
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2026, VOL. 72, NO. 1, PP. 1–9
Manuscript received September 16, 2025; revised February, 2026. doi: 10.24425/ijet.2026.157879

Airdrop Sybil Attack detection framework
supported by machine learning

Kamil Kaczyński and Aleksander Wiącek

Abstract—Airdrop Sybil attacks can be a lucrative labour,
and tokens received from one airdrop by an effective hunter
can reach thousands of dollars. Sybil attacks in this context are
not always desired by projects and are often seen by honest
players as inappropriate behaviour, which can reflect badly on a
project’s reputation. For such a reason, it is well expected that
Sybil attacks detection systems will be constantly improved. In
this work, a multistep framework is presented. Its idea is to sort
blockchain addresses and assign them a score that will indicate
if a given address is closer to a normal or a Sybil class. A graph
isomorphism network was used to classify topologies, and its
parameters were tuned on a dataset labelled by the authors. In
other steps, a DBSCAN was used for the account clustering task.
Users of the framework can assign arbitrary weights to each
step, which will determine how important a step is to them and
result in a different score for a given address. The best weights
were found with a grid search method as well as a threshold
after which the address is considered Sybil. In this paper a set
of EOAs from ZKsync rollup was analyzed. In the end, 76% of
all the accounts analyzed were marked as Sybils. Compared to
the official ZKsync eligibility list, we found 342 addresses that
received airdrop tokens but were marked as Sybil by our solution.

Keywords—Blockchain; Airdrop; ZKsync; Sybil Attack Detec-
tion; Graph Isomorphism Network

I. INTRODUCTION

AN blockchain airdrop is a strategy used by project
creators to attract user attention and increase on-chain

activity. It typically involves offering rewards for completing
specific tasks related to the project. Airdrop creators usually
commit to distributing (airdropping) reward tokens to eligible
addresses. This is a common practice among newly launched
projects, but developers can also create several airdrop events
throughout the project lifetime, for example, as in the Opti-
mism rollup. Airdrops can have a unique design, and there
is a visible split between proactive and retroactive ones. In
purely retroactive design, users receive tokens based on their
past behaviour, and the list of instructions to be eligible is
shown after the snapshot of the network is taken. In contrast,
proactive design clearly indicates what actions one must take
to receive tokens. Both are prone to so-called airdrop farmers
to some extent.

K. Kaczyński is with Faculty of Cybernetics, Military University of
Technology, Warsaw, Poland (e-mail: kamil.kaczynski@wat.edu.pl).

A. Wiącek is with Faculty of Cybernetics, Military University of
Technology, Warsaw, Poland (e-mail: aleksander.wiacek@student.wat.edu.pl).

Airdrop Sybil attack or airdrop farming is a type of attack
where a single / few entities known as farmers or hunters
create many fake accounts in order to outsmart the airdrop
and greatly increase the pool of tokens that they receive.
Sometimes, the hunters’ value of assets from an airdrop can
be extremely high, reaching several thousands of dollars [1]–
[3]. In 2023, a hunter managed to collect 933,365 Arbitrum
tokens with a total value of more than 1 million dollars [3].
This shows the scale of Sybil attacks, as it was one of many
similar cases across the entire cryptocurrency industry.

Airdrop farming is widely regarded as something negative
and not fair to honest users. Hunters usually rapidly sell
tokens after receiving them [4], which impacts the market
and could force honest token receivers to do the same. Also
their successful presence might discourage the overall public
relation to the project. Hunters generate synthetic network
activity with the sole purpose of simulating engagement to
profit from incentives, rather than contributing genuine value.
Developers try to mitigate Sybil attacks by a careful airdrop
designs including application of proof-of-humanity, address
blacklisting, self-reporting, or reward design that is not easily
spendable. However, some can argue that airdrop hunters are
not entirely evil and can attract some newcomers [5]. The
project should consider in particular what tactics should be
adopted to deal with the Sybil attack phenomenon.

Simultaneously, another area of attack prevention is the
detection of Sybil accounts, and so this topic is further
explored within this paper. Sybil attacks may be detected by
investigating clusters in a graph created based on transactions
between accounts. Moreover, some structural / transactional
patterns associated with Sybil attack have been recognised [6]–
[8]. In addition, it is more common to see the usage of machine
learning models to execute detection tasks. On the other
hand, hunters adapt to avoid detection [1]. Sybil attacks may
be performed by organised groups, containing many diligent
people, that could be hired with one goal - to game airdrop
and split the reward. A worker could manually and consistently
create, fund, and operate many accounts, excluding the use of
bots, and implement complex transactional patterns between
blockchain addresses. Naturally, such attacks would overall
cost more to perform than the attack in which a single hunter
uses bots.

Rollup is a Layer 2 solution whose main purpose is to scale
the Ethereum network. Rollup is a blockchain that can handle
a significantly higher volume of transactions per second.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

2 K. KACZYŃSKI, A. WIĄCEK

Transactions are processed on the Layer 2 network, while
Layer 1 (Ethereum) only receives proofs of state changes.
Rollups use a smart contract on Layer 1 that tracks the Layer
2 state via a Merkle root [9].

