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Synchronous and asynchronous Bertsekas methods
for energy-aware networks and solution of
regularized linear systems

Anthony Nwachukwu, and Andrzej Karbowski

Abstract—This paper develops and analyzes augmented
Lagrangian-based methods for two classes of large-scale opti-
mization problems relevant to modern computational systems:
energy-aware network routing with bandwidth allocation and
the solution of regularized linear systems. In the first prob-
lem, routing and bandwidth allocation are jointly optimized in
communication networks including energy components, modeled
as a mixed-integer nonlinear program. In the second, regular-
ized linear systems are formulated to address ill-posed or ill-
conditioned problems by introducing stabilization terms such as
{5 regularization. For both problems, synchronous and asyn-
chronous distributed optimization schemes are designed using
decomposition techniques grounded in augmented Lagrangian
theory. Extensive numerical experiments across diverse datasets,
including network flow instances and benchmark regularized
linear systems, demonstrate that the asynchronous variants
retain comparable solution quality while significantly improving
computational performance, particularly under delay and scala-
bility conditions. These findings reinforce the practical value of
asynchronous augmented Lagrangian methods for distributed,
high-dimensional, and delay-sensitive optimization problems.
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I. INTRODUCTION

ITH the surge in large-scale data generation and real-
Wtime communication needs, the demand for optimiza-
tion frameworks that deliver efficiency, scalability, and sus-
tainability has never been more pressing. Within contem-
porary telecommunication infrastructures, the simultaneous
optimization of routing paths and bandwidth allocations plays
a central role in balancing quality of service (QoS) with en-
ergy consumption, two often competing objectives. However,
conventional approaches tend to decouple these components
or rely on static heuristics, thereby limiting the achievable
performance, particularly when energy usage is explicitly
modeled as part of the system cost [1], [2]. A fully integrated

A. Nwachukwu is with Olin Business School, Washington University in
St. Louis, USA (e-mail: anthonyn@wustl.edu).

A. Karbowski is with Institute of Control and Computation Engi-
neering, Warsaw University of Technology, Warsaw, Poland (e-mail: an-
drzej.karbowski@pw.edu.pl).

formulation, while more reflective of real-world constraints,
results in a mixed-integer nonlinear programming (MINLP)
problem characterized by discrete variables and inherent non-
convexities. Such formulations pose significant computational
challenges and demand algorithmic strategies that can scale
while maintaining solution quality [3], [4].

In parallel, the solution of regularized linear systems has
become increasingly important across domains such as signal
processing, numerical optimization, and machine learning.
Such problems arise when seeking stable solutions to ill-
posed or ill-conditioned systems, where regularization terms
(e.g., {5 penalties) are introduced to ensure robustness and
numerical stability [5], [6]. While these techniques enhance
solution quality, they also introduce significant computational
challenges, particularly in large-scale settings.

A unifying feature of these application domains is the re-
liance on distributed optimization methods, which decompose
large-scale problems into subproblems solvable by multiple
agents in parallel. Classical synchronous approaches, such
as the Bertsekas Augmented Lagrangian (BAL) framework,
enforce strict coordination among agents, ensuring orderly
updates but often at the cost of idle waiting and vulnerability
to communication delays. Asynchronous methods [7]-[12], by
contrast, allow agents to proceed with updates based on local
and potentially outdated information, reducing synchronization
overheads and improving resilience in large and heterogeneous
networks. This paradigm shift has been shown to accelerate
convergence in practice while maintaining theoretical guaran-
tees under mild assumptions.

Building upon this perspective, the present work intro-
duces asynchronous augmented Lagrangian schemes for two
structurally analogous problems: energy-aware routing with
bandwidth allocation and the solution of regularized linear
systems. For the network routing problem, we extend the prior
synchronous formulation [13] by incorporating asynchronous
update mechanisms into a model that couples binary routing
decisions with continuous flow allocations. For regularized
linear systems, we develop a tailored Bertsekas Augmented
Lagrangian scheme under inequality constraints, consider-
ing both synchronized and asynchronized update schemes.
Through comprehensive numerical experiments on synthetic
and real-world datasets, we demonstrate that asynchronous
implementations retain comparable solution accuracy and fea-
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sibility while yielding substantial reductions in runtime. The
results confirm the robustness and versatility of Bertsekas-style
augmented Lagrangian decomposition for combinatorial and
continuous optimization problems in distributed and delay-
prone environments.

