ẋ), v(Actions)

Cart–Pole

1 Discrete Bins only v(x == θ), v(ẋ == θ̇), c(Actions)

2 Discrete Bins + Actions v(x == θ == ẋ == θ̇), v(Actions)

3 Fuzzy Fuzzy sets only v(x == θ), v(ẋ == θ̇), c(Actions)

4 Fuzzy Fuzzy sets + Actions v(x == θ == ẋ == θ̇), v(Actions)

All experimental configurations are summarized in Table I.
The columns are defined as follows: System denotes the
control system under study; Exp. indicates the experiment
number (1–4) corresponding to the configurations described in
this section; Representation specifies the type of state space
representation employed, either discrete binning or fuzzy sets;
Varied Parameters identifies which parameters were varied
during the experiment, such as the number of bins, fuzzy
sets, and/or actions; finally, Discretization Strategy details
the grouping and variation scheme of the state variables and
actions, where the notation v(·) means the parameter was
varied, c(·) indicates it was held constant, and == signifies
that the grouped variables share identical settings. This concise

6 R. ZAJDEL

notation facilitates the description of different discretization
approaches, particularly for systems with multiple state vari-
ables like the Cart–Pole, where variable grouping simplifies
parameter tuning.

A. Action Space

The action set in Experiments 1 and 3 was fixed and speci-
fied in Section III-A for each control system. In Experiments 2
and 4, where the action set was variable, we adopted a strategy
in which the upper and lower bounds of the action set matched
the minimum and maximum values of the fixed set defined in
Section III-A.

In particular, for the Ball-on-Beam system, where the stan-
dard discrete action set is typically

A3 =
{
−π

4
, 0,

π

4

}
,

we considered action sets of varying cardinality. More for-
mally, let An denote a discretized action set containing n
uniformly spaced elements from the interval

[
−π

4 ,
π
4

]
. Then:

An =

{
ak = −π

4
+ k · π

2(n− 1)
: k = 0, 1, . . . , n− 1

}
.

(22)
For instance, n = 2 yields a minimal binary action set

A2 = {−π
4 ,

π
4 }, while n = 10 results in a finer discretiza-

tion including 10 equidistant control signals within the same
bounds. This approach allowed us to systematically evaluate
the effect of action granularity on learning performance.

B. reinforcement signal

For Ball-on-Beam System failure occurs if the ball falls off
the beam, i.e., when |x| > L/2, where L is the beam length.
The reward signal is then defined as:

r =

{
0, |x| ≤ L/2,

−1, |x| > L/2.
(23)

The failure states for the inverted pendulum are defined as
exceeding the workspace boundaries (|x| > 2.4 m) or the
pendulum deviating by more than 12 degrees from the upright
position (|θ| > 12◦). The reward signal is thus defined as:

r =

{
0, if |x| ≤ 2.4 and |θ| ≤ 12◦,

−1, otherwise.
(24)

This type of sparse, failure-driven reward structure is com-
monly adopted in classic control benchmarks such as CartPole
and Ball-on-Beam. It penalizes the agent only when a terminal
(failure) condition is reached, encouraging policies that main-
tain system stability for as long as possible without assigning
explicit rewards for intermediate states. Although such a bi-
nary reward formulation simplifies the task design, it increases
the difficulty of credit assignment and exploration, especially
in environments with long horizons or rare failures [1], [25].
This makes it a suitable testbed for evaluating the robustness
and sample efficiency of reinforcement learning algorithms.

In the case of the Mountain Car problem, the reward signal
was defined as:

r =

{
1, x ≥ 0.5,

−1, otherwise.
(25)

This sparse reward formulation encourages the agent to
reach the goal position x ≥ 0.5 as quickly as possible,
while penalizing all other states equally. Such a binary re-
ward structure is commonly used in simplified reinforcement
learning benchmarks to evaluate the exploration efficiency of
algorithms [1], [31].

C. Initial Conditions and Hyperparameters

The actions were selected according to an ϵ-greedy pol-
icy [1]. Each trial consisted of 100,000 iterations of the learn-
ing algorithm. It was assumed that if the controller avoided
terminal states for this duration, the trial was considered
successful [32], [33].

Table II summarizes the hyperparameters used for each
environment and agent type. The values were chosen based
on commonly adopted configurations in the literature [1], [33],
[34] and empirical tuning. Note that the Ball-on-Beam system
is less standardized than the Cart-Pole or Mountain Car tasks,
so parameter selection relied partially on the characteristics of
the physical model and previous control studies [35].

TABLE II
LEARNING PARAMETERS FOR EACH ENVIRONMENT

Environment Type ϵ γ α λ

Ball-on-Beam Discrete 10−6 0.9 0.1 0.9
Fuzzy 10−6 0.995 0.1 0.5

Cart-Pole Discrete 10−2 0.995 0.1 0.5
Fuzzy 10−2 0.995 0.1 0.5

Mountain Car Discrete 5 · 10−2 0.95 0.01 0.6
Fuzzy 5 · 10−2 0.95 0.01 0.6

The initial states for each environment are listed below.
These were selected to place the agent in a neutral configura-
tion with minimal bias toward success or failure. They reflect
typical starting conditions used in the literature and ensure
comparability across experiments.

