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Spatiotemporal Deep Learning on dynamic infrared
thermography for classification of post-COVID-19

and post-myocardial infarction patients
Jakub Skwierczyński, Krzysztof Krupka, Andrzej Rusiecki, and Łukasz Jeleń

Abstract—Dynamic infrared thermography is emerging as
a noninvasive technique for monitoring microvascular health,
yet its interpretation remains largely qualitative and labor-
intensive. This work systematically benchmarks four deep
learning architectures: 2D CNN, 3D CNN, CNN–LSTM, and
CNN–Transformer, evaluated for automated DIRT sequence
classification in a clinically relevant cohort of post-COVID-19
and post-myocardial infarction patients. The study introduces
a rigorous pipeline encompassing thermal image acquisition,
standardized preprocessing, tailored data augmentation, and
stratified cross-validation to ensure reliable evaluation. Purely
spatial models such as the 2D CNN underperform, achieving
a macro F1 score of 73.5% and accuracy of 80.1%, while
temporally aware models yield substantial gains: CNN–LSTM
reaches a macro F1 score of 91.4% and accuracy of 92.7%,
and the CNN–Transformer achieves 88.8% and 90.6% prior to
hyperparameter optimization. After automated hyperparameter
optimization, both models converge to a macro F1 score of 93.8%
and accuracy of 94.8%, with the Transformer requiring less
than half the parameters. Functional ANOVA analysis highlights
that learning rate is the most influential factor for LSTM
tuning, while dropout dominates for the Transformer. These
findings establish a foundation for robust, sequence-aware DIRT
analysis, demonstrating that modern deep learning models, when
rigorously validated, can transform DIRT into a quantitative
biomarker for longitudinal vascular assessment.
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I. INTRODUCTION

DYNAMIC infrared thermography (DIRT) tracks the re-
bound of skin temperature after a brief thermal stimulus

and delivers a time-resolved map of microvascular function.
The roots of the technique reach back to Sir William Herschel,
who in 1800 observed an unseen band beyond red light
that raised a thermometer more than any visible color, now
known as infrared radiation. A century later, Kálmán Tihanyi
showed that this invisible radiation could be captured much
like ordinary light by patenting an infrared-sensitive camera
in 1929 [1], [2].
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The modern term DIRT was introduced by de Weerd et
al. [3] as an extension of conventional infrared thermography
(IRT). In IRT, a single static image merely labels regions
as colder or hotter and does not capture microcirculatory
dynamics. DIRT improves on this approach by monitoring how
surface temperature evolves after a brief thermal challenge.
Skin blood flow is the body’s primary thermoregulatory re-
serve, so vessels respond vigorously to metabolic, thermal, and
pharmacological stimuli [4]. By recording temperature at every
frame, DIRT can quantify small oscillations that reflect vascu-
lar tone and can classify longer-term trends as rising, falling,
or stabilized. These additional measures reveal subtle changes
produced by inflammation, tumor angiogenesis, or dominant
perforators, and the technique is now applied to nasal airflow
research, perforator planning, joint monitoring, and bedside
vascular screening [5]–[8]. As clinical adoption widens, DIRT
generates large volumes of time-resolved data for each patient
encounter, making manual inspection infeasible and creating
a clear need for automated, sequence-aware interpretation.

Despite these advances, interpretation remains largely qual-
itative in practice. Subtle differences in temperature patterns
require models that combine spatial and temporal information
across the entire DIRT sequence. Deep architectures such as
3D CNNs, CNN-LSTM hybrids, and CNNs augmented with
Transformer encoder blocks can learn these spatiotemporal
features directly from raw data [9], [10]. On the same clinical
cohort, an initial study [11] evaluated 2D CNN baselines
trained on preprocessed DIRT scans, demonstrating the feasi-
bility of deep learning for thermal sequence analysis. However,
a systematic evaluation of sequence-aware architectures has
yet to be conducted.

Expanding upon that earlier work, this study presents an
end-to-end pipeline designed to process complete DIRT se-
quences, maintain spatial fidelity and temporal consistency
through dedicated preprocessing, and benchmark four deep
learning architectures on a curated cohort of post-COVID-19
and post-myocardial infarction patients. The findings demon-
strate that integrating sequence-based DIRT with modern
deep learning frameworks can support the development of
a robust, noncontact biomarker for longitudinal assessment
of microvascular health, contributing to earlier diagnosis and
more efficient clinical workflows.
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II. MATERIALS AND METHODS

This section describes the detailed methodology developed
for analyzing DIRT sequences using advanced deep learning
architectures. The primary aim was to establish a robust,
automated method to distinguish subtle microvascular differ-
ences between patients recovering from COVID-19 and those
who had experienced a myocardial infarction. To achieve this
goal, an integrated pipeline involving thermal data acquisition,
specialized preprocessing techniques, model selection, training
procedures, and comprehensive evaluation metrics was estab-
lished, as outlined in Fig. 1.