II. NETWORK OPTIMIZATION PROBLEM OF
SIMULTANEOUS ROUTING AND BANDWIDTH ALLOCATION
IN ENERGY-AWARE NETWORKS

We can describe the problem of optimizing routing and
flow rates simultaneously as identifying flow rates and routes
(single paths) that satisfy network constraints for all possible
source-destination pairs at the minimal cost. The variables
and parameters used in the formulation are:

TABLE I: Network problem notation

N, ie N - Set of all network nodes and a single node,
respectively,

A, (i,j) € A - Set of all network arcs and a single arc,
respectively,

LlelL - Set of all labeled links and a single labeled
link, respectively,

e: A— L - One-to-one mapping from arcs to links
labeled by a single natural number,

W, weW - Set of all demands and a single demand,
respectively,

S(w), D(w) - Source and destination node for the specific
demand w, respectively,

Tw - Flow rate for the specific demand w,
Tw € R+ U {O},

T Tw - Lower and upper bound on the flow rate
for the demand w, we assume that
0<z, <Tw,

a - Capacity of the link I, ¢; > 0,

buwi - Binary routing decision variable, whether
the link [ is used by the demand w,

¥ - Positive parameter — the weight of the QoS
part of the objective function,

) - Positive parameter — the weight of the energy

usage part of the objective function.

With this notation the problem can be formulated in the
following way [14]:
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Ty < Ty < Ty, Yw e W 3)
Z Yuwl < <, Vie L 4)
weWw

Yuwt > 0, YweWNleL (5
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bwl S {0, 1},

bu,eijy < 1, YweW,Yie N  (7)

Yw e W,VI € L )

where the vector of binary variables b, = {by,l =
1,2,...,|L|} defines a single path for the demand w € W.

This formulation, denoted as P,;; in [l4], features a
quadratic and convex objective function, as expressed in (1).
The first term, f,, (2., by ), represents the cost incurred when
a connection w € W fails to achieve its maximum possible
bandwidth. The second term accounts for the total energy
consumption of the connection.

The flow conservation is modeled using auxiliary real
variables y,,; and binary variables b,,;, subject to the equality
constraint in (2) and three inequalities: (7), (5), and (6). The
constraint (7) ensures single-path routing, while (6) enforces
the relationship between the auxiliary and binary variables.

To solve the problem (1)-(8), we decompose it with respect
to the flows w € W. For this purpose, we introduce the
admissible set X BY,, for each flow w, which results from
the constraints (2), (3), (5)-(8). This set for flow w is defined
as

T, Yl € R, by € {O,l},l eL:

Z{ieN|(i,j)eA} Yw,e(i,5)

~ 2.{keN|(j,k)eA} Yuw,e(4,k)
—Tw Jj=S(w)

Jj=D(w)
0 otherwise

Ty < Ty < Ty,

Yuwr >0, VIleL,

Yuwl < bu;ljw, Vie L

2 gjeNl(iea) bwei < 1,

Vj € N,

= T

XBY, =

Vie N
&)

Now we can write (1)-(8) as,

i - 2
()X BY Z (@0 = 70)” 4 Z bu (10
weWw el
s.t. Z Yot — <0, VieL (11)

weWw

A. Synchronous Iterative Updates

The augmented Lagrangian in Bertsekas method for the
problem (1)-(8) with zf € Ry U {0} and b, € {0,1} will
have the form
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At iteration k + 1 using &, € [0,1),
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. ok
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(Tw,bw,Yuw ) EXBYy

+ ZLp2wl(bwl7ywlabfyhyfula,u;c)}a V w e W (15)

leL
2 =gt (1- &)k, Ywew (16)
"“—ﬁkbwﬁ(l—g)bﬁl, VweW,leL (7
yol =&yt +(1—&yit, YweW,leL  (18)
s _max{Q I +5p( S gk _CZ)}’
weWw
VielL (19)

B. Asynchronous Iterative Updates

Let S,y C {1,2,...,} be a set of iterations at which
w adjusts xy, by, Ywr based on current knowledge of
wVieLand T, C {1,2,...,} be aset of iterations at which
[ adjusts p; based on current knowledge of y,,; V w € W. The
optimization problem (1)-(8) will be solved using a similar
approach found in [9] and the Augmented Lagrangian function
defined in (12).