• Ball-on-Beam: x = 0, ẋ = 0
• Cart-Pole: x = 0, ẋ = 0, θ = 0, θ̇ = 0
• Mountain Car: x = −0.5, ẋ = 0

D. Experiments Results

The results of the conducted experiments are presented in
Figures 5–7. Each row in these figures corresponds to one
of the experiments (Exp. 1–Exp. 4), while the left and right
columns display the outcomes for Q(0)-learning and Q(λ)-
learning, respectively. For Exp. 3 and Exp. 4, these represent
Fuzzy Q(0)-learning and Fuzzy Q(λ)-learning.

All experiments were performed on three environments:
Ball-Beam, Cart-Pole, and Mountain Car, which differ in
control complexity, reward structure, and sensitivity to delayed

PERFORMANCE ANALYSIS OF TABULAR AND FUZZY Q-LEARNING UNDER VARYING STATE (...) 7

reinforcement. The experimental configurations are summa-
rized in Table I.

The heatmaps presented in Figures 5–7 show the average
number of episodes required to reach the learning goal under
various discretization settings, enabling comparative analysis
of convergence speed and parameter sensitivity across envi-
ronments and algorithms. The best-performing configuration
in each case, highlighted with a red rectangle in the figures,
was subsequently reported in Table III, along with the corre-
sponding discretization parameters.

In the Ball-on-Beam environment, Fuzzy Q(λ)-learning con-
sistently delivered the best results, often converging in fewer
than 2 episodes. For example, in Exp. 3 it achieved an average
of 1.3 episodes, compared to 2.9 for Fuzzy Q(0)-learning and
over 90 for standard Q(0)-learning in Exp. 1. These outcomes
underscore the benefits of using eligibility traces and fuzzy
approximation in low-dimensional environments with smooth
dynamics.

For the Cart-Pole environment, all algorithms ultimately
reached convergence, but the efficiency varied substantially.
Increasing the resolution of the state space (e.g., from 2 to 10
bins) had a more positive effect on Q(λ)-learning, indicating
its greater sensitivity to finer state representations. Fuzzy
approaches in Exp. 3 and Exp. 4 again proved more effective,
reaching the goal in under 5 episodes on average. In Exp. 3,
Fuzzy Q(λ)-learning achieved 3.9 episodes, whereas in Exp. 1,
standard Q(λ)-learning required as many as 27 episodes.

In the Mountain Car environment, convergence typically
required more than 100 episodes for all algorithms, due to
the fact that it is a goal-reaching task and, unlike the other
two tasks, the system starts far from the control target. Addi-
tionally, the agent must learn long-term planning and energy
accumulation from an initial valley state, making the problem
more challenging with respect to temporal credit assignment
and exploration. Nonetheless, Fuzzy Q(λ)-learning achieved
slightly better results than other variants—for instance, 114.1
episodes in Exp. 3 compared to 125.9 for Fuzzy Q(0)-learning.
These improvements, while modest, suggest that eligibility
traces and function approximation can provide benefits even
in more challenging environments.

The optimal discretization settings varied across environ-
ments and algorithms. Coarse resolutions (2–4 bins) were gen-
erally sufficient for Cart-Pole and Mountain Car, whereas Ball-
on-Beam benefited from finer discretizations (e.g., 9–10 bins
or fuzzy sets) when used with Q(λ)-learning. These findings
emphasize that optimal parameterization is both environment-
and algorithm-dependent, further justifying the systematic
analysis presented in this study.

V. SUMMARY OF EXPERIMENTAL RESULTS

This section consolidates the findings from all four exper-
iments conducted on the three tested environments. Table III
provides a key reference by summarizing the parameter config-
urations—state discretization or fuzzy set counts and number
of actions—that yielded the lowest number of episodes to
reach the learning threshold.

The following conclusions and recommendations can be
drawn:

Q(0)-learning Q(λ)-learning

E
xp

.1

2 3 4 5 6 7 8 9 10
Number of bins (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x)

14271 15383 11182 5047 5824 8485 8344 8877 9563

10117 10164 7676 4168 4928 7197 6606 7077 7780

262 397 994 797 409 1177 2098 2255 2529

346 90 284 262 615 559 1103 1167 1586

909 263 386 320 664 547 799 853 1179

1493 639 840 698 885 887 1220 1064 1455

1926 912 1126 1001 1220 1096 1297 1231 1446

2412 1329 1675 1328 1694 1574 1922 1871 2102

2691 1613 1893 1705 1849 1910 2322 2020 2085
2000

4000

6000

8000

10000

12000

14000

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

2 3 4 5 6 7 8 9 10
Number of bins (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x)

2031.3 1238.1 1253.7 717.7 423.1 412.4 479.6 229.1 3.0

1688.9 2709.7 3099.6 532.4 2127.9 940.9 1201.6 414.1 450.4

2.9 3.0 3.9 2.9 7.7 3.3 5.9 4.1 3.0

3.3 2.8 3.5 3.1 3.8 3.2 3.8 4.2 2.8

2.5 2.3 2.8 2.5 3.1 2.6 3.6 3.0 2.8

2.9 2.4 3.2 2.4 3.5 2.8 3.8 3.3 2.6

2.5 2.2 2.8 2.5 3.1 2.6 3.5 2.7 2.5

2.9 2.1 3.1 2.2 3.5 2.5 4.0 3.1 2.7

2.6 2.1 3.2 2.5 3.0 2.7 3.5 2.8 2.3

500

1000

1500

2000

2500

3000

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

E
xp

.2

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,
 x

)