A. Research Methodology

The research methodology developed in this study focuses
on analyzing temperature variability by comparing two distinct
thermal regions: the body’s core temperature and cortical
temperature. The core temperature was approximated through
thermal measurements taken at the forehead’s center, known as
the glabella. Prior research established that the glabella reliably
reflects the body’s internal temperature due to its proximity to
deeper vascular structures [12]–[14].

In contrast, cortical temperature measurements capture sur-
face level thermal dynamics influenced by multiple factors,
including ambient environmental conditions, thermoregulatory
processes, and specific measurement methodologies [15]–[17].
After capturing the DIRT sequences, three primary parameters
were extracted from the infrared thermal data: the temperature
trend indicating directional thermal changes, the absolute
temperature values, and the differential adjustments between
consecutive temperature measurements.

These collected parameters underwent a factor analysis to
explore potential interdependencies among the body’s var-
ious physiological subsystems. This approach enabled the
identification of subtle thermal signatures associated with
underlying pathological conditions. Leveraging the sensitivity
of dynamic infrared thermography in detecting early shifts in
thermoregulatory autoregulation, this methodology provides
a noninvasive, radiation-free approach suitable for routine
clinical screening and monitoring of microvascular health.

B. Dataset Overview

The dataset used in this study consists of dynamic infrared
thermography sequences collected from 96 patients referred
for cardiovascular assessment following COVID-19 infection
or myocardial infarction. Specifically, the data includes scans
from 66 individuals recovering from a COVID-19 infection
and 30 individuals who had experienced a myocardial infarc-
tion. For each participant, a sequence of eight thermal images
was captured, comprising four anterior scans and four posterior
scans, as illustrated in Fig. 2. Each individual scan has a spatial
resolution of 142× 19 pixels.
Due to the retrospective and non-systematic nature of data
collection, the available clinical metadata are limited. In par-
ticular, clinical information such as age, body mass index,
comorbidities, medication status, and exact time since the
incident were not consistently available between subjects. No

healthy control group was included. Consequently, the analysis
focuses on discriminating between patient subgroups present
in the dataset rather than on absolute deviations from normal
microvascular function. Furthermore, even with the small
cohort size and the aforementioned limitations, the dataset
reflects real-world data availability and should be viewed as an
exploratory benchmark designed to evaluate the feasibility and
robustness of sequence-aware deep learning for DIRT analysis,
rather than to establish population-level generalizations. Each
scanning session consisted of four measurements performed
using a thermal imaging camera. The protocol began with
an initial baseline measurement immediately after the patient
removed clothing, followed by subsequent measurements at
standardized intervals: two scans at consecutive 30-second
intervals and a final scan after an additional 4-minute inter-
val. This standardized scanning approach ensured consistency
across all captured thermal sequences, facilitating accurate and
reproducible tracking of temperature recovery dynamics for
each participant.

C. Data Preprocessing

Raw DIRT sequences acquired from the thermal microcam-
era contained inherent variability and noise, such as environ-
mental background, sensor artifacts, and participant-specific
temperature fluctuations. To ensure data uniformity and op-
timize input for effective modeling, a structured multistep
preprocessing pipeline was implemented, as depicted in Fig. 1
and exemplified in Fig. 2.

Initially, adaptive foreground segmentation isolated the pa-
tient’s silhouette from the background. Otsu’s thresholding
method determined an optimal temperature cutoff automati-
cally, effectively separating warmer body pixels from cooler
environmental regions. To prevent loss of peripheral body
areas, an ambient-aware threshold adjustment was employed,
considering both Otsu’s threshold and an ambient-based me-
dian temperature offset. Subsequently, connected component
analysis retained only the largest connected component, effec-
tively isolating the patient’s silhouette from extraneous pixels
and artifacts. Morphological hole filling was applied next, en-
suring a continuous, solid body mask. Pixels outside the final
mask were suppressed to eliminate background interference.

Due to minor variations in initial scan dimensions, each
thermal scan was spatially resampled via bilinear interpolation
to a standardized resolution of 142 × 18 pixels, ensuring
uniform spatial dimensions across the dataset.