One of the rollups based on zero-knowledge proofs is the
ZKsync Era network, and such a blockchain was the target of
our analysis. Transactions from ZKsync blocks are compressed
and submitted to Ethereum in a single batch. Therefore,
ZKsync fees are much lower than on Ethereum. This efficiency
has made it an attractive option for users and opened up a
new opportunity for hunters. Lower transaction costs surely
encourage Sybil behaviour. ZKsync team chose a retrospective
airdrop model, evaluating user activity from the network
launch on February 14, 2023, to March 24, 2024. A total of
17.5% of the entire supply of ZKsync tokens was allocated
for the drop [10]. In March 2024, hundreds of thousands of
wallets became eligible for a ZKsync airdrop. The tokens
were distributed between two main groups: network users and
contributors such as developers and researchers, each with
their own set of eligibility rules. For users, meeting at least
one of seven criteria qualified an address; examples include
interacting with ten or more non-token contracts, swapping ten
different tokens or using Paymasters at least five times. The
amount of tokens received also depended on how early and
how much in assets an address bridged to ZKsync. Additional
multipliers were applied to accounts that showed signs of
genuine human activity or a valuable contribution.

A. Paper Organization

In Section II the methodology of the proposed framework
is presented. The choice of machine learning algorithms,
their brief explanation with important parameters, has been
included. In Section III the results obtained have been shown
and suggestions of what they are likely to come from. The
chapter includes neural network fine-tuning findings and also
results of applying the framework to the ZKsync rollup dataset.
Section IV presents a discussion of results and topics related
to the framework and area of research that the authors find
important. The last section V contains the conclusion and
future work.

B. Related Work

The topics covered in the work are relatively new, so the
literature directly related to the detection of Sybil attacks on
blockchain might be limited. In [11] general strategies for
airdrop design and other aspects are shown, such as Sybil
attacks or implementation methods. This work can give a great
overview of the research area related to airdrops. Another
paper on different airdrop designs and a description of real-
world examples is [12].

In [8] the authors propose a Sybil detection solution based
on finding clusters of accounts with similar event history
with the addition of searching for some known Sybil-like
topologies. Their analysis was done on Hop protocol which
supports Layer 2 solutions. Examples of hunter behaviour in
the network were also shown, including how sibilant graph

topologies are formed. The whole paper is a great addition to
the whole area of airdrop Sybil detection.

In papers [13] and [14] a detection system for Sybil attacks
in transactions with non-fungible tokens is presented. They
called it ARTEMIS and it was supported by a neural network.
Moreover, the authors provided some comparison of met-
rics between their composed neural network and some other
machine learning methods, including popular graph neural
networks such as GIN. In addition, a view of typical hunter
trading patterns was included.

The authors in [15] propose a game theory model that sim-
ulates the dynamics between hunters and projects. They Show
available strategies and propose effective incentive models that
improve detection while keeping operational expenses low.
The research was also based on the analysis of Hop Protocol
and LayerZero.

In [16], using ParaSwap as a case study, the authors intro-
duce a data-driven approach to propose a role-based taxonomy.
It helps identify the behavior patterns of the community
participants. The paper also addresses the subject of airdrop
hunters and can be a good complement to the general concept
of airdrop Sybil attack addressed in our work.

II. METHODOLOGY

We propose a multi-phase framework supported by machine
learning methods, as shown in figure 1. Due to the poisoning
attack that hunters can carry out, only a topology-based
approach may lead to false positives. In the blockchain area,
different poisoning attack definitions can be found depending
on the context, e.g., [17] related to malicious content posted
on the network and [18] related to dust, zero, or fake contract
transfers. In [18], phishing transfers are sent from an attacker
whose address is synthetically generated to be as similar as
possible to that of the victim. In our context, addresses can be
completely different. A Hunter would send a transaction with
very little value to unknown accounts to confuse detection
systems by tapping into a different topology or, in an extreme
scenario, to harm others, meaning that honest users would be
marked as Sybils. Therefore, the framework tries to solve the
problem of identifying most Sybils with as few misinterpreted
honest users by analyzing various account statistics. Its idea
is to calculate the Sybil score for all filtered blockchain
addresses in a given network lifetime. The score is calculated
by performing 4 algorithms, each one returning a sub-score
for a given address.

A. Phase Zero of The Framework

1) Problem definition: In Ethereum expansions, gas must
be paid with ETH for each transaction. Therefore, Hunters
have to somehow feed their accounts with non-zero ETH
transfers, to be able to perform some action on behalf of
those addresses. This implies that Sybil Hunters create ETH-
transfer clusters between all their addresses, and based on
our observations, often those cluster patterns are similar to
known Sybil patterns to some noise level extent. Typically,
Sybil ETH transfer clusters form star, chain, or hybrid patterns,
as shown in [8]. In addition, general Sybil clusters found by

AIRDROP SYBIL ATTACK DETECTION FRAMEWORK SUPPORTED BY MACHINE LEARNING 3

other detection solutions fit into such schemes, for example,
as in [6], [7].

The idea would be to implement a pattern recognition
algorithm of blockchain community graphs. It determines if
a given cluster is more similar to a perfect Sybil structure or
is more noisy and of the „organic” normal class, which would
have a higher chance of containing poisoned honest addresses.

Note that many Layer2 solutions implement their versions of
ERC-4337 [19], thus creating an opportunity to use Paymasters
to pay fees. ZKsync also implements native account abstrac-
tion similar to ERC-4337. There are a few Paymaster types;
however, the two main are ERC-20 Paymasters and Sponsored
(Gasless) Paymasters [20]. Tracking the usage of ERC-20
Paymasters is easy, as accounts instead of ETH must use ERC-
20 tokens, and those are transferred to Sybil addresses through
funding addresses. The pattern recognition algorithm would
run on legitimate ERC-20 token transfer-based clusters just as
it was with ETH, since Sybil cluster topologies would be the
same in both cases. The other type, the Sponsored Paymasters,
does not require an address which sent a transaction to have
any tokens. Sponsored Paymaster voluntarily covers the entire
gas cost and at no expense to the user. To track the usage
of Paymaster one can obtain information about it from the
transaction receipt, more precisely if it is an EIP-712 [21] type
transaction with the Paymaster field set to a nonzero address
[22]. Here, Sybil cluster topologies could be different from
those found in ETH or ERC-20 funding transfers, and, in fact,
they could not resemble the topologies found in the existing
literature. To simplify our Proof of Concept of phase zero and
to be compliant with topologies described in references such
as [8], we assume that every Sybil Hunter we try to find pays
fees in ETH and does not only use a Paymaster. In addition,
such decisions speed up computation time.