75 10979 18352 25644 28927 30958 32336 33197 34015

434 43 25252 29514 31754 33162 34110 34827 35365

136 120 27130 30539 32464 33705 34544 35167 35652

566 1503 27728 30886 32718 33894 34705 35297 35754

1078 6205 27990 31052 32828 33970 34777 35373 35827

1309 20452 28124 31141 32902 34035 34826 35409 35849

2056 21930 28208 31185 32934 34077 34863 35442 35878

2715 22108 28266 31231 32962 34079 34863 35437 35874

3355 22186 28302 31244 32968 34090 34877 35451 35887

5000

10000

15000

20000

25000

30000

35000

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,
 x

)

195 18514 10 23207 28121 30319 31742 33255 33693

4 13 3 22541 26785 29321 31254 32615 33863

3 80 5 22998 27456 29989 32034 33330 34057

3 81 5 26410 32963 34916 34978 34091 35755

3 22 13 27114 29899 31936 34009 34530 35136

2 29 16 25342 28703 30911 33035 34165 35005

3 21 14 25085 30225 32347 33738 34606 35267

2 35 403 31270 32592 33898 35383 35406 36003

3 35 170 31309 32007 33516 34690 35287 35681

5000

10000

15000

20000

25000

30000

35000

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

E
xp

.3
2 3 4 5 6 7 8 9 10

Number of fuzzy sets (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
)

4.9 14.8 6.2 11.6 12.3 11.6 13.4 10.0 11.7

3.2 3.2 3.7 5.9 5.8 7.2 8.0 7.5 7.5

3.1 3.2 3.3 4.0 4.3 5.9 7.7 6.0 6.8

3.2 3.4 3.2 3.4 3.8 4.4 5.8 5.2 6.1

3.4 3.4 3.2 3.4 3.3 3.7 5.5 4.9 4.5

3.5 3.4 3.2 3.5 3.2 3.3 3.6 4.0 3.7

3.4 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.5

3.6 3.1 3.0 3.2 3.3 3.4 3.2 3.3 3.3

3.0 2.9 3.1 3.2 3.2 3.1 3.2 3.2 3.2 4

6

8

10

12

14

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

2 3 4 5 6 7 8 9 10
Number of fuzzy sets (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
)

2.2 8.0 4.9 5.7 4.4 4.8 5.1 3.6 5.3

2.0 2.2 3.5 3.2 3.1 3.3 3.6 3.5 3.8

2.0 2.1 2.9 3.1 2.9 2.9 3.1 3.2 3.3

1.9 2.0 2.8 2.7 2.8 2.8 3.1 3.0 3.2

1.9 1.9 2.4 2.8 2.7 2.5 2.8 2.5 2.5

2.0 2.0 2.0 2.2 2.2 2.2 2.0 2.5 2.5

2.1 2.1 2.2 2.0 1.6 2.0 1.8 1.9 1.8

2.2 2.0 1.3 1.6 1.3 1.6 1.5 1.7 1.6

2.4 2.1 1.5 2.3 1.3 1.4 1.5 1.7 1.6
2

3

4

5

6

7

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

E
xp

.4

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
, x

)
5.2 4.9 6.4 7.1 8.8 9.1 10.7 11.6 13.2

2.5 3.2 5.7 5.9 7.6 8.3 9.8 10.6 11.8

2.8 3.3 5.8 6.3 8.0 9.1 11.0 12.2 13.6

3.0 3.4 5.2 6.2 8.0 9.1 11.1 11.8 13.2

2.7 3.3 5.2 6.4 7.5 8.3 9.8 11.6 12.2

3.4 3.3 5.7 6.4 8.5 9.9 10.5 11.6 13.0

3.4 3.3 5.4 5.9 7.5 8.3 9.2 10.6 11.3

3.2 3.3 6.1 6.4 8.0 9.2 9.9 11.1 12.6

3.1 3.2 5.6 6.0 7.2 8.3 9.3 11.0 11.3
4

6

8

10

12

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
, x

)

4.3 2.2 5.3 3.6 7.5 4.4 10.1 5.9 12.6

2.4 2.2 3.5 3.5 4.5 3.7 5.9 4.9 7.5

2.5 2.9 3.6 3.5 4.0 3.6 4.1 4.2 4.8

2.5 2.7 3.5 3.2 3.8 3.5 3.9 3.8 4.1

3.3 2.7 3.6 2.8 3.3 3.1 3.4 3.3 3.7

4.4 2.2 2.7 2.3 2.5 2.6 3.0 2.9 3.6

1.6 1.8 2.4 2.1 2.3 2.5 2.7 2.6 3.0

1.9 1.7 2.7 2.5 2.5 2.6 2.6 2.7 3.1

1.9 1.6 2.2 2.2 2.1 2.4 2.5 2.4 2.8 2

4

6

8

10

12

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

Fig. 5. Performance comparison between Q(0)-learning and Q(λ)-learning
for the Ball–Beam system across four experimental conditions.

