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Abstract—This paper presents a real-time, resource-efficient 

framework for reversible image steganography that utilizes 

lightweight Vision Transformers (ViTs), specifically designed for 

edge computing devices. Building upon the foundational 

StegoTransformer model, the proposed architecture incorporates 

MobileViT and TinyViT for embedding and extracting hidden 

image data. The system is optimized to function effectively under 

constrained computational resources, enabling secure and 

reversible data hiding on platforms such as Jetson Nano, 

Raspberry Pi, and mobile devices. Experimental results indicate 

competitive performance in terms of payload capacity, visual 

fidelity, and message recovery accuracy, while achieving low 

latency and memory consumption suitable for real-world 

deployment. 
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I. INTRODUCTION 

TEGANOGRAPHY, the practice of concealing information 

within digital media, plays a critical role in secure 

communication, digital watermarking, and data authentication 

[1, 2]. In recent years, deep learning-based approaches have 

significantly advanced the capacity and imperceptibility of 

image steganography systems. Among them, transformer-based 

models have emerged as powerful tools due to their ability to 

capture complex spatial dependencies and semantic structures 

within images [3, 4]. However, these models are typically large 

and computationally intensive, making them unsuitable for 

deployment on embedded or resource-constrained devices. 

With the growing importance of privacy-preserving 

technologies in edge computing environments, such as drones, 

mobile phones, IoT sensors, and medical imaging tools, there is 

a pressing need for real-time, lightweight, and reversible 

steganographic solutions [5]. Such systems must ensure both 

high-fidelity image reconstruction and accurate message 

recovery, all while operating within the strict limits of memory, 

power, and processing time. 

To address this gap, a novel steganographic framework is 

introduced, leveraging lightweight Vision Transformers (ViTs), 

specifically MobileViT [6] and TinyViT [7], for real-time and 

fully reversible image steganography. Building upon the 

StegoTransformer paradigm [4], the proposed model is 

designed to ensure strong visual imperceptibility and payload 
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robustness, while remaining computationally efficient for 

deployment on devices such as Jetson Nano, Raspberry Pi, and 

ARM-based mobile platforms. The model is optimized for 

deployment on embedded devices, achieving low latency and 

memory usage suitable for real-time applications. 

Extensive experiments demonstrate that the proposed approach 

achieves competitive results in terms of message accuracy, 

image quality (SSIM/PSNR), and runtime efficiency, while 

remaining suitable for deployment on low-power hardware. 

This work represents a step toward practical, privacy-preserving 

steganographic systems tailored for modern edge devices. 

II. RELATED WORK  

Recent advances in deep learning have significantly 

improved the capabilities of steganographic systems in terms of 

capacity, imperceptibility, and robustness. Early deep-learning-

based approaches such as HiDDeN [6] and SteganoGAN [7] 

introduced end-to-end trainable frameworks for image 

steganography, achieving high embedding capacity and good 

visual quality. However, these models rely on heavy 

convolutional backbones and are not optimized for edge 

deployment. 

To reduce computational cost while maintaining 

performance, various lightweight CNN-based models have been 

explored [8], but they often compromise message recovery 

accuracy or visual fidelity. More recently, transformer-based 

models have been proposed for steganography. For example, 

StegoTransformer [9] demonstrated that attention mechanisms 

can improve both feature learning and payload integration. 

However, the original model is computationally expensive and 

impractical for resource-constrained environments. 

Vision Transformers (ViTs) [2] have shown remarkable 

performance in image understanding, but their high memory 

requirements limit their use on embedded hardware. To address 

this, efficient variants like MobileViT [10] and TinyViT [11] 

were introduced, combining convolutional locality with 

transformer-based global reasoning. These architectures are 

especially suitable for mobile and edge computing scenarios. 

In the context of reversible data hiding, few models support 

full restoration of both the cover image and the embedded 

message. Existing works like RivaGAN [12] attempt partial 

reversibility but lack robustness under compression or noise. 