2) Graph Isomorphism Network: The paper [23] is a great
introduction to the topic of graph neural networks, which is
related to the graph isomorphism network that we used in
our work. In phase zero, we focus on the graph-level binary
classification problem. Having a set of undirected graphs
{g1, ..., gn} ∈ G and a set of their labels {y1, ..., yn} ∈ Y
the goal is to correctly classify a given unknown graph g with
a model f , i.e., yg = f(g), yg ∈ {0, 1}, by training the model
in sets G and Y .

The inductive machine learning algorithm that has been
chosen for this task is the graph isomorphism network (GIN)
[24], that is, a neural network that belongs to the class of
Graph Neural Networks (GNN). GNNs take as input graphs
that are converted into tensors consisting of edge indices, node
features, and graph labels. They allow us to express graph
topology in the training process. GIN, with each iteration
{0, ..., k}, updates the node embedding according to the for-
mula [24]:

h(k)
v = MLP (k)((1 + ϵ(k)) · h(k−1)

v +
∑

u∈N(v)

h(k−1)
u) (1)

where hv is the embedding node, MLP is a multilayer
perceptron and N(v) is the 1-hop neighbourhood of node v.
For the graph-level classification task, a graph representation
for a prediction is given by:

Fig. 1. Proposed Sybil detection framework structure

hG = Concat(Readout(h(k)
v |v ∈ G)|k = {0, ...,K}). (2)

Here, Readout is a global sum. We chose K = 5. Then in our
framework, on hG we perform linear transformations with the
RELU activation function to obtain the final prediction scalar.
A binary classification is obtained after treating a scalar with
a sigmoid function. GIN is as expressive as the Weisfeiler-
Lehman graph isomorphism test [24] so it is an excellent
option for distinguishing nonisomorphic graphs and therefore
a promising tool for our task.

3) Data preparation and training: First of all, so far there
are not many easily accessible labelled Sybil clusters, surely
not enough to train our model. Thus, two approaches have
been tried:

• training model on synthetic data,
• labeling clusters manually, and training model on mixed

real data with synthetic data.
Hypothesis: It is easier to generate a good synthetic dataset
and train a model on it than to manually search and label
blockchain graphs. For the first approach, we test a given
hypothesis. Because it is known what Sybil communities
usually look like, we can create a lot of synthetic data. There
were generated 500 graphs for each subclass: stars, chains
including cycles and hybrids, all with a set noise level, i.e.
random edge addition between random vertices, so not every
graph is a perfect one. The number of edges ranged from 10 to
100. For the normal class, random graphs with 0.01 < p < 0.1

4 K. KACZYŃSKI, A. WIĄCEK

and scale-free graphs with lowered hub generation parameters,
also with threshold noise were chosen. The number of normal
graphs was almost the same as in the Sybil class. It was
ensured that, in the entire generated dataset, all samples were
unique.

For the second approach, Ethereum Mainnet data were
dumped between blocks 21,500,000 and 21,550,000, collecting
transactions with ETH transferred greater than 0 and without
input data. From the ZKsync data dump [25], blocks between 1
and 1,500,000 were chosen. Also, in ZKsync only transactions
between EOA’s were chosen to capture only funding transfers
without noise associated with smart contract interactions. On
such prepared transaction sets, maximal connected compo-
nents have been found. Components with nodes numbering
between 10 and 300 for Ethereum and between 10 and 900 for
ZKsync were labelled. The labelling process was performed
manually by a single person. A given graph was considered
normal if it achieved all of the following requirements:

• the graph did not resemble perfect star, chain or hybrid
topology,

• the ETH transferred between two given accounts for
majority of accounts was high enough to be considered
natural, i.e. at least 0.01 ETH;

• in graph topology there could not be observed a large
chain structure, i.e. more than 10 addresses connected in
a perfect chain (vertex degree of 2) that was a part of the
connected component,

• if star sub-topology with many addresses was present, it
could not be perfect, i.e. between few non-hub addresses
there should be an edge.

Otherwise, the graph was skipped or labelled as Sybil if it
resembled a known Sybil topology. Additionally, for some
contested graphs, those whose group assignment was uncer-
tain, manual analysis of address behaviour was conducted to
examine past activity and assess the likelihood of bot control.
In total, it gave 38 real normal graphs and 1014 real Sybil
graphs. To reduce bias, 300 synthetic normal graphs were
generated. To introduce some near-perfect hybrid structures
into the data set, an additional 75 synthetic Sybil graphs were
added.

Since it is a topology-only characteristic Sybil clusters
recognition/classification task, there are no real features, i.e.
every node has a number of 1 assigned. Data have been split
into training, validation and testing sets using a stratified 5-
fold. The proportion is around 1027 samples for training, 115
for validation, and 285 for testing. The model has been trained
using mini-batching.