• Preferred Configurations: Across all environments,
compact representations—typically 2–4 bins or fuzzy
sets and 2–4 actions—were sufficient and often optimal.
Q(λ)-learning showed particular benefit from slightly
richer fuzzy representations, while Q(0)-learning favored
simpler configurations.

• Configurations to Avoid: High-resolution discretizations
(e.g., 6–10 bins or fuzzy sets) combined with large
action sets tended to degrade performance, especially
in Q(0)-learning. These configurations increased variance
and slowed convergence. Excessively fine representations
did not offer benefits and, in some cases, destabilized
learning.

• Algorithm-specific Sensitivities: Q(λ)-learning demon-
strated greater robustness to increased representation
complexity and generally converged faster across most
scenarios. In contrast, Q(0)-learning required well-tuned
compact configurations to achieve reasonable perfor-
mance and was more sensitive to overparameterization.

• Environment-specific Behavior: For environments with
sparse or delayed rewards (e.g., Mountain Car), Q(λ)-
learning offered a notable advantage due to eligibility
traces. In smoother environments such as Ball-on-Beam,
even basic configurations led to fast learning, with Q(λ)-

8 R. ZAJDEL

TABLE III
BEST-PERFORMING CONFIGURATIONS SELECTED BASED ON THE RESULTS HIGHLIGHTED IN RED IN FIGURES 5–7, ALONG WITH CORRESPONDING

DISCRETIZATION PARAMETERS.

Best Parameter Configuration

System Exp. Algorithm Performance x ẋ θ θ̇ Actions

Ball–Beam

1 Q(0)-learning 90.5± 25.8 5 3 — — 3
1 Q(λ)-learning 2.1± 1.1 9 3 — — 3
2 Q(0)-learning 43.2± 20.4 3 3 — — 3
2 Q(λ)-learning 2.3± 1.5 7 7 — — 2
3 Fuzzy Q(0)-learning 2.9± 1.1 10 3 — — 3
3 Fuzzy Q(λ)-learning 1.3± 0.6 9 6 — — 3
4 Fuzzy Q(0)-learning 2.55± 0.73 3 3 — — 2
4 Fuzzy Q(λ)-learning 1.59± 0.88 10 10 — — 3

Cart–Pole

1 Q(0)-learning 42.4± 13.8 2 2 2 2 2
1 Q(λ)-learning 27.2± 6.3 10 2 10 2 2
2 Q(0)-learning 42.4± 13.8 2 2 2 2 2
2 Q(λ)-learning 41.4± 24.4 2 2 2 2 2
3 Fuzzy Q(0)-learning 4.5± 2.1 2 2 2 2 2
3 Fuzzy Q(λ)-learning 3.9± 1.5 4 2 4 2 2
4 Fuzzy Q(0)-learning 4.54± 2.06 2 2 2 2 2
4 Fuzzy Q(λ)-learning 4.57± 1.35 2 2 2 2 2

Mountain Car

1 Q(0)-learning 121.6± 11.4 2 2 — — 3
1 Q(λ)-learning 143.5± 4.3 3 9 — — 3
2 Q(0)-learning 121.2± 8.6 2 2 — — 3
2 Q(λ)-learning 162.0± 32.6 6 6 — — 2
3 Fuzzy Q(0)-learning 125.9± 11.2 4 4 — — 3
3 Fuzzy Q(λ)-learning 114.1± 3.5 4 4 — — 3
4 Fuzzy Q(0)-learning 116.6± 2.9 4 4 — — 2
4 Fuzzy Q(λ)-learning 114.1± 3.5 4 4 — — 3

Note: Columns x, ẋ, θ, θ̇ and Actions indicate discretization or action parameters for which the best results were obtained. — means that the state variable
is not present in the model. Exp. refers to the experiment numbers defined in Table I.

learning and fuzzy approximations further improving
results.

These insights may guide the design of reinforcement
learning agents for similar control tasks, particularly when
interpretability and parameter economy are desired.

VI. DISCUSSION

The empirical findings reinforce the practical value of
combining eligibility traces with fuzzy state approximators.
Fuzzy Q(λ)-learning consistently yielded superior convergence
speed and stability across environments, particularly in the
Ball-on-Beam and Cart-Pole tasks. These results validate prior
theoretical insights [5], [14], [17] and empirical outcomes from
control-oriented fuzzy RL [20], [21].

Importantly, the benefits of fuzzy approximation were most
pronounced when paired with low to moderate granular-
ity of state partitions. This aligns with recent studies on
scalable fuzzy architectures, such as hierarchical [22] and
self-organizing systems [18], where rule base complexity is
balanced against generalization needs. Our results suggest
that fixed antecedent structures with learned consequents, as
popularized by Takagi–Sugeno fuzzy systems, can effectively

reduce the dimensionality burden without sacrificing learning
quality.

In sparse-reward environments like Mountain Car, all meth-
ods struggled to converge rapidly. While Fuzzy Q(λ) main-
tained a relative advantage, the performance gap narrowed.
This supports the notion that temporal credit assignment alone
is insufficient in reward-scarce settings, and further enhance-
ments such as intrinsic motivation or model-based components
may be necessary.