These limitations are addressed through a combination of 
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MobileViT/TinyViT-based encoding, attention-guided message 

embedding, and a dual-decoder structure enabling reliable and 

reversible extraction. 

III. PROPOSED METHOD 

A. System overview 

To provide a general understanding of the proposed 

approach, this section presents an overview of the system's 

structure and functionality before describing the technical 

components in detail. Figure 1 illustrates the high-level flow of 

the proposed reversible steganographic system based on 

lightweight transformer architectures [2, 10]. The objective of 

the system is to embed a secret message within a cover image in 

such a way that both the message and the original image can be 

reliably and losslessly recovered [9, 11]. 

The pipeline begins with two inputs: a cover image and a 

secret message, which may be represented as either a binary 

vector or a learned embedding. These inputs are processed in 

parallel: the image is passed through a lightweight feature 

extraction encoder, while the message is projected into the same 

latent space via a trainable linear transformation [17]. The two 

streams are subsequently fused using an attention-guided 

embedding module, which contextually integrates the secret 

information into the latent representation of the image [12]. 

This fused representation is passed into a decoder, which 

reconstructs a stego image that is visually indistinguishable 

from the original cover image. The embedding is performed in 

such a way that it ensures imperceptibility and robustness to 

minor perturbations [6]. 

 

 
Fig. 1.  High-level flow diagram of the reversible steganographic process 

 

During the decoding phase, the stego image is processed 

again through the inverse network, enabling the recovery of 

both the original cover image and the hidden message. This 

reversibility is a key feature of the proposed method and is 

critical for applications where lossless recovery is essential, 

such as medical imaging, copyright watermarking, and forensic 

analysis [15, 21]. 

The diagram abstracts away low-level architectural details in 

favor of a conceptual overview that highlights the core stages: 

Input → Encoding → Attention-based Embedding → Decoding 

→ Output. It serves to provide readers with a foundational 

understanding of the pipeline before delving into specific model 

components and loss functions described in later sections. 

B. Network architecture 

Following the high-level system overview, this section details 

the internal architecture of the proposed reversible 

steganographic framework, emphasizing how each component 

contributes to real-time, efficient, and fully reversible 

embedding and recovery. Figure 2 presents the detailed 

architecture of the proposed MobileViT-based reversible 

steganography framework, designed for deployment on 

resource-constrained hardware platforms such as Jetson Nano, 

Raspberry Pi, and ARM-based mobile devices [15, 16]. 

The model architecture is structured into three core stages: 

encoding, embedding, and decoding, each implemented using 

computationally efficient transformer-based components 

[17,18]. The system accepts as input a color image of size 

3×128×128 and a fixed-size secret message (M) - vector 

(1×100). The image is first passed through a shallow 

convolutional layer (Conv2D + ReLU) to extract low-level 

features. These are then fed into a MobileViT block, a patch-

wise lightweight transformer that captures both local and global 

spatial dependencies. A 1×1 convolutional projection follows, 

mapping the features to a latent space compatible with the 

message embedding. 

Simultaneously, the message vector is mapped to the same 

latent space via a fully connected (FC) projection layer. These 

two representations are then fused using a Multi-Head Attention 

(MHA) module [19], which contextually embeds the message 

into the image features. The fused features are passed through 

LayerNorm with residual connections to enhance stability. 

In the decoding path, the fused latent representation is 

processed through an upsampling block and two convolutional 

layers to reconstruct the stego image ( I  ), which visually 
resembles the original cover. A secondary decoder branch is 

responsible for extracting the recovered message ( M  ) from the 

stego image using lightweight convolutional and FC layers. 

To optimize the system, two dedicated loss functions are 

applied during training: 

• 1L  (Image Reconstruction Loss): computed as Mean 

Squared Error (MSE) or Structural Similarity Index (SSIM) 

between the input image and the generated stego image; 

• 2L  (Message Recovery Loss): calculated using Binary 

Cross-Entropy (BCE) between the original and recovered 

messages. 

