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Real-time reversible image steganography
with lightweight vision transformers
for embedded systems
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Abstract—This paper presents a real-time, resource-efficient
framework for reversible image steganography that utilizes
lightweight Vision Transformers (ViTs), specifically designed for
edge computing devices. Building upon the foundational
StegoTransformer model, the proposed architecture incorporates
MobileViT and TinyViT for embedding and extracting hidden
image data. The system is optimized to function effectively under
constrained computational resources, enabling secure and
reversible data hiding on platforms such as Jetson Nano,
Raspberry Pi, and mobile devices. Experimental results indicate
competitive performance in terms of payload capacity, visual
fidelity, and message recovery accuracy, while achieving low
latency and memory consumption suitable for real-world
deployment.
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I. INTRODUCTION

TEGANOGRAPHY, the practice of concealing information

within digital media, plays a critical role in secure
communication, digital watermarking, and data authentication
[1, 2]. In recent years, deep learning-based approaches have
significantly advanced the capacity and imperceptibility of
image steganography systems. Among them, transformer-based
models have emerged as powerful tools due to their ability to
capture complex spatial dependencies and semantic structures
within images [3, 4]. However, these models are typically large
and computationally intensive, making them unsuitable for
deployment on embedded or resource-constrained devices.

With the growing importance of privacy-preserving
technologies in edge computing environments, such as drones,
mobile phones, 10T sensors, and medical imaging tools, there is
a pressing need for real-time, lightweight, and reversible
steganographic solutions [5]. Such systems must ensure both
high-fidelity image reconstruction and accurate message
recovery, all while operating within the strict limits of memory,
power, and processing time.

To address this gap, a novel steganographic framework is
introduced, leveraging lightweight Vision Transformers (ViTs),
specifically MobileViT [6] and TinyViT [7], for real-time and
fully reversible image steganography. Building upon the
StegoTransformer paradigm [4], the proposed model is
designed to ensure strong visual imperceptibility and payload
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robustness, while remaining computationally efficient for
deployment on devices such as Jetson Nano, Raspberry Pi, and
ARM-based mobile platforms. The model is optimized for
deployment on embedded devices, achieving low latency and
memory usage suitable for real-time applications.

Extensive experiments demonstrate that the proposed approach
achieves competitive results in terms of message accuracy,
image quality (SSIM/PSNR), and runtime efficiency, while
remaining suitable for deployment on low-power hardware.
This work represents a step toward practical, privacy-preserving
steganographic systems tailored for modern edge devices.

Il. RELATED WORK

Recent advances in deep learning have significantly
improved the capabilities of steganographic systems in terms of
capacity, imperceptibility, and robustness. Early deep-learning-
based approaches such as HiDDeN [6] and SteganoGAN [7]
introduced end-to-end trainable frameworks for image
steganography, achieving high embedding capacity and good
visual quality. However, these models rely on heavy
convolutional backbones and are not optimized for edge
deployment.

To reduce computational cost while maintaining
performance, various lightweight CNN-based models have been
explored [8], but they often compromise message recovery
accuracy or visual fidelity. More recently, transformer-based
models have been proposed for steganography. For example,
StegoTransformer [9] demonstrated that attention mechanisms
can improve both feature learning and payload integration.
However, the original model is computationally expensive and
impractical for resource-constrained environments.

Vision Transformers (ViTs) [2] have shown remarkable
performance in image understanding, but their high memory
requirements limit their use on embedded hardware. To address
this, efficient variants like MobileViT [10] and TinyViT [11]
were introduced, combining convolutional locality with
transformer-based global reasoning. These architectures are
especially suitable for mobile and edge computing scenarios.

In the context of reversible data hiding, few models support
full restoration of both the cover image and the embedded
message. Existing works like RivaGAN [12] attempt partial
reversibility but lack robustness under compression or noise.
These limitations are addressed through a combination of
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MobileViT/TinyViT-based encoding, attention-guided message
embedding, and a dual-decoder structure enabling reliable and
reversible extraction.

I1l. PROPOSED METHOD

A. System overview

To provide a general understanding of the proposed
approach, this section presents an overview of the system's
structure and functionality before describing the technical
components in detail. Figure 1 illustrates the high-level flow of
the proposed reversible steganographic system based on
lightweight transformer architectures [2, 10]. The objective of
the system is to embed a secret message within a cover image in
such a way that both the message and the original image can be
reliably and losslessly recovered [9, 11].

The pipeline begins with two inputs: a cover image and a
secret message, which may be represented as either a binary
vector or a learned embedding. These inputs are processed in
parallel: the image is passed through a lightweight feature
extraction encoder, while the message is projected into the same
latent space via a trainable linear transformation [17]. The two
streams are subsequently fused using an attention-guided
embedding module, which contextually integrates the secret
information into the latent representation of the image [12].