The effectiveness of this preprocessing pipeline is demon-
strated in Fig. 3. Prior to processing, pixel intensity distri-
butions exhibited clear bimodal patterns representing ambient
temperatures and body surfaces. After preprocessing, back-
ground variability was substantially reduced, enhancing the
anatomical relevance and signal-to-noise ratio of the resulting
data, thereby facilitating reliable downstream modeling.

Following spatial harmonization, each thermal scan under-
went temperature intensity normalization by linearly scaling
pixel values from the physiologically relevant range to a [0, 1]
interval. This normalization aligned pixel intensities with the
expected input range of neural network layers and enhanced
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Fig. 1. Overview of the proposed deep learning classification pipeline

Front Scan 1 Front Scan 2 Front Scan 3 Front Scan 4

Back Scan 1 Back Scan 2 Back Scan 3 Back Scan 4

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0
Te

m
pe

ra
tu

re
 [°

C]

Fig. 2. Exemplary DIRT sequence for a single patient, comprising four
anterior and four posterior thermal scans

numerical stability. An example of a preprocessed scan is
shown in the second step of the pipeline depicted in Fig. 1,
where it can be observed that the background was effectively
removed, leaving a clearly delineated and normalized patient
thermogram ready for subsequent analysis.

Finally, normalized thermal images were structured into ten-
sors suitable for model training. Specifically, four sequentially
aligned thermal scans, each consisting of anterior and posterior
views concatenated horizontally to form images of dimensions
142 × 36 pixels, were stacked temporally. This resulted in
tensors of shape 4 × 1 × 142 × 36, capturing comprehensive
spatiotemporal information. These tensors served directly as
inputs to the deep learning models described in subsequent
sections.

D. Data Augmentation
Due to the relatively limited size of the dataset, data

augmentation techniques were employed to enhance the gen-
eralization capability of the deep learning models and reduce
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Fig. 3. Pixel temperature distributions before and after preprocessing,
comparing Post-COVID-19 and Post-MI thermal scans.

the risk of overfitting [18]. Data augmentation was applied
exclusively to the training set within each cross-validation fold,
leaving the validation sets untouched, thereby preserving the
integrity of model evaluation.

Augmentation procedures included horizontal flipping (il-
lustrated in Fig. 1), random horizontal shifts, additive Gaussian
noise, and simulated temperature drift through random scaling.
These transformations were applied consistently across each
temporal sequence to maintain the temporal coherence of
the DIRT data. Specifically, horizontal flipping was randomly
performed with a probability of 0.5, while horizontal shifts
introduced small random translations of up to ±3 pixels,
simulating realistic sensor positioning variations. Gaussian
noise was added to simulate sensor imperfections, with noise
drawn from a zero-mean Gaussian distribution. Additionally,
global temperature scaling was applied, randomly adjusting
each image’s temperature values within a ±3% range to mimic
minor sensor drift.

E. Deep Learning Architectures

To capture the spatiotemporal patterns in the preprocessed
DIRT tensors, we evaluated four complementary neural net-
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work architectures. First, a 2D CNN baseline treats the four
time steps as input channels and learns purely spatial filters
[19]. Second, the CNN–LSTM hybrid augments this by feed-
ing per frame CNN features into an LSTM layer to model
temporal dynamics [20]. Third, a 3D CNN applies volumetric
convolutions to jointly learn across space and time [9]. Finally,
the CNN–Transformer replaces the recurrent module with a
self-attention encoder that integrates information across all
scans in parallel [21]. The detailed layer configurations and pa-
rameter counts for each model are summarized in Tables I–IV.
All models were implemented in PyTorch 2.7.1 with Python
3.12.3 [22].

1) 2D CNN: A lightweight two-layer 2D convolutional
network was implemented as a spatial baseline. The model
treats the four time steps as input channels, applies successive
Conv2d–AvgPool2d blocks to extract spatial features, and
flattens the result into two fully connected layers before the
final softmax. With only 40,946 parameters, this architecture
provides a fast reference point for purely spatial classification
(Table I) [19].