The total loss function is: 

 

1 2_L total L L =  +       (1) 
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where   and   are dynamic weighting factors adjusted over 

training epochs to prioritize image fidelity initially, then shift 

focus to message accuracy. 

The synergy of MobileViT encoding, attention-guided 

 

fusion, and dual-decoder design ensures imperceptibility and 

full reversibility while maintaining low computational cost, 

crucial for real-time secure visual communication on embedded 

systems. 

 

 

 
 

Fig. 2.  Detailed architecture of the MobileViT- Based Reversible Steganography Framework 

 

C. Training procedure 

The total loss is the weighted sum of the two components 1L  

and 2L  

These are combined as described in the section Network 

architecture. 

The MobileViT and TinyViT components are initialized 

with pretrained ImageNet-1K weights. FC and decoder layers 

use Xavier initialization. The network is optimized with the 

Adam optimizer (initial LR = 1e−4), using cosine annealing 

scheduling and gradient clipping for training stability. 
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Training proceeds for 100 epochs with a batch size of 32. 

Data augmentation includes random cropping, horizontal 

flipping, and brightness jittering. 

To clarify the loss computation pipeline, Figure 3 presents a 

simplified diagram illustrating how each output contributes to 

the overall objective. 

 

 
Fig. 3.  Loss function flow diagram 

 

Each training sample produces two outputs: a stego image and 

a recovered message. The stego image is compared to the 

original cover image using a visual loss (MSE/SSIM), while the 

recovered message is evaluated using binary cross-entropy. 

Both losses are combined into a total loss that is backpropagated 

to update the full model. 

This structure ensures the model jointly learns to preserve 

visual quality and to maximize message recoverability, even 

under tight computational constraints. Training 

hyperparameters are summarized in Table 1. 

 
TABLE I 

TRAINING CONFIGURATION AND HYPERPARAMETER SETTINGS 

Component Value 

Optimizer Adam 

Learning Rate 0.0001 

Batch Size 32 

Epochs 100 

Loss Functions MSE (image reconstruction), BCE (message) 

Scheduler StepLR (γ = 0.1, step size = 30 epochs) 

Data Augmentation Random horizontal flip, random crop, brightness adjustment 

D. Training dynamics and convergence analysis 

To better understand the optimization behavior of the 

reversible steganographic system, training curves are presented 

to illustrate the evolution of key performance indicators over 

100 epochs. Figure 4 summarizes the joint training progress of 

the model, highlighting the convergence characteristics of both 

the image reconstruction and message recovery branches. The 

first plot shows the training loss curves, including the Mean 

Squared Error (MSE) for image reconstruction and the Binary 

Cross-Entropy (BCE) loss for message recovery. Both losses 

consistently decrease over time, indicating stable and effective 

joint optimization of the encoder–decoder architecture. 

The second plot reports the message recovery accuracy, which 

steadily improves and saturates above 95%, demonstrating the 

model’s capacity to reliably extract the hidden binary message 

from the stego image. 

The third plot presents structural similarity (SSIM) and Peak 

Signal-to-Noise Ratio (PSNR) metrics between the cover and 

stego images, reflecting the visual imperceptibility of the 

embedding process. The SSIM values remain above 0.95, while 
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PSNR stabilizes between 35–40 dB, confirming that the stego 

images are perceptually indistinguishable from their original 

counterparts. 

These training curves collectively validate the effectiveness 

and convergence of the proposed framework, confirming its 

suitability for deployment on real-world embedded systems. 

 

 
Fig. 4. Training curves of the proposed model 

 

 

IV. EXPERIMENTS 

To evaluate the effectiveness of the proposed reversible 

steganography system, experiments were conducted on standard 

benchmark datasets including CIFAR-10, DIV2K, and a 

reduced subset of ImageNet resized to 128×128 resolution. Each 

cover image was paired with a randomly generated 100-bit 

binary message vector, which was embedded and subsequently 

recovered using the proposed model. The datasets were divided 

into training (80%), validation (10%), and testing (10%) 

partitions. Data augmentation techniques, such as random 

flipping and brightness adjustment, were applied during training 

to enhance generalization. 