4) Main Algorithm: In this work, only EOA’s are being
considered. More about it in the discussion in Chapter IV.
Figure 2 shows the flow of the phase 0 algorithm. First, an
undirected graph of the entire network is created. Vertices are
blockchain addresses and edges say if between two addresses
an ETH transfer ever occurred. Then on such a graph, max-
imally connected components (MCC) are found. Then GIN
classifies the MCCs that satisfy |MCC| > x ∧ |MCC| < y,
where x, y are arbitrarily selected. Addresses belonging to
Sybil MCC are saved, i.e. they are given a phase 0 algorithm
score. It must be noted that we use only maximally connected

components here just for simplification of showing the con-
cept. Normally, on components with a number of addresses
greater than y, a cluster detection algorithm should be run, e.g.,
Louvain community detection [26]. Such clusters, together
with other MCCs, are then to be fed as input to phase 0.

Fig. 2. Binary classification algorithm

B. Phase One of The Framework

Phase 1 is the follow-up of [8], and we slightly modified
their approach to our needs. Interactions involving smart
contracts produce log entries which contain specific fields,
called topics. In Ethereum based networks, topic0 refers to
triggered event, such as transfer or swap, and each one is
designated by a unique hash. On ZKsync, even a transfer
of base token between EOAs, i.e. rollup’s version of ETH,
involves a system smart contract. For every account within
MCC, a sequence with topic0 hashes is created, but in such
a manner that if the same hash repeats, a dedicated iterator
to that hash is concatenated with it. Then sets of Cartesian
products of address event sequences are created with ordered
pairs without reversal and without pairs in which elements
are identical. Such products are then subject to comparison
using the Jaccard coefficient (JC). Finally, a similarity matrix
is built, which is then fed to the DBSCAN algorithm. Jaccard
coefficient on sets A and B is calculated as follows:

J(A,B) =
|A ∩B|
|A ∪B|

(3)

Suppose that we have two addresses with very similar se-
quences, i.e.: SA = {ei|i ∈ 0, .., n−1}, SB = {ei|i ∈ 0, .., n−
k − 1}, where e0 = hash(Event), e1 = hash(Event)|1,
e2 = hash(Event)|2, etc. Assuming that A and B designate
sets of Cartesian products on SA and SB , |A| = n, |B| =
n− k,B ⊆ A. Then the Jaccard coefficient is calculated as:

JC(A,B) =
(n− k)(n− k − 1)

n(n− 1)
(4)

and assuming k
n → ∞:

lim
n,k→∞

JC(A,B) = 1 (5)

It means that if the Sybil address performs fewer transactions
than other Sybil, but they both maintain the same order of
transactions, in an appropriately long event sequence, they

AIRDROP SYBIL ATTACK DETECTION FRAMEWORK SUPPORTED BY MACHINE LEARNING 5

should exhibit a high similarity coefficient, which is desirable
and demonstrates that bots cannot easily deceive the algorithm
by not creating k of the last events from sequences of some
addresses. To have a lower JC score, addresses would have
to switch order of events or just perform different events, and
both are harder to automate.

DBSCAN [27] is a density-based clustering algorithm dedi-
cated to noise-free data sets, taking two parameters: mintP ts
and ϵ. Based on [28], the recommended value for minimum
points to form a cluster is minPts = 2 ·dim. However, in our
unique case, the dimension is the number of samples, so such
an idea will not fit. We then try a different approach, where
minPts = ⌊

√
dim⌋. There exist methods to determine the

optimal parameter ϵ, such as in [28]–[30]. The popular method
is to create a plot of sorted k-th nearest-neighbour distances
from dataset samples and then find a knee on curve. However,
a method presented in [8] uses a silhouette coefficient with grid
search to estimate the best ϵ, and since vector coordinates are
always between 0 and 1, we shall use this approach. We set
the maximal ϵ in the grid search to 0.5, since our primary task
is to detect Sybil similarities, not clusters per se.

Every address that is not marked by DBSCAN as a noise
point is given a score of 1. However, it is not sufficient for
all Sybil topologies, especially stars, where the hub account
has significantly different log entry than its neighbours. Our
solution for that is to find 1-hop neighbours of all clustered
addresses and mark them. To balance judgment between real
Sybils and poisoning attack victims, one can consider setting
a lower score on such addresses. We decided to stick with a
score of 1.

C. Phase Two and Three of The Framework

In phase two, accounts within MCC that were created close
in time are being found. By creating an account, we consider
the first transaction or event in which the "to" attribute or
topic2 contains the address of this account. The corresponding
block to that action is then found and from this block a
timestamp is extracted. The timestamps are then fed to the
DBSCAN algorithm in raw form. We assume that if two
accounts were created within 4 hours, their creation time is
considered similar, as a large gap between account creation
times may lead to false positives. Based on how DBSCAN
works, with our assumption, the two density-reachable border
points in a cluster can be up to 4 hours apart. Therefore,
even a cluster where accounts are created every 4 hours can
still be identified as a single group. There is no universal
time threshold as each cluster may have accounts created at
different intervals. Finding a single optimal value based on all
clusters could lead to false positives; that is, it would favour
a distance chosen specifically to include as many accounts
as possible, which would be incorrect. We consider 4 hours
to be a short enough time window that, if multiple accounts
within a cluster are created during this period, it suggests
unnatural behaviour, such as the use of a script to generate
accounts. Of course, attackers may choose to create accounts
over a longer time span (e.g., one per day), but this increases
the duration and cost of the attack, particularly if automated

systems are used. Moreover, our goal is to detect accounts that
exhibit strong Sybil-like characteristics. Therefore, based on
the expertise in the field, we chose ϵ to be 14400 in epoch time.
The minimum samples to form a cluster have been chosen to
be 3, since it is a one-dimensional case, and also only two
accounts created within four hours could be coincidence. In
addition, sparse clusters are not considered undesirable.