TABLE I
2D CNN ARCHITECTURE SUMMARY

Layer Output Shape Params
Conv2d (4, 32) [1, 32, 142, 36] 1,184
AvgPool2d [1, 32, 35, 9] –
Conv2d (32, 16) [1, 16, 35, 9] 4,624
AvgPool2d [1, 16, 8, 2] –
Flatten [1, 208] –
Linear (208, 128) [1, 128] 26,752
Linear (128, 64) [1, 64] 8,256
Linear (64, 2) [1, 2] 130
Total – 40,946

2) CNN–LSTM Hybrid: To capture temporal dependencies,
the 2D CNN was augmented with a recurrent module. Frame-
wise feature maps are pooled and passed through a linear layer
before being fed into a single layer LSTM with 512 hidden
units. The LSTM’s final state is then classified via a dense
layer. This hybrid retains spatial convolutional strengths while
explicitly modeling sequence dynamics (Table II) [20].

TABLE II
CNN-LSTM ARCHITECTURE SUMMARY

Layer Output Shape Params
Conv2d (1, 32) [4, 32, 142, 36] 288
BatchNorm2d [4, 32, 142, 36] 64
Conv2d (32, 64) [4, 64, 142, 36] 18,432
BatchNorm2d [4, 64, 142, 36] 128
MaxPool2d [4, 64, 71, 18] –
Conv2d (64, 128) [4, 128, 71, 18] 73,728
BatchNorm2d [4, 128, 71, 18] 256
MaxPool2d [4, 128, 35, 6] –
AdaptiveAvgPool2d [4, 128, 1, 1] –
Flatten [4, 128] –
Linear (128, 128) [4, 128] 16,512
LSTM (128, 512) [1, 4, 512] 790,528
LayerNorm [1, 512] 1,024
Linear (512, 2) [1, 2] 1,026
Total – 901,986

3) 3D CNN: A volumetric convolutional architecture was
designed to learn spatiotemporal filters directly. The network

employs three stages of Conv3d–BatchNorm3d–MaxPool3d,
reducing the temporal and spatial dimensions jointly, followed
by global average pooling and two fully connected layers. This
3D CNN, with 1.14 M parameters, fuses motion and texture
in a single pass (Table III) [9].

TABLE III
3D CNN ARCHITECTURE SUMMARY

Layer Output Shape Params
Conv3d (1, 64) [1, 64, 4, 142, 36] 1,728
BatchNorm3d [1, 64, 4, 142, 36] 128
MaxPool3d [1, 64, 2, 71, 18] –
Conv3d (64, 128) [1, 128, 2, 71, 18] 221,184
BatchNorm3d [1, 128, 2, 71, 18] 256
MaxPool3d [1, 128, 1, 35, 9] –
Conv3d (128, 256) [1, 256, 1, 35, 9] 884,736
BatchNorm3d [1, 256, 1, 35, 9] 512
MaxPool3d [1, 256, 1, 17, 4] –
AdaptiveAvgPool3d [1, 256, 1, 1, 1] –
Flatten [1, 256] –
Linear (256, 128) [1, 128] 32,896
Dropout [1, 128] –
Linear (128, 2) [1, 2] 258
Total – 1,141,698

4) CNN–Transformer Hybrid: Finally, a hybrid model re-
places the recurrent layer with a Transformer encoder. Con-
volutional blocks produce per scan embeddings that are con-
catenated and enriched by multihead self-attention across the
four time steps. A position-aware Transformer block aggre-
gates these embeddings before classification, enabling flexible
modeling of long-range temporal interactions (Table IV) [21].

TABLE IV
CNN–TRANSFORMER ARCHITECTURE SUMMARY

Layer Output Shape Params
Conv2d (1, 32) [4, 32, 142, 36] 288
BatchNorm2d [4, 32, 142, 36] 64
ReLU [4, 32, 142, 36] –
MaxPool2d [4, 32, 71, 18] –
Conv2d (32, 64) [4, 64, 71, 18] 18,432
BatchNorm2d [4, 64, 71, 18] 128
ReLU [4, 64, 71, 18] –
MaxPool2d [4, 64, 35, 9] –
Conv2d (64, 128) [4, 128, 35, 9] 73,728
BatchNorm2d [4, 128, 35, 9] 256
ReLU [4, 128, 35, 9] –
AdaptiveAvgPool2d [4, 128, 1, 1] –
Flatten [4, 128] –
Linear (128, 256) [4, 256] 33,024
MultiheadAttention [1, 4, 256] 263,168
LayerNorm [1, 4, 256] 512
Linear (256, 256) [1, 4, 256] 65,792
Dropout [1, 4, 256] –
Linear (256, 256) [1, 4, 256] 65,792
LayerNorm [1, 4, 256] 512
LayerNorm [1, 256] 512
Linear (256, 2) [1, 2] 514
Total – 523,746

F. Training Procedure

Given the limited size of our dataset, stratified 5-fold cross-
validation was employed to obtain robust performance esti-
mates and reduce the risk of overfitting [23]. In each fold, the
training subset was augmented as described in Section II-D,
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while the corresponding validation subset remained unaltered
to ensure an unbiased assessment of generalization.