For each iteration k + 1, the asynchronous updates proceed
as follows:

w’s Algorithm: At iterations, k = 1,2, ..., and w:
1: From iteration to iteration, w receives updates ,uf from all

| € L and calculates [}

)

2: At each update 1terat10n k’ € S,, w chooses the next

k+1 k+1 k+1 Sk+1 Sk +1
AR TS anda: b2y
k+1 pk+1 k41
(2o b Y )
. k
= arg min {Lplw($w737fu)
(Zw bw,Yw)EXBY,,

1 LSRRI 3] Se)

leL
25 = gt + (1 &)kt Q1)
st _gkb l+(1—§k)b7’jj1, VielL (22
ol =Gy + (1 &EE, vieL  (@23)

Transmission is done at this rate until the next update
3: Communicates yﬁjl V[ € L to all constraints controllers.

I’s Algorithm: At iterations, k = 1,2, ...

1: From iteration to iteration, [ receives updates yk+1 VielL
from all w € W.

2: At each update iteration k&’ € T}, [ updates ué”

, and l:

! such that

= maX{O, % +ﬂp( Z gurt —Cz)} (24)

wew

Transmission is done at this rate until the next update
3: Communicates ,uf“ to all local optimizers.

Stop when zk+1 = 28 bk‘H = bs 1, yﬁjl = fuTl,
otherwise increase k by 1 and g0 to step 1 Where
k
ghi= Y aw® Ryl weWliel (25)
k'=k—kO
Z bi(k k), 1€l (26)
k'=k—kO
and
k
> aw(W,k)=1, Vk,weWleL (27
k'=k—kO
k
> (k. k)=1, Vk l€L (28)
k'=k—kO
and
aw (k' k) >0, Vk,weWlel (29)
bi(k' k) >0, Vk,lelL (30)

III. SYNCHRONOUS AND ASYNCHRONOUS SOLUTIONS OF
REGULARIZED SYSTEMS OF LINEAR EQUATIONS

Solving linear systems reliably is a central task across
diverse areas, including optimization, machine learning, signal
processing, and statistical modeling. In practice, the raw
system Ax = b, where A € R™*" x € R", and b € R™, often
arises under conditions that make direct solutions unstable or
computationally demanding. Here, m and n denote the number



of observations and variables, respectively. Depending on the
relationship between m and n, the system may be underde-
termined, overdetermined, or square; in each case, challenges
such as ill-conditioning, multicollinearity, and sensitivity to
noise frequently occur.

To address these concerns, regularization methods are in-
troduced to improve numerical stability and generalization.
Among these, ¢5-based regularization is particularly common
because it discourages excessively large coefficients without
enforcing sparsity. Unlike ¢y or its convex surrogate /1, the
{5 penalty encourages smooth solutions and reduces the risk
of overfitting, making it well-suited for high-dimensional and
noisy settings. This principle underpins methods such as
ridge regression and Tikhonov regularization, which remain
foundational in modern computational approaches.

To describe this formally, let P C {1,...,n} index the
set of decision variables and M = {1,...,m} represent the
set of constraints. Define a; € RIP! as the feature vector
corresponding to the i-th observation and y; € R as its
associated response. The regularized formulation can then
be expressed as the following constrained ¢2-minimization
problem:

min doad st Ayzj=y, VieM (3D

jeEP JjEP

In this formulation, z; € R for all j € P are the
optimization variables, and the equality constraints guarantee
that the model fits the observed data exactly. The objective
incorporates an {5 penalty that encourages smaller coefficients
and enhances robustness against noise and multicollinearity.
This framework forms the basis for well-known methods
such as ridge regression and Tikhonov regularization and
remains fundamental to modern optimization-based techniques
for linear inverse problems.

To facilitate the use of algorithms that operate on inequality
constraints, the equality constraints are equivalently rewritten
as a pair of inequalities; hence Vi € M, (31) becomes:

. 2
mzln E xi, st

jep

{Zmp&ﬂﬁ—%—5<0a (32)

—Yjep AT +yi—e <0

where ¢ is a small relaxing constant. This reformulation pre-
serves the feasible set of the original problem while ensuring
compatibility with augmented Lagrangian-based optimization
techniques that rely on inequality-constrained formulations.