Overall, our findings bridge the gap between foundational
fuzzy RL theory and modern empirical needs by quantifying
the interaction between state–action resolution, algorithmic ex-
tensions, and environment-specific difficulty. Future extensions
should examine how adaptive fuzzy rule tuning, as in [18],
can be combined with exploration-driven heuristics to improve
generalization in high-dimensional RL tasks.

VII. CONCLUSIONS

This study compared the performance of standard Q(0)-
learning and Q(λ)-learning across three benchmark control
tasks (Ball-on-Beam, Cart-Pole, and Mountain Car) under
varying state-action space representations, including both dis-
crete and fuzzy encodings. The experiments systematically

PERFORMANCE ANALYSIS OF TABULAR AND FUZZY Q-LEARNING UNDER VARYING STATE (...) 9

Q(0)-learning Q(λ)-learning
E

xp
.1

2 3 4 5 6 7 8 9 10
Number of bins (x,)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,

)

42 205 138 296 270 357 374 430 401

48 169 178 299 291 371 383 413 411

48 195 178 297 289 369 379 417 443

76 233 204 315 313 386 396 444 454

112 276 231 342 330 404 411 455 458

152 305 264 360 344 428 425 457 472

185 335 287 387 370 434 441 473 480

218 364 317 410 390 451 445 486 492

249 384 339 425 409 464 461 491 499
100

200

300

400

Av
er

ag
e

Ep
iso

de
s t

o
St

ab
le

 P
er

fo
rm

an
ce

2 3 4 5 6 7 8 9 10
Number of bins (x,)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,

)

41 420 200 615 339 603 482 534 482

142 509 228 564 304 527 358 526 409

132 317 140 382 197 380 230 336 255

36 389 73 242 98 230 117 198 141

33 88 70 155 101 163 127 166 146

34 92 66 150 93 150 110 150 122

28 96 65 132 91 138 110 138 119

28 97 64 137 89 135 103 136 118

27 106 62 133 89 132 106 140 121
100

200

300

400

500

600

Av
er

ag
e

Ep
iso

de
s t

o
St

ab
le

 P
er

fo
rm

an
ce

E
xp

.2

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,
 x

,
,

)

42 46 48 56 69 79 85 96 98

169 197 197 202 220 229 244 247 261

178 193 193 204 205 214 221 232 235

315 316 313 319 318 326 333 347 344

330 315 311 318 319 328 335 336 349

428 396 380 384 385 382 385 387 391

441 407 392 385 387 393 387 389 391

486 438 424 415 410 406 407 409 408

499 449 432 422 417 415 414 413 413
100

200

300

400
Av

er
ag

e
ep

iso
de

s t
o

st
ab

le
 p

er
fo

rm
an

ce

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,
 x

,
,

)

41 48 47 46 46 46 50 47 50

509 380 394 371 376 381 406 380 409

140 143 137 138 152 146 150 151 153

242 243 275 265 276 266 281 273 299

101 111 113 122 124 129 135 145 153

150 155 183 180 196 196 208 205 227

110 115 120 126 136 144 152 154 166

136 146 158 164 175 183 195 198 207

121 124 140 141 156 159 170 182 185
100

200

300

400

500

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

E
xp

.3

2 3 4 5 6 7 8 9 10
Number of Fuzzy Sets (x,)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f F

uz
zy

 S
et

s (
x,

)

4.5 57.2 78.1 57.6 90.2 68.2 116.0 100.7 142.2

4.7 10.3 37.2 24.0 56.0 37.3 68.1 65.5 97.8

4.6 7.4 14.9 14.4 30.1 32.5 38.8 42.8 54.8

5.5 8.7 10.1 12.0 15.8 18.6 30.0 31.9 39.8

14.9 13.6 12.4 8.3 14.2 14.1 22.4 22.9 30.1

14.4 14.0 14.3 9.1 10.8 13.0 19.7 18.7 28.1

14.9 22.5 17.3 9.6 12.3 10.1 15.9 19.0 25.4

40.6 37.7 23.3 9.0 10.9 9.9 13.8 14.3 21.6

60.4 54.7 28.1 9.8 11.2 10.9 12.8 14.0 18.8
20

40

60

80

100

120

140

Av
er

ag
e

Ep
iso

de
s t

o
St

ab
le

 P
er

fo
rm

an
ce

2 3 4 5 6 7 8 9 10
Number of Fuzzy Sets (x,)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f F

uz
zy

 S
et

s (
x,

)

4.6 36.4 42.5 20.9 51.3 37.7 60.4 59.7 79.2

4.3 8.8 25.4 15.7 31.3 22.1 36.0 34.7 48.5

3.9 6.4 9.1 11.0 9.0 12.2 18.3 16.8 28.8

4.0 4.9 5.9 6.3 9.1 9.4 9.5 8.2 12.1

5.3 10.3 10.4 8.3 13.9 11.2 15.0 15.4 10.6

5.8 7.0 10.5 7.1 11.6 9.6 14.4 12.4 11.0

6.2 6.0 7.9 6.5 8.5 7.5 11.0 9.9 12.9

6.9 6.9 7.9 5.5 7.4 7.0 9.1 8.3 10.2

8.1 8.2 5.9 4.7 7.2 6.5 8.2 7.8 8.8 10

20

30

40

50

60

70

Av
er

ag
e

Ep
iso

de
s t

o
St

ab
le

 P
er

fo
rm

an
ce

E
xp

.4

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
, x

,
,

)