All models were trained to minimize categorical cross-
entropy loss using the AdamW optimization algorithm [24].
A one-cycle learning rate policy with cosine annealing was
utilized: the learning rate increased linearly to a peak value
during the initial phase of training and then gradually de-
creased to a small final value [25]. This schedule promotes
efficient convergence and reduces the likelihood of the model
becoming trapped in sharp local minima. Weight decay was
uniformly applied to all trainable parameters to serve as a
regularization mechanism and to further mitigate overfitting.

Hyperparameter tuning was conducted using the Optuna
framework, which employs a Tree-structured Parzen Estimator
to explore the search space efficiently [26]. The optimization
process considered a range of learning rates, weight decay
coefficients, dropout probabilities, and architecture-specific
parameters. To accelerate convergence, trials were pruned
early based on intermediate validation macro F1 scores, en-
abling the elimination of poorly performing configurations.
For the selected models, the hyperparameter combination that
achieved the highest average macro F1 score across the five
folds was selected.

Training was carried out for up to 300 epochs per fold. Early
stopping was applied if the validation macro F1 score did not
improve for 20 consecutive epochs. The model weights corre-
sponding to the epoch with the best validation macro F1 were
restored prior to final evaluation. All reported performance
metrics, including accuracy, precision, recall, and F1 score, are
presented as the mean and standard deviation across the five
cross-validation folds, offering a comprehensive evaluation of
each model’s robustness and generalization performance.

All experiments were conducted on a workstation equipped
with an NVIDIA GeForce GTX 1660 GPU using CUDA 12.4.

G. Evaluation Metrics

To comprehensively assess the performance of the trained
models on the binary classification task, four commonly used
evaluation metrics were employed: accuracy, precision, recall,
and F1 score. These measures jointly capture different aspects
of predictive behavior, allowing for a nuanced evaluation of
model reliability. In medical imaging and diagnostic tasks,
relying on a single metric may obscure clinically important
tendencies, such as an overemphasis on the majority class or
an asymmetry between sensitivity and specificity. Therefore, a
balanced set of complementary metrics was adopted to provide
a thorough performance characterization.

Accuracy: Accuracy quantifies the overall proportion of
correct predictions. It is defined as the number of correctly
classified samples divided by the total number of samples:

Accuracy =
TP+ TN

TP+ TN+ FP + FN
(1)

While intuitive, accuracy alone can be misleading in imbal-
anced settings, as it may be biased toward the majority class.

Precision: Precision, also known as positive predictive
value, measures the proportion of correctly predicted positive
cases among all predicted positives:

Precision =
TP

TP + FP
(2)

High precision implies that the model makes few false positive
errors, which is essential when false alarms must be mini-
mized.

Recall: Recall (sensitivity) captures the proportion of true
positive samples correctly identified by the model:

Recall =
TP

TP + FN
(3)

This metric is critical in medical diagnostics, where missing
positive cases (e.g., undetected COVID-19) may carry clinical
risk.

F1 score: The F1 score is the harmonic mean of precision
and recall, providing a balanced measure that considers both
false positives and false negatives:

F1 score = 2 · Precision · Recall
Precision + Recall

(4)

The F1 score is especially valuable in imbalanced datasets, as
it penalizes extreme disparities between precision and recall.

Averaging Strategy: Given the moderate class imbalance in
our dataset (66 Post-COVID-19 vs. 30 Post-MI participants),
performance was evaluated using the macro-averaging strategy
for precision, recall, and F1 score. This approach computes
each metric independently for both classes and then takes their
unweighted mean:

Mmacro =
1

2
(MCOVID +MMI) (5)

Macro-averaging assigns equal importance to both diagnos-
tic groups, ensuring that the minority class contributes equally
to the overall performance estimate. This choice provides a
fairer assessment of the model’s ability to generalize across
classes, avoiding the bias that could arise from class imbalance
and aligning with best practices in medical classification tasks
where sensitivity to minority cases is clinically relevant.