In phase three, the MCC account is checked if its average
gas usage of all transactions is less than the average gas
usage of all transactions of the entire network. Again, as in
all previous phases, only EOAs are considered, and only the
average gas usage from EOAs is chosen as the threshold. The
distribution of transaction average gas usage recall gamma
distribution, and it has been shown on the figure 3. When
creating the distribution, we considered only addresses that
had initiated at least one transaction. The mean µ has been
calculated to be 627,361 units and the standard deviation σ is
347,242 units. All accounts with gas usage smaller than µ−σ
are marked.

Fig. 3. Average gas usage distribution of EOAs

D. Merging scores

The last step is merging the results from all stages. We
propose the following formula for calculating the final score
of a given address:

Score =
W0 · P0 +W1 · P1 +W2 · P2 +W3 · P3

W0 +W1 +W2 +W3
(6)

s.t. Pi ∈ {0, 1},Wi ∈ (0, 1] (7)

Wi in formula 6 represents the weights chosen for a specific
phase. Pi are the results of a given phase of the framework.
Each address in the data set can have a different value Pi, and
each result is obtained by applying the algorithm of the i-th
phase. To find the best weights, a grid search is performed.
To find the optimal set of weights, an F1 score was used. We
will manually label addresses from the created MCC pool.
The labels will be assigned according to the post-airdrop
monitoring part in Figure 1 and by looking at the general
characteristics of the accounts and the clusters they are in.
Errors of the first and second types will be determined using
a fixed threshold th, i.e., Score ≥ th ⇒ {0, 1}. The best
weights will be determined for th ∈ {0.1, 0.2, ..., 0.9}.

6 K. KACZYŃSKI, A. WIĄCEK

III. RESULTS AND THEIR ANALYSIS

A. Phase Zero

On mixed real and synthetic data, model hyperparameters,
i.e. number of neurones per layer, batch size, epochs, dropout,
and learning rate, have been fine-tuned using a grid search.
With a learning rate equal to 0.00005, the ADAM optimisation
algorithm has a satisfactory loss descent speed and improves
throughout the epochs. The batch size of 64 has fewer sudden
spikes on both the accuracy and loss validation curves than the
batch size of 32 samples. The loss accuracy validation plot
for the best configuration is shown in Figure 4. Evaluation
metrics were calculated that included BCELoss, accuracy, F1
score, and balanced accuracy. The best results were obtained
for the model trained with 100 epochs, 32 neurones, and the
first fold:

• Loss: 0.00199,
• Accuracy: 0.98252,
• F1 Score: 0.98861,
• Balanced Accuracy: 0.96830.

This model was trained without dropout. For dropout with
probability of p = 0.4 some perfect stars were incorrectly
labelled, changing it to p = 0.2 removed this problem;
however, it still resulted in lower accuracy than with p = 0.
Moreover, using positive dropout resulted in less stable loss
validation curve, hence our decision.

Fig. 4. Loss and accuracy over epochs in validation step

For ZKsync roll-up blocks between 1 and 29,710,000,
produced before snapshot, were analysed. It gave a total of
1565 MCCs with a number of vertices ranging between 10
and 900. From that, 1529 were labelled as Sybil topologies,
which gives 29,889 blockchain addresses. Figures 5, 6, and 7
show examples of labelled ZKsync topologies.

Fig. 5. ZKsync Sybil complex star - chain hybrid cluster

Fig. 6. ZKsync Sybil chain / cycle cluster

Fig. 7. ZKsync topologically normal cluster

For the approach using only synthetic data for training,
although the accuracy of validation and the accuracy of
the test (synthetic) were very high >98%, the model was
actually useless. We tried to classify real ZKsync-connected
components with such trained GIN and found that it has
trouble with classification of „obvious” Sybil topologies, even
including perfect star structures. Accuracy on real dataset was
also computed which turned out poor and it did not matter how
big the training dataset was or how well tuned hyperparameters
were. It would suggest that model tends to extremely overfit
on synthetic data to the point where it looks more like it
remembers structures instead of generalising them (perfect star
example). We also tried generating graph with different noise
levels between vertices, and the results were always poor. In
addition, test evaluation metrics were computed on the real
sample dataset:

• Loss: 1.07751,
• Accuracy: 0.07415,
• F1 Score: 0.07590,
• Balanced Accuracy: 0.51972.

It could be possible that, although we applied some random-
ness in generating samples, instances within a class were too
similar to each other for GIN model, even if visually they
appeared to be distinct enough. Additionally, samples from

AIRDROP SYBIL ATTACK DETECTION FRAMEWORK SUPPORTED BY MACHINE LEARNING 7

normal and Sybil sets may have been too distinct from each
other, making it difficult for the neural network to generalise
effectively. For such reasons, we deny the hypothesis from
chapter II-A.

B. Other Phases

The number of MCCs, when an edge between EOAs repre-
sents an arbitrary transaction, was 1645. In all those connected
components, there were 35,843 addresses.

1) Phase One: A total of 34,636 addresses form clusters
that were marked by DBSCAN. Its a very high percentage of
the dataset, but the probable reason for that is the same as the
finding described in results of phase three. From that, 2592
addresses were marked as 1-hop neighbours of those Sybil
accounts.

2) Phase Two: In this algorithm, 22,682 addresses were
located in some cluster found by DBSCAN. We observed that
many connected components were of perfect star topology,
where a hub address sent one transaction to each of its
neighbours, very close in time.