A. Synchronous Iterative Updates

The augmented Lagrangian in Bertsekas method for the
inequality-constrained regularized systems of linear equations

A. NWACHUKWU, A. KARBOWSKI

problem (32) takes the form:

s - p s
Lp(x,x 7N+7N ) = Z {x? + i(lj 71’]’)2

jepr

. [ur(z Ay <)
ieM jeP
+u;(— S Agas +ys e)] } (33)
JjeP

This expression can be decomposed into coordinate-wise
subproblems as:

. _ p . _
LPJ‘ (xjvxjvﬂ+vﬂ )= x?+7(mj7xj)2+z Aijxj(:u‘z—'i_iui )

2 :
€M
(34)
plus components dependent on Lagrange multipliers ,u;", i
and constants ¢, y;,© € M.

At each iteration k+ 1, using a relaxation factor & € [0, 1),
Vi € M, Vj € P, the updates proceed as follows:

. k _
SC?—H = arg n;ln ij (xj7x§ 7H+’k,,u ,k) 35)
J

k+1
S
Zy

k
&l + (1 — &)ah™

PR = max {O, i+ Bp ( Z A,ﬂ:?“ — Y — 5) }

(36)

jeEP
(37
M;vk‘H = max {0, ui_’k + Bp( - Z Aijx;“l +yi — E) }
jEP
(38)

This formulation ensures that both upper and lower in-
equality constraints are respected by maintaining nonnegative
dual multipliers pT and u~, associated with the two-sided
inequalities in the reformulated problem.

B. Asynchronous Iterative Updates

Let S; C {1,2,...} be the set of iterations at which variable
J updates z; and z; based on the current estimates of ,uz'-", i
for all ¢ € M. Similarly, let T; C {1,2,...} be the set of
iterations at which constraint i updates ;7 and p; based
on the most recent estimates of x; for all j € P. Using
an approach inspired by [9] and the augmented Lagrangian
function defined in (33), the asynchronous updates proceed as
follows.

j’s Algorithm: At iterations k =1,2,..., for each j € P:
1: From iteration to iteration, j receives updates u:rk and
p;F from all i € M.

2: At each update iteration &’ € S;, j chooses the next x?“

and xjk“'
x;ﬁ-l = arg Igianj (l‘j,m‘;k,ﬂ%k’ﬂ—ﬁ), VjeP
(39)
o3 =gl + (1 &)k, vieP (40)
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3: Transmission continues at this rate until the next update.
4: j communicates x?“ to all constraint controllers.
i’s Algorithm: At iterations £ =1,2,..., for each i € M:

1: From iteration to iteration, 7 receives updates xf“ from
all j € P.

2: At each update iteration k' € T}, i updates ,uj and p; as
follows:

+,k+1 +,k
1 = max {O, 1

+ 5/7(2 A @it — g — €> }

jEP

41
ui_’k+1 = max {O, ui_’k

+ Bp( =Y Ayt 4y — s)) } (42)

jep

3: Transmission continues at this rate until the next update.

4: ¢ communicates ﬂj’k+1 and p; FH 1o all local optimiz-
ers.
et . L
Stop when x?“ = xj for all j € P; otherwise, increment

k and repeat.

The asynchronously aggregated values used in the updates
are defined as:
k
Z a;j(k, k)x";/, VjeP
k'=k—ko
k ’
> bk k)t VieM
k'=k—ko
k 7
S bk k)", VieM

k' =k—kq

(43)

N

Sk

i = @4

.~k

it = (45)

with the weights satisfying:

k

> ai(K k)=1, aj(k',k)>0, Vk, jEP
k'=k—ko

k

> bk k)=1, bi(K.k)>0, Vk i€M
k'=k—ko

(46)

(47)

IV. NUMERICAL TESTS
A. Implementation Details

All implementations and numerical experiments were con-
ducted using Python 3.12.0. The optimization models were
formulated with the Pyomo modeling framework and solved
using the Gurobi optimizer. Computational experiments were
performed on a machine equipped with an AMD Ryzen 5
4600H processor (3.00 GHz, Radeon Graphics), 32 GB of
RAM, and a 512 GB SSD, running a 64-bit Windows 10 Pro
operating system. Network construction and visualization tasks
were handled using the NetworkX library [15], facilitating

the representation of graph-based structures integral to the
optimization problems.

The individual results were first aligned to a unified time
axis to enable consistent comparison across datasets with
potentially different time indices. A comprehensive timeline
was constructed by taking the union of all time points in
the datasets. Each dataset was then merged onto this unified
timeline using nearest-neighbor matching via merge_asof
from Pandas [16], ensuring that for each time point in the ref-
erence axis, the closest available record from each dataset was
selected. This approach preserves temporal coherence while
allowing synchronized evaluation of multiple time series, even
in non-uniform or asynchronous sampling intervals.