III. RESULTS

This section reports the empirical performance of the
four candidate architectures and analyzes the effect of auto-
mated hyperparameter search on the two strongest contenders.
Section III-A compares the macro-averaged cross-validation
scores of all models, whereas Section III-B focuses on the
hyperparameter optimization phase for the CNN-LSTM and
CNN-Transformer networks, including functional ANOVA im-
portance and parallel coordinates visualizations.

A. Cross-Validation Performance
2D CNN: The purely spatial baseline achieved an average

macro accuracy of 0.80 and an F1 score of 0.74 (Table V).
The relatively wide inter-quartile ranges in Fig. 4 highlight
its sensitivity to the sampling of training data, confirming that
temporal cues are essential for reliable discrimination. The
purely spatial baseline, which most closely approximates the
classical frame-based DIRT analysis, performed substantially
worse than all temporally aware models.
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Fig. 4. Distribution of macro-averaged accuracy, precision, recall, and F1 score over the five cross-validation folds for each model

TABLE V
CROSS-VALIDATION RESULTS: MACRO-AVERAGED PERFORMANCE

METRICS (MEAN ± STANDARD DEVIATION) ACROSS 5 FOLDS

Model Accuracy Precision Recall F1 score
2D CNN 0.801 ± 0.063 0.821 ± 0.079 0.728 ± 0.086 0.735 ± 0.103
CNN-LSTM 0.927 ± 0.063 0.926 ± 0.072 0.910 ± 0.075 0.914 ± 0.073
3D CNN 0.896 ± 0.056 0.906 ± 0.066 0.852 ± 0.076 0.870 ± 0.070
CNN-Transf. 0.906 ± 0.051 0.904 ± 0.059 0.886 ± 0.071 0.888 ± 0.062

CNN–LSTM: Augmenting the spatial encoder with an
LSTM yielded the strongest overall performance, achieving
a macro F1 score of 0.91, as well as the highest precision
(0.93) and recall (0.91) among all tested models (Table V). The
narrow boxes in Fig. 4 further indicate excellent fold-to-fold
stability, suggesting that the recurrent layer effectively captures
the subtle rewarming dynamics characteristic of endothelial
injury.

3D CNN: The volumetric model ranked third, reaching a
macro F1 score of 0.87 (Table V). Although its accuracy ap-
proached that of the CNN–Transformer, the 3D CNN exhibited
slightly lower recall (Fig. 4), implying occasional misses of
positive cases despite strong spatiotemporal coupling.

CNN–Transformer: Replacing recurrence with self-
attention yielded a macro F1 score of 0.89 (Table V). While
precision remained high, recall was about 2 percentage points

lower than for CNN-LSTM (Fig. 4), likely due to the limited
context from only four time steps.

B. Hyperparameter Tuning Outcomes

For the hyperparameter optimization, we selected the two
best-performing baseline models from Table V: CNN-LSTM
and CNN-Transformer and conducted 50 Optuna trials for
each architecture. The search space included the learning rate
(10−6–10−3), dropout rate (0–0.5), batch size {2, 4, 8}, and
a set of architecture-specific parameters such as hidden size,
Transformer depth, and number of attention heads. The con-
figurations that achieved the highest mean macro F1 scores are
listed below, and the corresponding post-optimization results
are summarized in Table VI:

• CNN–LSTM : lr = 2.48×10−5; batch size = 2;
dropout = 0.44; hidden size = 512; dmodel = 128;
layers = 1.

• CNN–Transformer : lr = 7.29×10−6; batch size = 2;
dropout = 0.25; dmodel = 256; heads = 2; depth = 1.

Both networks converged to an identical macro F1 score
of 0.938, indicating that, given sufficient tuning, self-attention
mechanisms can match the predictive performance of their
recurrent counterparts while using fewer parameters. Notably,
the optimal learning rate for the Transformer model was an
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TABLE VI
MACRO-AVERAGED 5-FOLD CV AFTER HYPERPARAMETER TUNING

Model Accuracy Precision Recall F1 score
CNN–LSTM 0.948 ± 0.047 0.955 ± 0.047 0.935 ± 0.062 0.938 ± 0.056
CNN–Transf. 0.948 ± 0.046 0.955 ± 0.047 0.935 ± 0.062 0.938 ± 0.055

order of magnitude lower than that of the LSTM, reflecting
its higher sensitivity to optimization dynamics.

Functional ANOVA (fANOVA) [27] was employed to sys-
tematically quantify the marginal contribution of each hy-
perparameter to the observed variation in validation macro
F1 scores during the optimization process. This approach
decomposes the overall variance in model performance into the
relative importance of individual hyperparameters, allowing
for a clear attribution of which factors are most influential in
tuning deep neural networks.