3) Phase Three: A total of 26,493 addresses have been
marked in phase 3. However, it has been observed that most of
them, 24,651 have gas usage of 0, meaning they did not create
any transaction. Also, usually they have really small balances,
and, of course, such addresses would never be eligible. Such
accounts have been created by hubs, which can be users who
wanted to generate synthetic liquidity in order to be eligible.
With such a large scale, it is not excluded that some users
might have followed the same tutorial. It is up to the project
team whether or not they desire to ban such hub addresses.

C. Final Results

We manually labelled 13 normal and 85 Sybil addresses.
Let MCC0 denote all components maximally connected from
phase 0 and MCC1 from other phases. For the labelling
process, addresses a were selected that meet:

{a : (a ∈ MCC0 ∩MCC1) ∧ (

3∑
i=0

Pia > 0)}. (8)

Sybil score thresholds ≥ 0.2 gave the same, best F1 score of
0.9492. We chose a threshold of 0.6 as the definitive boundary
to ban addresses or not. For such a threshold, the best weights
were selected, although there were many others to choose
from. The choice was also based on the fact that phases 0,
1 and 2 indicate a Sybil behaviour more than phase 3. The
following weights were selected: W0 = 0.9, W1 = 0.5,
W2 = 0.6, W3 = 0.3. In table I the results of our framework
are presented, that is, the final calculated Sybil scores for all
addresses analysed.
More than 37,563 addresses exceed the safe threshold and can
be confidently marked as Sybils. To recall, the total number
of EOAs analysed is 49,249, so around 76% of all accounts
resemble a strong Sybil behaviour with respect to the proposed
framework. That is a high percentage of the overall population,
however, it can be explainable. As a result of Phase three, a
total of 24,651 have not made any transaction and in many

TABLE I
NUMBER OF ADDRESSES PER SYBIL SCORE

Score No. of addresses Percentage share

0.0000 161 0.3%

0.1304 20
0.9%0.2174 293

0.2609 123

0.3478 8027

22.5%
0.3913 1831
0.4782 1149
0.5217 82

0.6087 3059

71.0%
0.6522 1485
0.7391 14375
0.7826 94
0.8696 15936

1.0000 2614 5.3%

cases did not transfer any assets to other addresses. Therefore,
those accounts must have been a part of perfect star topologies
with one very active hub account, possibly the only contender
for the airdrop in a given topology. The hub’s use of „dead”
accounts to simulate activity through small ETH transfers
supports the conclusion that the large number of accounts
marked as Sybil is not a misclassification.

For further analysis, we compare our results with
the ZKsync eligibility list. This list can be found at
https://github.com/ZKsync-association/zknation-data and con-
tains a list of eligible blockchain addresses, including EOAs.
ZKsync did its own Sybil detection, and a brief explanation
of it can be found in [10]. We checked common addresses
between our Sybil list and their eligible addresses, and found
that 342 addresses, with a Sybil score grater or equal to 0.6,
can be found in the ZKsync list. Those common accounts
received a total of 1,571,708 ZK airdropped tokens, and based
on the market value at the time, the value of the rewards ranged
between $270,000 and $300,000. When comparing the scale,
there are not many entities, possibly because those are only
EOAs from restricted MCCs. To have a full comparison, one
would have to run our framework on clusters with unlimited
size, including EOAs and smart accounts.

Moreover, we can notice that from 37,563 addresses labelled
as Sybil by our framework, 37,221 of them were not present
in ZKsync list meaning either they were simply not eligible
or were excluded by ZKsync’s Sybil detection system. This
further indicates that the result of our framework did not have
a high false-positive rate.

IV. DISCUSSION

Why use GIN and not a non-machine learning pattern
search algorithm? Because GIN output is not easily predictable
and interpretable. As we can see in result there are clusters
labelled as normal, however, in them there are also some Sybil-
like patterns (false negatives) and (false positives) in normal
instances. So Hunters cannot be sure that the topology they
have created could fool the model. However, the black-box

8 K. KACZYŃSKI, A. WIĄCEK

nature of neural network can also be seen as a disadvantage
as airdrop issuers would be interested in knowing exactly
why given addresses were marked by the model, to provide
transparency for project community.

To increase performance of the model, one’s goal would
be to require more labelled data. However, we cannot ever
be sure if a given address is a Hunter without self-reporting.
Even if an address belongs to, for example, a perfect star
cluster, it’s chances of being a Hunter are higher but still,
we are not sure. That is one of the reasons why it is hard to
create a correct large dataset of real-life Sybil graph cases. The
aftermath of detecting Sybil using a topology-based approach
can be, naturally, the evolution of Sybil cluster structures.
The hypothesis would be that the more clusters one detects,
the more Hunters try to fool the detection algorithm, and
therefore, gradually create more noisy graphs to the point
where Sybil clusters would look like graphs from a normal
class. It could completely negate the point of transfer topology-
only detection, although, it would also make Sybil attacks on
airdrops more expensive.

A big problem in Sybil identification in rollups is that not
every address operated by a human is an EOA. There are
also smart accounts present. However, creation of EOA does
not require any transaction, so it is free in contrast to smart
account, where for one to be deployed a special transaction
must be sent through interaction with a system smart contract.
For that reason, EOAs are more likely to be used in a Sybil
attack scheme, and that is one of the reasons why we decided
to not bother identifying smart accounts. Teams that try to
detect Sybil clusters could make a large effort to identify which
addresses are from ERC-4337 and which are smart utility
contracts. Furthermore, an account should not be marked as
Sybil because it sent a transaction to a smart contract, for
example, a Swap, that has a very high degree. Also, DEX and
CEX addresses should be searched and excluded.