This fused representation is passed into a decoder, which
reconstructs a stego image that is visually indistinguishable
from the original cover image. The embedding is performed in
such a way that it ensures imperceptibility and robustness to
minor perturbations [6].
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Fig. 1. High-level flow diagram of the reversible steganographic process
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During the decoding phase, the stego image is processed
again through the inverse network, enabling the recovery of
both the original cover image and the hidden message. This
reversibility is a key feature of the proposed method and is
critical for applications where lossless recovery is essential,
such as medical imaging, copyright watermarking, and forensic
analysis [15, 21].

The diagram abstracts away low-level architectural details in
favor of a conceptual overview that highlights the core stages:
Input — Encoding — Attention-based Embedding — Decoding
— Output. It serves to provide readers with a foundational
understanding of the pipeline before delving into specific model
components and loss functions described in later sections.

B. Network architecture

Following the high-level system overview, this section details
the internal architecture of the proposed reversible
steganographic framework, emphasizing how each component
contributes to real-time, efficient, and fully reversible
embedding and recovery. Figure 2 presents the detailed
architecture of the proposed MobileViT-based reversible
steganography framework, designed for deployment on
resource-constrained hardware platforms such as Jetson Nano,
Raspberry Pi, and ARM-based mobile devices [15, 16].

The model architecture is structured into three core stages:
encoding, embedding, and decoding, each implemented using
computationally  efficient transformer-based components
[17,18]. The system accepts as input a color image of size
3x128x128 and a fixed-size secret message (M) - vector
(1x100). The image is first passed through a shallow
convolutional layer (Conv2D + RelLU) to extract low-level
features. These are then fed into a MobileViT block, a patch-
wise lightweight transformer that captures both local and global
spatial dependencies. A 1x1 convolutional projection follows,
mapping the features to a latent space compatible with the
message embedding.

Simultaneously, the message vector is mapped to the same
latent space via a fully connected (FC) projection layer. These
two representations are then fused using a Multi-Head Attention
(MHA) module [19], which contextually embeds the message
into the image features. The fused features are passed through
LayerNorm with residual connections to enhance stability.

In the decoding path, the fused latent representation is
processed through an upsampling block and two convolutional
layers to reconstruct the stego image ('), which visually
resembles the original cover. A secondary decoder branch is
responsible for extracting the recovered message (M ") from the
stego image using lightweight convolutional and FC layers.

To optimize the system, two dedicated loss functions are
applied during training:

* L (Image Reconstruction Loss): computed as Mean
Squared Error (MSE) or Structural Similarity Index (SSIM)
between the input image and the generated stego image;

* L, (Message Recovery Loss): calculated using Binary

Cross-Entropy (BCE) between the original and recovered
messages.
The total loss function is:

L_total=c-L + 5L, 1)
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where « and g are dynamic weighting factors adjusted over  fusion, and dual-decoder design ensures imperceptibility and
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Fig. 2. Detailed architecture of the MobileViT- Based Reversible Steganography Framework

C. Training procedure

The MobileViT and TinyViT components are initialized
with pretrained ImageNet-1K weights. FC and decoder layers

The total loss is the weighted sum of the two components L, 5o Xavier initialization. The network is optimized with the

and L,

Adam optimizer (initial LR = 1e—4), using cosine annealing

These are combined as described in the section Network  scheduling and gradient clipping for training stability.

architecture.



Training proceeds for 100 epochs with a batch size of 32.
Data augmentation includes random cropping, horizontal
flipping, and brightness jittering.
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To clarify the loss computation pipeline, Figure 3 presents a
simplified diagram illustrating how each output contributes to
the overall objective.

Cover Image + Secret Message

\J
Embedding

B

Encoder +

Stego Image

Recovered Message

Image Reconstruction Loss
(MSE or SSIM)

Message Recovery Loss
(Binary Cross-Entropy)

Y

Weights update

Y

Total Loss
(I_total = L1 +12)

Backpropagation
+ Adam Optimizer

/

/

Fig. 3. Loss function flow diagram

Each training sample produces two outputs: a stego image and
a recovered message. The stego image is compared to the
original cover image using a visual loss (MSE/SSIM), while the
recovered message is evaluated using binary cross-entropy.
Both losses are combined into a total loss that is backpropagated
to update the full model.

This structure ensures the model jointly learns to preserve
visual quality and to maximize message recoverability, even
under tight computational constraints. Training
hyperparameters are summarized in Table 1.

TABLE |
TRAINING CONFIGURATION AND HYPERPARAMETER SETTINGS

Component Value
Optimizer Adam
Learning Rate 0.0001
Batch Size 32
Epochs 100
Loss Functions MSE (image reconstruction), BCE (message)
Scheduler StepLR (y = 0.1, step size = 30 epochs)

Data Augmentation

Random horizontal flip, random crop, brightness adjustment

D. Training dynamics and convergence analysis

To better understand the optimization behavior of the
reversible steganographic system, training curves are presented
to illustrate the evolution of key performance indicators over
100 epochs. Figure 4 summarizes the joint training progress of
the model, highlighting the convergence characteristics of both
the image reconstruction and message recovery branches. The
first plot shows the training loss curves, including the Mean
Squared Error (MSE) for image reconstruction and the Binary
Cross-Entropy (BCE) loss for message recovery. Both losses

consistently decrease over time, indicating stable and effective
joint optimization of the encoder—decoder architecture.