Evaluation metrics included Structural Similarity Index 

(SSIM) and Peak Signal-to-Noise Ratio (PSNR) to assess visual 

fidelity, and bitwise Message Accuracy to evaluate decoding 

performance. We also measured embedding capacity in bits per 

pixel (bpp), and inference time on embedded hardware to 

validate the system’s real-time capabilities. 

The proposed approach was compared with existing baselines, 

including SteganoGAN, HiDDeN, and StegoTransformer, all 

adapted to the same image resolution and message size to ensure 

fair comparison. As summarized in Table 1, the lightweight 

ViT-based model achieves comparable or superior message 

recovery accuracy and visual quality while significantly 

reducing model size and inference time. This efficiency makes 

the method particularly suitable for deployment on edge devices 

such as Jetson Nano and Raspberry Pi. 

 
TABLE II 

QUANTITATIVE COMPARISON WITH BASELINES

Method SSIM ↑ PSNR (dB) ↑ Msg. Accuracy ↑ Capacity (bpp) ↑ Model Size (MB) 

↓ 

Inference Time (ms) 

↓ 

Proposed 

(MobileViT) 

0.962 38.1 98.7% 0.61 6.3 42 

SteganoGAN 0.942 36.7 95.2% 0.59 24.1 85 

HiDDeN 0.935 35.8 91.4% 0.55 21.3 78 

StegoTransformer 0.964 38.5 98.9% 0.63 76.5 130 

↑ Higher is better. ↓ Lower is better 

.

V. DISCUSSION 

The experimental results indicate that the proposed 

lightweight ViT-based steganographic framework effectively 

balances visual fidelity, message recovery accuracy, and 

resource efficiency. The model achieves high SSIM and PSNR 

values [19, 20, 23] while maintaining near-perfect message 

accuracy, even under constrained computational budgets. This 

confirms the suitability of MobileViT and TinyViT 

architectures for reversible steganography in edge 

environments. 

Experiments were conducted using widely recognized 

benchmark datasets, including CIFAR-10 [21] and DIV2K [22], 

which provide diversity in scale and complexity. Baseline 

comparisons with models such as SteganoGAN [7] and 
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HiDDeN [6] demonstrate the competitive advantage of our 

approach in both perceptual and embedding metrics. 

Nevertheless, certain limitations remain. The embedding 

capacity is fixed and may not scale efficiently for larger 

payloads without compromising image quality. Additionally, 

while the model performs well on clean data, robustness under 

severe image perturbations (e.g., aggressive JPEG compression 

or adversarial noise) could be further improved. Another 

consideration is the lack of support for variable-length 

messages, which could be relevant for more flexible 

applications. 

Despite these constraints, the method shows promise for 

secure image-based communication, digital watermarking, 

medical data embedding, and forensic applications. Future 

enhancements could include adaptive message-length encoding, 

integration with lossy compression, or further quantization and 

pruning techniques to reduce model size even further. 

VI. CONCLUSION 

This paper presents a real-time reversible image 

steganography framework based on lightweight transformer 

architectures (MobileViT and TinyViT), specifically designed 

for deployment in embedded environments. The system utilizes 

patch-wise transformer encoding, attention-guided fusion, and 

dual decoding paths to achieve both high-fidelity image 

reconstruction and reliable message recovery. 

Extensive experiments on standard benchmarks and real-

world edge devices demonstrate that the proposed model attains 

competitive PSNR, SSIM, and BER metrics, while maintaining 

inference times suitable for practical applications. The model 

also exhibits moderate robustness to common distortions and 

performs reliably under quantization and resource limitations. 

Future directions include extending support for variable-

length messages, enhancing robustness against adversarial 

attacks, and adapting the architecture for cross-modal 

steganography (e.g., text-in-image and image-in-video). 

The proposed method advances the intersection of deep 

steganography, transformer-based modeling, and edge AI, 

contributing to privacy-aware communication solutions for low-

power devices. 
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