4.5 8.1 8.9 11.7 14.1 15.2 18.1 19.2 20.7

10.3 17.6 17.6 24.5 22.3 28.4 28.5 31.8 36.1

14.9 29.2 30.8 43.5 50.7 48.6 52.9 59.8 63.6

12.0 28.9 25.8 35.4 43.4 42.1 48.6 52.1 57.4

14.2 34.6 32.5 42.0 49.3 56.0 59.6 68.0 67.9

13.0 29.7 30.1 37.6 48.6 46.2 57.4 60.9 60.9

15.9 31.8 34.7 44.5 47.9 53.8 56.3 59.1 65.4

14.3 32.3 31.6 42.6 45.4 51.8 61.6 54.2 58.2

18.8 35.6 38.1 45.0 47.5 52.7 61.1 58.1 69.0 10

20

30

40

50

60

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
, x

,
,

)

4.6 8.8 9.6 13.9 14.2 18.0 18.8 22.2 23.1

8.8 25.1 19.6 23.0 21.3 24.5 26.0 29.1 29.9

9.1 21.7 21.1 25.6 27.1 25.7 29.0 33.7 32.4

6.3 20.4 15.2 20.8 21.6 24.4 22.4 25.5 24.4

13.9 22.5 20.3 25.4 24.2 25.4 26.7 27.4 27.2

9.6 16.2 14.7 20.3 19.8 23.4 22.6 23.4 22.0

11.0 16.2 16.8 18.8 22.0 22.0 21.4 20.9 23.1

8.3 13.2 13.3 16.8 17.3 19.8 19.7 21.4 21.0

8.8 13.9 14.7 17.2 18.6 18.9 20.2 19.9 21.1
5

10

15

20

25

30

Av
er

ag
e

ep
iso

de
s t

o
st

ab
le

 p
er

fo
rm

an
ce

Fig. 6. Performance comparison of Q(0)-learning and Q(λ)-learning for the
Cart–Pole system across four experimental conditions.

evaluated multiple configurations of state resolution and ac-
tion granularity, providing a detailed view of how algorithm
performance scales with representation complexity.

The results consistently favored Q(λ)-learning, which
demonstrated faster convergence, greater stability, and better
scalability with increased state resolution or fuzzy partitioning.
In particular, the use of eligibility traces helped overcome
delayed reward issues in environments such as Mountain Car.
Additionally, the analysis revealed that overly fine-grained
discretization or excessive fuzzy partitioning often degrades
learning performance, especially for Q(0)-learning.

The empirical findings support the following conclusions:
• Q(λ)-learning outperforms Q(0)-learning in both discrete

and fuzzy state representations across all tested environ-
ments.

• Compact state-action configurations (e.g., (2, 3), (3, 2),
(4, 2)) offer a favorable trade-off between representation
richness and convergence speed.

• Excessive discretization or fuzzy granularity may hinder
learning by introducing sparsity or instability in the value
updates.

Future Work

Future research will explore three main directions. First,
replacing discrete or fuzzy encodings with continuous func-
tion approximators such as radial basis functions or neural

Q(0)-learning Q(λ)-learning

E
xp

.1

2 3 4 5 6 7 8 9 10
Number of bins (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x)

122 552 154 198 165 186 189 170 193

187 567 131 149 167 156 162 154 152

157 650 132 234 182 200 174 195 222

198 589 208 295 176 279 212 208 233

206 571 210 230 203 255 195 195 205

191 710 190 307 222 330 195 245 384

235 684 215 281 236 252 221 325 340

216 640 236 315 278 286 237 310 357

248 674 251 312 250 332 237 388 338
200

300

400

500

600

700

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

2 3 4 5 6 7 8 9 10
Number of bins (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x)

173 535 168 185 175 193 186 200 205

166 484 157 147 159 150 149 144 169

156 439 166 181 156 161 160 162 173

176 475 166 217 159 195 204 182 196

186 353 196 172 162 213 169 163 170

179 544 154 206 188 270 178 187 287

206 584 176 223 200 242 201 200 245

200 642 200 269 246 282 236 206 265

216 647 190 240 242 294 231 260 227
200

300

400

500

600

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

E
xp

.2

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,
 x

)

122 121 129 128 139 150 149 167 165

567 770 868 924 1030 1062 1079 1183 1166

132 146 158 179 192 196 191 200 204

295 350 440 488 548 563 606 637 640

203 209 211 219 231 246 257 268 288

330 391 406 461 495 535 528 559 580

221 219 240 257 267 304 351 382 380

310 366 431 476 576 661 665 734 771

338 398 397 484 547 575 668 681 709 200

400

600

800

1000

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f b

in
s (

x,
 x

)

173 188 211 210 223 220 230 241 241

484 561 627 639 743 738 783 804 835

166 198 189 199 208 217 207 209 205

217 253 297 338 379 412 426 475 511

162 181 198 202 216 222 233 237 248

270 328 365 403 427 461 460 466 528

201 221 252 265 273 311 349 349 386

206 250 293 337 359 402 450 456 509

227 288 316 372 423 492 531 558 614 200

300

400

500

600

700

800

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

E
xp

.3
2 3 4 5 6 7 8 9 10

Number of fuzzy sets (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
)