For the CNN–LSTM model, the results summarized in
Fig. 6 show that the learning rate is by far the most influential
factor, explaining about 70% of the total variance. This finding
reflects the strong sensitivity of recurrent models to optimiza-
tion parameters, where even small adjustments in the learning
rate can substantially affect convergence and generalization.
Dropout emerges as the next most significant parameter, albeit
with much lower importance (12%), while other architectural
choices such as hidden size, LSTM layers, and batch size play
only marginal roles in determining the final macro F1 score.

By contrast, for the CNN–Transformer, fANOVA (Fig. 7)
reveals a distinct pattern: dropout has the highest importance
(58%), suggesting that regularization is paramount for ef-
fective training of self-attention architectures in this setting.
Transformer-specific parameters such as network depth (13%)
and the number of attention heads (7%) also contribute, but to
a much lesser extent. The learning rate and batch size, while
still relevant, are not as dominant as in the recurrent baseline.

To further clarify the relationship between hyperparameters
and model performance, Fig. 5 shows a parallel coordinates
plot of the 30 best CNN–Transformer configurations ranked
by macro F1 score. Each line represents a single Optuna
trial, spanning the most influential hyperparameters, with color
intensity indicating the corresponding F1 value. Distinct trends
can be observed: the highest-performing runs typically use
lower dropout rates around 0.25, a shallow network depth
of one layer, learning rates between 10−5 and 10−4, and
small batch sizes of two. These observations align with the
fANOVA analysis, confirming that, under these conditions,
stronger regularization or deeper architectures do not provide
additional benefits, and that optimal results are achieved with
a conservative and well-calibrated learning schedule.

IV. RESULT DISCUSSION

The experimental results presented in Section III provide
several important insights into the performance of modern
deep learning architectures for automated analysis of dynamic
infrared thermography sequences in post-COVID-19 and post-
myocardial infarction patients. The findings emphasize how
explicitly modeling temporal dynamics contributes to im-
proved diagnostic accuracy and reliability.

A key observation is the clear superiority of sequence-aware
models over the purely spatial 2D CNN baseline. The 2D
CNN, which uses only spatial information from each frame,
consistently underperformed across all main metrics, particu-
larly in recall and F1 score, and exhibited higher variability
between folds. These outcomes align with clinical under-
standing that temporal rewarming dynamics contain crucial
microvascular cues, which cannot be captured by static spatial
representations alone. Similar trends were previously noted
in [11], where 2D CNNs trained on preprocessed thermograms
achieved an overall accuracy of approximately 85%, with
weaker sensitivity for COVID-19 detection. Preserving the full
thermal information improved classification in that study, yet
the absence of temporal modeling limited its discriminative
power. The present findings confirm and extend these observa-
tions by showing that explicit sequence modeling substantially
enhances robustness and recall.

Introducing a recurrent LSTM component led to the best
overall results, with the CNN–LSTM model achieving the
highest and most stable macro-averaged metrics. The model
effectively captured both global and subtle rewarming trends,
enabling robust classification even under moderate class im-
balance. The low variance across folds demonstrates strong
generalization and resilience to variations in patient data. Com-
pared with earlier spatial CNN approaches [11], incorporating
temporal memory mechanisms yields a notable gain in both F1
and recall, underscoring that rewarming dynamics carry sig-
nificant diagnostic information beyond spatial structure. Such
stability and consistency are crucial for real-world clinical
deployment, where reproducibility across patient populations
determines reliability.

The 3D CNN architecture, which fuses spatial and temporal
dimensions through volumetric convolutions, ranked between
the purely spatial and recurrent models. While its overall
accuracy surpassed that of the 2D CNN, its recall remained
slightly lower than that of the CNN–LSTM. This suggests that,
although 3D convolutions can integrate space and time implic-
itly, they may struggle to capture finer temporal dependencies
that recurrent models learn more effectively. These results
parallel earlier conclusions that richer thermal inputs improve
accuracy, but explicit sequence modeling remains essential for
optimal performance.