Both the synchronous and asynchronous methods were
implemented using Python’s multiprocessing module. In the
synchronous version, a Pool of worker processes is used to
update partitions of the primal variable in parallel. All updates
are synchronized at each iteration before the dual variable is
updated, ensuring a consistent global state. While this design
is simple and deterministic, it suffers from synchronization
delays due to straggler processes, especially under partitioned
execution.

In contrast, the asynchronous version eliminates global
barriers by allowing each worker to proceed independently
using bounded-delay averaging. Shared memory buffers (mul-
tiprocessing.shared_memory) and locks coordinate access to
global variables, while a shared counter tracks progress across
tasks. Primal and dual workers run in parallel without waiting,
exchanging delayed but consistent updates through shared
state. This design improves runtime efficiency, particularly in
large-scale or heterogeneous environments.

Both variants periodically log convergence metrics (e.g.,
norm differences, objective values, constraint violations), and
checkpoints are saved for analysis and reproducibility. Con-
vergence is detected via multiple stopping criteria, including
change in objective, constraint satisfaction, and relative error.

B. Network Optimization Problem

1) Dataset Description: The algorithms developed in this
study were implemented and evaluated on three network
topologies of increasing complexity: medium, large, and extra-
large. Each topology was tested under multiple objective
parameter configurations (vy,d), yielding ten problem in-
stances. The networks were designed as loosely connected
clusters of nodes exhibiting strong intra-cluster connectivity.
Each instance was solved using a synchronous and an asyn-
chronous formulation to evaluate comparative performance.
All experiments were executed in parallel using Python’s
multiprocessing.Pool to simulate distributed compu-
tation. The detailed characteristics of the tested network in-
stances are summarized in Table II.

2) Results and Discussion: In Table 111, the objective values
and runtimes are reported for each network problem instance
under synchronous and asynchronous optimization, evaluated
with and without simulated delays. Consistent trends are
observed across all ten instances, spanning medium, large,
and extra-large network topologies, which highlight the trade-
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TABLE II: Summary of network problem instances tested

Nodes Arcs Demands  Flow Rates  Capacities
Problem Type  Number Number  Number Bounds Bounds
Medium 25 84 12 [0.001, 3] [0.3, 1]
Large 49 143 32 [0.001, 3] (0.3, 1]
Extra Large 77 227 64 [0.001, 3] [0.3, 1]

offs between the two algorithmic paradigms. They can be
visualized in Figs. 1-5.
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Fig. 1: Medium Problem Objective Values (Routing)
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Fig. 2: Large Problem Objective Values (Routing)

Both formulations yielded nearly identical objective values
across all settings without delay, indicating that the asyn-
chronous method achieves comparable solution quality to
the synchronous baseline. The minor discrepancies observed
(e.g., Medium v = 2,6 = 1 with 163.49 vs. 163.54) are
negligible and within numerical tolerance, affirming the cor-
rectness of the asynchronous approach. Runtime comparisons
without delay show a more nuanced pattern. In medium-sized
networks, asynchronous optimization is generally completed
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Fig. 3: Extra Large Problem Objective Values (Routing)
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faster than synchronous optimization. For instance, in the
Medium v = 2, = 1 case, asynchronous execution completed
in 10 seconds compared to 19 seconds for its synchronous
counterpart. However, in some large network instances (e.g.,
Large v = 1,5 = 2), the asynchronous method was slightly
slower (91 seconds vs. 58 seconds), likely due to the overhead
of managing loosely coupled updates at scale. Nevertheless,
the differences in runtimes were not drastic under normal
execution conditions.

The introduction of artificial delays in selected data parti-
tions dramatically magnified performance differences. In all
medium and large network instances, synchronous runtimes
increased significantly, often by an order of magnitude or
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TABLE III: Routing Results