255 365 149 151 142 140 144 156 172

147 201 158 164 156 165 159 193 199

137 155 126 149 153 210 209 244 239

180 154 167 176 188 196 235 252 300

173 193 165 226 191 270 279 318 311

162 183 188 220 244 295 313 335 394

315 207 191 269 252 340 357 411 452

258 221 194 293 270 388 397 449 483

270 223 229 310 281 360 421 453 519 150

200

250

300

350

400

450

500

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

2 3 4 5 6 7 8 9 10
Number of fuzzy sets (x)

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
)

221 247 188 229 184 210 208 202 197

133 278 152 152 150 151 151 151 155

134 244 114 138 115 132 147 128 142

139 285 123 143 123 140 143 146 174

131 276 125 144 152 158 157 181 179

146 291 129 157 158 182 174 202 232

155 362 131 153 158 196 207 247 267

163 359 154 162 158 211 236 274 290

147 237 157 165 170 209 244 278 330
150

200

250

300

350

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

E
xp

.4

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
, x

)
125 255 293 299 314 321 336 337 315

160 201 215 205 196 186 183 185 181

117 126 143 153 162 189 217 242 262

149 176 202 218 235 262 299 322 362

166 191 222 258 292 325 364 391 440

214 295 339 391 436 481 522 585 616

264 357 426 508 581 643 713 759 805

318 449 548 635 726 811 881 948 994

350 519 640 745 807 902 990 1084 1137 200

400

600

800

1000

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

2 3 4 5 6 7 8 9 10
Number of actions

2
3

4
5

6
7

8
9

10
Nu

m
be

r o
f f

uz
zy

 se
ts

 (x
, x

)

131 221 255 251 281 297 327 327 314

203 278 280 266 274 302 306 278 312

114 114 117 120 124 127 127 127 135

139 143 141 143 147 152 161 174 188

142 152 157 159 162 165 166 175 182

155 182 201 218 250 280 316 333 349

160 207 248 291 331 361 403 438 460

192 274 339 405 452 514 545 593 619

211 330 420 502 576 628 703 758 803
200

300

400

500

600

700

800

Av
er

ag
e

ep
iso

de
s t

o
re

ac
h

go
al

Fig. 7. Performance comparison of Q(0)-learning and Q(λ)-learning for the
Mountain Car environment across four experimental conditions.

networks could enhance generalization in high-dimensional
environments. Second, extending the current framework to
policy optimization methods—including actor–critic or policy-
gradient algorithms—may enable more effective learning in
continuous action spaces. Finally, robustness and transferabil-
ity will be examined by assessing the sensitivity of fuzzy
abstractions to noise and non-stationarity, as well as evaluating
whether learned state representations can be reused across
related tasks.

Ultimately, these directions aim to bridge the gap between
interpretable rule-based learning and the flexibility of deep
reinforcement learning, moving toward hybrid systems that are
both efficient and explainable.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2018.

[2] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[3] J. N. Tsitsiklis and B. Van Roy, “Analysis of temporal-differences
learning with function approximation,” Machine Learning, vol. 24, no. 1,
pp. 25–57, 1996.

[4] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. i, 4th
ed. ed. Athena Scientific, 2012.

[5] T. Kozuno, E. Imani, and M. Sugiyama, “Revisiting eligibility traces in
deep reinforcement learning,” in Proceedings of the 38th International
Conference on Machine Learning (ICML), vol. 139. PMLR, 2021, pp.
5865–5876.

10 R. ZAJDEL

[6] T. J. Procyk and E. H. Mamdani, “Adaptive critic designs,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 10, no. 10, pp.
757–763, 1990.

[7] L.-X. Wang, “Fuzzy system modeling using fuzzy rules and fuzzy
reasoning,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 23, no. 5, pp. 1414–1427, 1992.

[8] P. Chaudhari et al., “On the importance of action representations in deep
reinforcement learning,” in Proceedings of the International Conference
on Machine Learning (ICML), 2018, arXiv:1811.12560.

[9] N. Kostrikov, “Discrete vs continuous action spaces in policy gradient
methods,” arXiv preprint arXiv:1801.02851, 2018.

[10] F. Klein and W. Konen, “Adaptive discretization of continuous action
spaces for on-policy optimization,” arXiv preprint arXiv:1906.11845,
2019.

[11] T. J. Procyk and D. P. Filev, “Fuzzy q-learning for general state–action
spaces,” IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 30, no. 1, pp. 76–84, 2000.

[12] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Reinforcement learning
with parameterized actions,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, 2020, pp. 7263–7270.