Following systematic hyperparameter optimization, the
CNN–Transformer achieved a macro F1 score comparable to
the recurrent model while requiring substantially fewer param-
eters: 523,746 versus 901,986 for the LSTM. This efficiency,
coupled with competitive accuracy, highlights the promise of
attention mechanisms for medical imaging scenarios where
model size and computational cost are critical factors. The
functional ANOVA analysis further indicated that Transformer
performance depends primarily on dropout and network depth,
while LSTM performance is driven by learning rate sensitivity.
In contrast to [11], where model tuning was limited to basic
parameter adjustment and oversampling strategies, the present
analysis systematically explores the optimization landscape,
offering a clearer understanding of how architecture-specific
hyperparameters shape model behavior.
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Fig. 5. Parallel coordinates plot of the 30 best CNN–Transformer configurations
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From a broader methodological perspective, the combi-
nation of automated hyperparameter search, variance-based
importance analysis, and stratified cross-validation provides a
robust and transparent framework for benchmarking. The ob-
served best-performing configurations, characterized by mod-
erate dropout, shallow depth, small batch sizes, and conserva-
tive learning rates, promote strong generalization, particularly
in studies with limited data availability. These systematic
insights extend beyond previous DIRT analyses and offer
practical guidance for deploying deep learning models in
thermal imaging pipelines.

Overall, the results demonstrate that incorporating temporal
information and principled optimization significantly improves
the automation and consistency of DIRT-based diagnostics.
When viewed alongside earlier findings [11], the evidence

indicates a clear progression: preserving rich thermal infor-
mation is essential, yet only through explicit temporal mod-
eling and careful regularization can consistently high macro
F1 performance be achieved. The comprehensive methodol-
ogy adopted here, including cross-validation and transparent
evaluation, enhances reproducibility and strengthens the case
for DIRT as a quantitative, sequence-driven biomarker of
microvascular health.

Despite the encouraging performance of the proposed
method, several limitations should be considered when in-
terpreting these results. First, the small dataset that does not
include a healthy control group, and provides only limited
clinical characteristic. Some of the important factors were
not explicitly modeled, although they are known to influence
microvascular reactivity and thermal recovery dynamics. As
a result, part of the observed class separation may reflect
latent confounders or cohort-specific characteristics rather than
disease-specific effects alone. In light of the above, even if
cross-validation reduces overfitting, the reported results should
be interpreted as indicative of separability within the studied
cohorts and may not directly generalize to more heterogeneous
clinical populations. Finally, although deep sequence models
clearly outperform purely spatial baselines, comparisons with
simpler, interpretable classical approaches remain an important
direction for future work.

V. CONCLUSIONS

This study presents a comprehensive benchmarking of mod-
ern deep neural architectures for automated classification of
dynamic infrared thermography sequences in the context of
post-COVID-19 and post-myocardial infarction patient classi-
fication. The experiments demonstrate that effective modeling
of temporal information is indispensable for this task. The
purely spatial 2D CNN baseline, which achieved a mean
macro-averaged F1 score of 0.735 ± 0.103 and recall of
0.728 ± 0.086, consistently lagged behind models capable of
learning spatiotemporal dependencies. Incorporating temporal
structure through volumetric convolutions, recurrence, or self-
attention mechanisms resulted in significant improvements in
model performance. The 3D CNN increased the macro F1
score to 0.870 ± 0.070, while the CNN-Transformer reached
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0.888±0.062, with both models also showing higher precision
and accuracy.

The highest performance was achieved by the CNN-LSTM
hybrid, which, prior to hyperparameter optimization, attained
a macro F1 score of 0.914±0.073 and recall of 0.910±0.075,
demonstrating excellent stability and generalization across
folds. After automated hyperparameter search, both the re-
current (CNN-LSTM) and self-attention (CNN-Transformer)
architectures converged to virtually identical mean macro F1
scores of 0.938 and accuracy of 0.948, while maintaining high
precision and recall (see Table VI). This outcome underscores
the ability of careful optimization and regularization to bridge
the performance gap between recurrent and attention-based
architectures, with the Transformer reaching equivalent pre-
dictive accuracy while using roughly 58% of the parameters
required by the LSTM model.

These findings are consistent with earlier work on 2D CNN
baselines trained on preprocessed thermograms [11], which
suggested that preserving rich thermal information improves
classification. The present benchmarking extends that evidence
by demonstrating that explicit sequence modeling is a key
driver of the additional improvements in macro F1 and recall.

Looking forward, future work should extend these ap-
proaches to larger and more diverse patient populations,
explore the feasibility of multiclass and regression tasks,
and focus on integrating model interpretability to facilitate
adoption in clinical workflows. The present results provide
compelling evidence that sequence-aware deep learning, when
thoroughly validated, can transform DIRT from a qualitative
imaging tool into a robust and quantitative biomarker for
longitudinal microvascular health monitoring.
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