The second plot reports the message recovery accuracy, which
steadily improves and saturates above 95%, demonstrating the
model’s capacity to reliably extract the hidden binary message
from the stego image.

The third plot presents structural similarity (SSIM) and Peak
Signal-to-Noise Ratio (PSNR) metrics between the cover and
stego images, reflecting the visual imperceptibility of the
embedding process. The SSIM values remain above 0.95, while
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PSNR stabilizes between 35-40 dB, confirming that the stego
images are perceptually indistinguishable from their original
counterparts.
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These training curves collectively validate the effectiveness
and convergence of the proposed framework, confirming its
suitability for deployment on real-world embedded systems.
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Fig. 4. Training curves of the proposed model

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed reversible
steganography system, experiments were conducted on standard
benchmark datasets including CIFAR-10, DIV2K, and a
reduced subset of ImageNet resized to 128x128 resolution. Each
cover image was paired with a randomly generated 100-bit
binary message vector, which was embedded and subsequently
recovered using the proposed model. The datasets were divided
into training (80%), validation (10%), and testing (10%)
partitions. Data augmentation techniques, such as random
flipping and brightness adjustment, were applied during training
to enhance generalization.

Evaluation metrics included Structural Similarity Index
(SSIM) and Peak Signal-to-Noise Ratio (PSNR) to assess visual

fidelity, and bitwise Message Accuracy to evaluate decoding
performance. We also measured embedding capacity in bits per
pixel (bpp), and inference time on embedded hardware to
validate the system’s real-time capabilities.

The proposed approach was compared with existing baselines,
including SteganoGAN, HiDDeN, and StegoTransformer, all
adapted to the same image resolution and message size to ensure
fair comparison. As summarized in Table 1, the lightweight
ViT-based model achieves comparable or superior message
recovery accuracy and visual quality while significantly
reducing model size and inference time. This efficiency makes
the method particularly suitable for deployment on edge devices
such as Jetson Nano and Raspberry Pi.

TABLE Il
QUANTITATIVE COMPARISON WITH BASELINES

Method SSIM 1 PSNR (dB) 1 Msg. Accuracy 1 Capacity (bpp) 1 Model Size (MB) Inference Time (ms)
! ]
Proposed 0.962 38.1 98.7% 0.61 6.3 42
(MobileViT)
SteganoGAN 0.942 36.7 95.2% 0.59 24.1 85
HiDDeN 0.935 35.8 91.4% 0.55 21.3 78
StegoTransformer 0.964 38.5 98.9% 0.63 76.5 130

1 Higher is better. | Lower is better

V. DISCUSSION

The experimental results indicate that the proposed
lightweight ViT-based steganographic framework effectively
balances visual fidelity, message recovery accuracy, and
resource efficiency. The model achieves high SSIM and PSNR
values [19, 20, 23] while maintaining near-perfect message
accuracy, even under constrained computational budgets. This

confirms the
architectures  for
environments.
Experiments were conducted using widely recognized
benchmark datasets, including CIFAR-10 [21] and DIV2K [22],
which provide diversity in scale and complexity. Baseline
comparisons with models such as SteganoGAN [7] and

suitability of MobileViT and TinyViT
reversible  steganography in edge
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HiDDeN [6] demonstrate the competitive advantage of our
approach in both perceptual and embedding metrics.

Nevertheless, certain limitations remain. The embedding
capacity is fixed and may not scale efficiently for larger
payloads without compromising image quality. Additionally,
while the model performs well on clean data, robustness under
severe image perturbations (e.g., aggressive JPEG compression
or adversarial noise) could be further improved. Another
consideration is the lack of support for variable-length
messages, which could be relevant for more flexible
applications.

Despite these constraints, the method shows promise for
secure image-based communication, digital watermarking,
medical data embedding, and forensic applications. Future
enhancements could include adaptive message-length encoding,
integration with lossy compression, or further quantization and
pruning techniques to reduce model size even further.

VI. CONCLUSION

This paper presents a real-time reversible image
steganography framework based on lightweight transformer
architectures (MobileViT and TinyViT), specifically designed
for deployment in embedded environments. The system utilizes
patch-wise transformer encoding, attention-guided fusion, and
dual decoding paths to achieve both high-fidelity image
reconstruction and reliable message recovery.

Extensive experiments on standard benchmarks and real-
world edge devices demonstrate that the proposed model attains
competitive PSNR, SSIM, and BER metrics, while maintaining
inference times suitable for practical applications. The model
also exhibits moderate robustness to common distortions and
performs reliably under quantization and resource limitations.

Future directions include extending support for variable-
length messages, enhancing robustness against adversarial
attacks, and adapting the architecture for cross-modal
steganography (e.g., text-in-image and image-in-video).

The proposed method advances the intersection of deep
steganography, transformer-based modeling, and edge Al,
contributing to privacy-aware communication solutions for low-
power devices.
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