[13] L. Jouffe, “Fuzzy q-learning: a reinforcement learning approach for
autonomous agents,” in Proceedings of the Sixth International Fuzzy
Systems Conference, vol. 2. IEEE, 1997, pp. 1351–1356. [Online].
Available: https://doi.org/10.1109/FUZZY.1997.616345

[14] P.-Y. Glorennec and L. Jouffe, “Fuzzy q-learning with function
approximation,” in Proceedings of the Sixth International Fuzzy
Systems Conference, vol. 2. IEEE, 1997, pp. 1311–1316. [Online].
Available: https://doi.org/10.1109/FUZZY.1997.616333

[15] S. Wen, R. Ma, L. Dong, and Y. Liu, “Q-learning trajectory planning
based on takagi–sugeno fuzzy parallel distributed compensation
structure of humanoid manipulator,” Soft Computing, vol. 23, no. 18,
pp. 8483–8492, 2019. [Online]. Available: https://doi.org/10.1007/
s00500-018-3511-0

[16] E. Zander, B. van Oostendorp, and B. Bede, “Reinforcement learning
with takagi–sugeno–kang fuzzy systems,” Complex Engineering
Systems, vol. 3, no. 2, pp. 48–63, 2023. [Online]. Available:
https://doi.org/10.1016/j.cesys.2023.04.001

[17] S. Zahmatkesh, B. Behnam, A. Vahidi, and H. N. Pishkenari,
“Robust fuzzy q-learning for autonomous landing of fixed-wing
uavs under wind disturbances,” Engineering Applications of Artificial
Intelligence, vol. 118, p. 105579, 2023. [Online]. Available: https:
//doi.org/10.1016/j.engappai.2022.105579

[18] R. Hostetter, G. Luger, and M. Morales, “Self-organizing fuzzy
q-learning networks: Towards interpretable and competitive offline
reinforcement learning,” Neurocomputing, vol. 524, pp. 239–253, 2023.
[Online]. Available: https://doi.org/10.1016/j.neucom.2022.12.093

[19] E. Zander, B. van Oostendorp, and B. Bede, “Takagi–sugeno fuzzy
dqns: Combining interpretable fuzzy inference and deep q-learning,”

Applied Soft Computing, vol. 135, p. 110009, 2023. [Online]. Available:
https://doi.org/10.1016/j.asoc.2023.110009

[20] J. Tang, J. Liu, and W. Zhang, “A fuzzy actor–critic algorithm for energy-
efficient load balancing in smart grids,” IEEE Transactions on Fuzzy
Systems, vol. 29, no. 6, pp. 1247–1259, 2021.

[21] Y. Wang, Y. Chen, and Z. Li, “Interpretable fuzzy deep reinforcement
learning for autonomous vehicle navigation,” Engineering Applications
of Artificial Intelligence, vol. 110, p. 104716, 2022.

[22] M. Lei and X. Lin, “Hierarchical fuzzy reinforcement learning for multi-
task control: A generalizable framework,” Neurocomputing, vol. 521, pp.
73–85, 2023.

[23] P. E. Wellstead, Introduction to Physical System Modelling. Chennai,
India: Control Systems Principles, 2000.

[24] S. Larsson, “ballbeam-gym: Ball & beam openai gym environments,”
https://github.com/simon-larsson/ballbeam-gym, 2019, accessed: 2025-
07-25.

[25] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, September/October 1983.

[26] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, reprint ed. John Wiley Sons, 2014.

[27] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Technical Report CMU-CS-94-207, Carnegie Mellon University, 1994.

[28] T. Procyk and E. H. Mamdani, “An adaptive fuzzy controller using fuzzy
logic,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 7,
no. 5, pp. 360–371, 1977.

[29] C.-T. Lin and C.-S. G. Lee, “Reinforcement learning for an adaptive
fuzzy logic controller,” in Fifth IEEE International Conference on Fuzzy
Systems, vol. 3, 1996, pp. 2052–2058.

[30] D. Nauck and R. Kruse, “Neuro-fuzzy systems: State-of-the-art model-
ing techniques,” The Knowledge Engineering Review, vol. 18, no. 3, pp.
241–257, 2003.

[31] A. W. Moore, “Efficient memory-based learning for robot control,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 1990.

[32] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” Proceedings
of the 16th International Conference on Machine Learning (ICML), pp.
278–287, 1999.

[33] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[34] S. Larsson, “ballbeam-gym: A reinforcement learning environment for
ball and beam control,” https://github.com/simon-larsson/ballbeam-gym,
2022, accessed: 2025-07-25.

[35] D. Wang and D. J. Hill, “Global stabilization of the ball and beam
system based on fuzzy control approach,” IEEE Transactions on Fuzzy
Systems, vol. 5, no. 3, pp. 418–425, 1997.

https://doi.org/10.1109/FUZZY.1997.616345
https://doi.org/10.1109/FUZZY.1997.616333
https://doi.org/10.1007/s00500-018-3511-0
https://doi.org/10.1007/s00500-018-3511-0
https://doi.org/10.1016/j.cesys.2023.04.001
https://doi.org/10.1016/j.engappai.2022.105579
https://doi.org/10.1016/j.engappai.2022.105579
https://doi.org/10.1016/j.neucom.2022.12.093
https://doi.org/10.1016/j.asoc.2023.110009
https://github.com/simon-larsson/ballbeam-gym
https://github.com/simon-larsson/ballbeam-gym

	Introduction
	Related Work
	Methods
	System Dynamics
	RL Algorithm
	State Discretization and Fuzzification
	Fuzzy Q-Learning with Zero-Order T–S Models

	Experiments
	Action Space
	reinforcement signal
	Initial Conditions and Hyperparameters
	Experiments Results

	Summary of Experimental Results
	Discussion
	Conclusions
	References