Referring to the analysis of phase 3 in Section III-B3 of our
framework, many EOAs had not created any transaction. There
is an idea to add one more phase to our framework, which
would be based on marking 1-hop neighbours of accounts with
average gas usage of 0, if in a given clusters there are many
such „dead” addresses. From our observation, such 1-hop
neighbours usually could be hubs in the local star topology.
Moreover, we distinguish two types of hunter attacks. In the
first, hunters create complex clusters in which there are directly
or indirectly connected addresses that seek to receive tokens
from the airdrop. In the second approach, hunters can create
many isolated clusters inside which only one account (hub)
attempts to become eligible, and all its neighbours are used
only for interaction with that specific address.

Referring to phase 2 in Section II-C, an improvement can
be applied that potentially increases the detection accuracy
with the cost of additional computation. The parameter ϵ of
DBSCAN could be dynamic in the sense that for a given set
of addresses, a DBSCAN is run many times with different
ϵ, e.g.: ϵ ∈ {1h, 4h, 8h, 16h, 24h, ...}. Accounts belonging to
clusters achieved with more ϵ instances have a higher score for
the phase 2 algorithm. For example, if accounts are in cluster
for time windows of 24, 16 and 8 hours, their score would

be higher than those that only were in cluster for a window
of 24 hours. In addition, the phase score would no longer
be binary, i.e. P2 ∈ [0, 1]. Such an approach could strike a
balance between minimising false positives and avoiding the
challenge of determining an appropriate time interval between
account creations.

V. CONCLUSION AND FUTURE WORK

In this paper, many potential Sybil ZKsync accounts have
been revealed. In practice, the proposed algorithm chain works
like a sieve, where addresses with a higher score can be
immediately excluded from airdrop, whereas those with a low
score can be further investigated with different methods. It
must be noted that filtering wallets too strictly, i.e. marking
too many as Sybil (false positive), may discourage beneficial,
honest users from the project. Our framework allows for the
capture of the most prominent Sybil participants. The score
threshold for classifying an address as malicious can be chosen
arbitrarily, thus allowing us to be more flexible when it comes
to false positive rate.

Quite a lot depends on the design of the airdrop. There
exist airdrops with fixed token amount per user, but there
can also be those, where the whole fixed pool of tokens is
split between eligible addresses. That would mean that the
more users are eligible, including Hunters, the fewer tokens
each address receives, which makes it less cost-effective to
perform Sybil attack. However, in such a design it would be
more expected to find a poisoning attack in order to decrease
competition.

It must also be reminded that there can exist online tutorials
on how to become a partaker of airdrop, making many
addresses perform similar actions on blockchain. Yet, our
framework is also resistant to such phenomena to some extent,
so honest users can gladly follow the same tutorial, unless
their addresses are very close to each other in an address-
transactions topology or if they belong to the same cluster.
Moving on, there are also sites that make it easier to search for
possible incoming airdrops [31]–[33], which can help Hunters
choose the network to perform the Sybil attack. Developers
who plan airdrop should be double cautious when their project
is listed on such a site.

In terms of future work, a new approach to GIN training
could be developed. In the event that more Sybil clusters are
marked, one might be tempted to train GIN on directed graphs,
which could further capture the nature of suspect clusters.
Based on our observations during the development of this
framework, we suspect that star topologies possessing main
Sybil accounts, i.e. hubs, often have only outgoing directed
edges from such central account, but not incoming edges.
Another idea would be to train the machine learning model
on account-level features and include it, perhaps, as another
step in our framework. Here, a model would mark potential
Sybil accounts based on it’s behaviour, statistic attributes, like
degree or measures of the significance of a vertex in a graph.
Such an approach can potentially add a great contribution to
the definition of characteristics of Sybil addresses.

A significant task would be to run our framework not only
on datasets with EOAs but also with smart accounts. Detailed

AIRDROP SYBIL ATTACK DETECTION FRAMEWORK SUPPORTED BY MACHINE LEARNING 9

steps for creating such a dataset, including the filtering of some
contracts and community detection, could be shown, thereby
creating a great framework for blockchain data preparation.

Moreover, the proposed framework could be subject to
comparison with different Sybil detection options, maybe
on a relatively small labelled or synthetic data set. Such a
comparison could show the characteristics of the results for
every framework as well as the overall accuracy and similar
metrics. It would allow projects to choose the most suitable
approach.

REFERENCES

[1] The Block, “We made close to $1 million inside the
murky world of airdrop farming,” accessed: 2025-02-
09. [Online]. Available: https://www.theblock.co/post/225215/
we-made-close-to-1-million-inside-the-murky-world-of-airdrop-farming

[2] Binance Square, “Magic eden airdrop frenzy: One farmer cashes
in over $2 million,” accessed: 2025-02-09. [Online]. Available:
https://www.binance.com/en/square/post/17443215929586

[3] X, accessed: 2025-02-09. [Online]. Available: https://x.com/
lookonchain/status/1639165562663358466

[4] J. Messias, A. Yaish, and B. Livshits, “Airdrops: Giving money away is
harder than it seems,” arXiv preprint arXiv:2312.02752, 2023.

[5] A. Yaish and B. Livshits, “Tierdrop: Harnessing airdrop farmers for user
growth,” arXiv preprint arXiv:2407.01176, 2024.