Data Objective Objective (with delay) Time [s] Time (with delay) [s]
Sync Async Sync Async Sync  Async | Sync Async
Medium vy =1, =1 116.13 116.13 116.1 116.52 16 15 592 42
Medium v = 1,6 =2 197.27 197.27 197.27 197.47 30 28 557 38
Medium v = 2,0 =1 163.49 163.54 163.49 163.54 19 10 342 65
Medium v = 2,0 = 2 246.84 246.69 246.85 246.62 19 14 443 195
Largev=1,0=1 386.81 386.76 386.81 386.64 301 110 628 123
Large vy =1,0 =2 636.63 636.78 636.63 636.68 58 91 473 183
Large v =2,6 =1 571.37 571.50 571.37 571.52 200 142 384 117
Large v = 2,6 =2 821 821 821 821 109 78 1020 115
Extra Large v = 2,0 =1 | 112521 112522 | 1125.21 1125.26 127 388 461 429
Extra Large v = 2,6 =2 | 163644 1635.70 | 1636.44 1636.45 149 354 509 400
Edge labels indicate the commodity identifier and the flow
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Fig. 5: Small Problem Networks (Routing)

more. For example, when delays were introduced, the syn-
chronous runtime in the Medium v = 1,5 = 1 case jumped
from 16 to 592 seconds. In contrast, the asynchronous runtime
increased modestly, from 15 to 42 seconds. Similar resilience
was observed across all configurations. Even in large-scale
instances, the asynchronous approach maintained substantially
lower runtimes than its synchronous counterpart under delayed
conditions. For example, in the Large v = 1,§ = 2 case, the
asynchronous runtime with delay was 183 seconds, while the
synchronous method required 473 seconds.

Figure 5 presents a visualization of routing paths over a
directed network graph (Small Problem Networks), where
each node represents a router or a network element, and
directed edges represent potential communication links. Using
the spring layout for spatial arrangement, the plot shows the
routing solutions for multiple commodities w € W, where
each commodity represents a separate source-destination traf-
fic demand pair. Flows are illustrated by color-coded directed
edges, with each color corresponding to a different commodity.

value y,,; transmitted over that edge, truncated to a single
decimal for clarity. Only edges with a non-negligible flow
(above a threshold of 10~3) are visualized to reduce clutter
and emphasize active routes. Optionally, each commodity’s
source and destination nodes can be annotated with S(w) and
D(w), respectively, to highlight the entry and exit points of
data within the network. This visualization effectively captures
both the structure of the network and the routing decisions for
multiple commodities, enabling a direct comparison of path
overlaps, bottlenecks, and routing efficiency across different
scenarios or algorithmic configurations.

Overall, the results demonstrate that while both methods
yield solutions of equivalent quality, asynchronous optimiza-
tion exhibits significantly better robustness to delays and
scales more gracefully with problem size; this makes it a
compelling strategy for real-world distributed optimization
problems where partial staleness and communication latency
are common.

C. Regularized Linear Systems

1) Dataset Description: The experiments are conducted on
three linear systems designed to reflect varying data structures
and matrix conditions. Two are derived from an image inpaint-
ing task using randomized diagonal measurement operators,
and the third is based on a biomedical dataset reformulated as
a compressed feature recovery problem. Each dataset adheres
to the standard linear model Az = y, with a known ground
truth x*.

The first dataset simulates a diagonal sensing problem in
grayscale image recovery. A 16 x 16 grayscale image is
vectorized into z* € R2?%®, and a diagonal measurement
matrix A € R?%6%256 js constructed with entries drawn
independently from a uniform distribution over [0,1). The
corresponding observation vector is computed as y = Az*,
resulting in a well-scaled and positive semi-definite system.
This formulation captures moderate conditioning and serves
as a stable reference for evaluating solution quality.

The second dataset uses the same underlying image and
construction but replaces the uniform distribution with a stan-
dard Gaussian distribution for the diagonal entries of A. This
results in a more ill-conditioned system where entries can be
both positive and negative, potentially with large magnitudes.
The measurement vector y = Axz*, therefore, reflects a noisier
and more variable scaling of the original image, posing greater



challenges for algorithmic recovery under unstable and zero-
mean multiplicative transformations.

The third dataset is derived from the UCI Breast Cancer
Wisconsin (Diagnostic) dataset [17] and formulated as a
compressed sensing task. After standardizing the data, a single
feature vector z* € R3C is selected from the training partition.
A sensing matrix A € R19%30 i5 generated with independent
standard Gaussian entries scaled by 1/ v/10. The measurement
vector y = Ax* thus represents a low-dimensional projection
of the original biomedical profile. This setting is representative
of practical dimensionality reduction problems in clinical data,
where reconstruction must be achieved from limited and noisy
observations.

2) Results and Discussion: Table IV and Figs. 6-10 report
the performance of the synchronous and asynchronous variants
of the Bertsekas algorithm on three regularized linear systems:
one derived from clinical data (Cancer) and two from synthetic
image recovery tasks with uniform and Gaussian diagonal
measurement matrices. All experiments were conducted using
12 data partitions to reflect realistic distributed processing
conditions.
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Across all three datasets, both synchronous and asyn-
chronous algorithms achieved the same objective values, indi-
cating convergence to consistent solutions. For the synthetic
image-based systems, the objective values were 60.87 and
61.41 for the uniform and Gaussian matrices, respectively. The
Cancer dataset yielded a lower final objective value of 54.61,
likely due to its lower dimensionality and better numerical
conditioning compared to the randomized sensing matrices
used in the synthetic cases. The consistency in solution quality
across all runs confirms that asynchronous updates do not
compromise the convergence accuracy of the algorithm, even
in ill-conditioned or noisy settings.

In terms of runtime, the asynchronous variant demonstrated
clear computational advantages. On the low-dimensional Can-
cer dataset, it reduced the execution time from 55 seconds
(synchronous) to just 8 seconds, yielding a nearly seven-fold
speedup. This is particularly relevant in real-world scenar-
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TABLE IV: Performance Comparison of Optimization Algorithms for Regularized Systems of Linear Equations Across Different

Problem Regimes with 12 Partitions

Synchronous Asynchronous
Dataset Objective  Time(s) Status \ Objective  Time(s) Status
Gaussian 61.41 724 Converged 61.41 511 Converged
Uniform 60.87 938 Converged 60.87 918 Converged
Cancer 54.61 55 Converged 54.61 8 Converged

(a) Original (b) Inpainted (Noisy)
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(d) Asynchronous

(c) Synchronous

Fig. 10: Image Recovery under Gaussian Additive Noise

ios involving clinical diagnostics, where quick and reliable
inference is essential. For the Gaussian diagonal sensing
matrix, the asynchronous version reduced runtime from 724 to
511 seconds—approximately a 30% improvement. While the
gain was less dramatic in the uniform matrix case (938 vs.
918 seconds), the asynchronous approach still maintained its
efficiency without introducing instability.

Overall, all configurations resulted in successful conver-
gence. The asynchronous scheme consistently matched the
solution quality of its synchronous counterpart while sig-
nificantly reducing computation time in most cases. These
results suggest that asynchronous distributed optimization is
especially effective in scenarios involving low-dimensional or
poorly conditioned systems, where it can deliver substantial
efficiency gains without sacrificing solution accuracy.

V. CONCLUSIONS AND FUTURE WORK

This study has developed and tested Bersekas Aug-
mented Lagrangian decomposition algorithms (Synchronous
and Asynchronous) tailored to the simultaneous optimization
of routing and bandwidth allocation in energy-aware networks

and the solutions of regularized linear systems in large-scale
machine learning contexts. The proposed techniques addressed
the challenges posed by the mixed-integer nature of routing
problems and the high dimensionality of the regularized linear
systems. The resulting methods achieved efficient and scalable
computation by employing decomposition and dualization
strategies. Notably, asynchronous implementations demon-
strated superior resilience to delays and significantly improved
computational performance compared to their synchronous
counterparts, without any substantial degradation in solution
quality.

Beyond empirical validation, this work provides evidence
for the robustness and adaptability of asynchronous optimiza-
tion paradigms in large-scale and distributed systems. In the
context of network design, our method overcomes traditional
limitations of Lagrangian relaxation by producing feasible,
high-quality routing and flow allocations. In regularized linear
systems, the asynchronous update mechanisms offer consider-
able reductions in wall-clock time, especially when operating
in heterogeneous computing environments.

Looking forward, this framework opens several avenues for
further research. One direction involves extending the network
model to allow K-path routing and incorporating stochastic or
uncertain demand profiles, reflecting more realistic operating
conditions. Another promising line of inquiry is refining
the convergence theory of asynchronous methods, especially
under relaxed assumptions such as unbounded delays or non-
uniform update frequencies. Additionally, dynamic penalty
parameter tuning and adaptive step-size mechanisms may
accelerate convergence. Finally, deployment on physical net-
working hardware or distributed edge platforms would provide
practical insights into the viability of these methods in real-
time applications. These directions aim to advance the use of
augmented Lagrangian methods as a foundation for efficient,
scalable, and decentralized optimization in networked and
data-rich environments.
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