[6] TrustaLabs, “Airdrop-sybil-identification,” accessed: 2025-
03-13. [Online]. Available: https://github.com/TrustaLabs/
Airdrop-Sybil-Identification

[7] Arbitrum Foundation, “Arbitrum sybil detection,” accessed: 2025-
03-13. [Online]. Available: https://github.com/ArbitrumFoundation/
sybil-detection

[8] Z. Liu and H. Zhu, “Fighting sybils in airdrops,” arXiv preprint
arXiv:2209.04603, 2022.

[9] C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain
scaling: A survey,” arXiv preprint arXiv:2107.10881, 2021.

[10] ZK NATION, “Zk airdrop,” accessed: 2025-04-13. [Online]. Available:
https://docs.zknation.io/zk-token/zk-airdrop/

[11] K. Lommers, C. Makridis, and L. Verboven, “Designing airdrops,”
Available at SSRN 4427295, 2023.

[12] D. W. Allen, “Crypto airdrops: An evolutionary approach,” Journal of
Evolutionary Economics, vol. 34, no. 4, pp. 849–872, 2024.

[13] C. Zhou, H. Chen, H. Wu, J. Zhang, and W. Cai, “Artemis: Detecting
airdrop hunters in nft markets with a graph learning system,” in
Proceedings of the ACM Web Conference 2024, 2024, pp. 1824–1834.

[14] Y. Qin, T. Ma, H. Chen, and H. Duan, “Artemix: A community-boosting-
based framework for air-drop hunter detection in the web3 community,”
Blockchain, vol. 2, no. 2, pp. 1–24, 2024.

[15] J. Luo, H. Kang, S. Zheng, and X. Liu, “Toward resilient airdrop
mechanisms: Empirical measurement of hunter profits and airdrop game
theory modeling,” arXiv preprint arXiv:2503.14316, 2025.

[16] S. Fan, T. Min, X. Wu, and W. Cai, “Altruistic and profit-oriented:
Making sense of roles in web3 community from airdrop perspective,”
in Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, 2023, pp. 1–16.

[17] T. Sato, M. Imamura, and K. Omote, “Threat analysis of poisoning
attack against ethereum blockchain,” in IFIP International Conference
on Information Security Theory and Practice. Springer, 2019, pp. 139–
154.

[18] T. Tsuchiya, J.-D. Dong, K. Soska, and N. Christin, “Blockchain address
poisoning,” arXiv preprint arXiv:2501.16681, 2025.

[19] Ethereum, “Erc-4337: Account abstraction using alt mempool,”
accessed: 2025-04-13. [Online]. Available: https://eips.ethereum.org/
EIPS/eip-4337

[20] Zksync, accessed: 2025-04-13. [Online]. Available: https://docs.ZKsync.
io/ZKsync-era/guides/ZKsync-101/paymaster

[21] Ethereum, “Eip-712: Typed structured data hashing and signing,”
accessed: 2025-04-13. [Online]. Available: https://eips.ethereum.org/
EIPS/eip-4337

[22] Zksync, accessed: 2025-04-13. [Online]. Available: https://docs.ZKsync.
io/ZKsync-protocol/account-abstraction/paymasters

[23] I. R. Ward, J. Joyner, C. Lickfold, Y. Guo, and M. Bennamoun, “A
practical tutorial on graph neural networks,” ACM computing surveys
(CSUR), vol. 54, no. 10s, pp. 1–35, 2022.

[24] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[25] M. I. Silva, J. Messias, and B. Livshits, “A public dataset for the zksync
rollup,” arXiv preprint arXiv:2407.18699, 2024.

[26] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[27] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[28] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan
revisited, revisited: why and how you should (still) use dbscan,” ACM
Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21,
2017.

[29] A. Starczewski, P. Goetzen, and M. J. Er, “A new method for automatic
determining of the dbscan parameters,” Journal of Artificial Intelligence
and Soft Computing Research, vol. 10, 2020.

[30] M. N. Gaonkar and K. Sawant, “Autoepsdbscan: Dbscan with eps auto-
matic for large dataset,” International Journal on Advanced Computer
Theory and Engineering, vol. 2, no. 2, pp. 11–16, 2013.

[31] Alpha Drops, accessed: 2025-04-06. [Online]. Available: https:
//www.alphadrops.net/

[32] Bankless, accessed: 2025-04-06. [Online]. Available: https://www.
bankless.com/airdrop-hunter

[33] Airdrops.io, accessed: 2025-04-06. [Online]. Available: https://airdrops.
io/

https://www.theblock.co/post/225215/we-made-close-to-1-million-inside-the-murky-world-of-airdrop-farming
https://www.theblock.co/post/225215/we-made-close-to-1-million-inside-the-murky-world-of-airdrop-farming
https://www.binance.com/en/square/post/17443215929586
https://x.com/lookonchain/status/1639165562663358466
https://x.com/lookonchain/status/1639165562663358466
https://github.com/TrustaLabs/Airdrop-Sybil-Identification
https://github.com/TrustaLabs/Airdrop-Sybil-Identification
https://github.com/ArbitrumFoundation/sybil-detection
https://github.com/ArbitrumFoundation/sybil-detection
https://docs.zknation.io/zk-token/zk-airdrop/
https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-4337
https://docs.ZKsync.io/ZKsync-era/guides/ZKsync-101/paymaster
https://docs.ZKsync.io/ZKsync-era/guides/ZKsync-101/paymaster
https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-4337
https://docs.ZKsync.io/ZKsync-protocol/account-abstraction/paymasters
https://docs.ZKsync.io/ZKsync-protocol/account-abstraction/paymasters
https://www.alphadrops.net/
https://www.alphadrops.net/
https://www.bankless.com/airdrop-hunter
https://www.bankless.com/airdrop-hunter
https://airdrops.io/
https://airdrops.io/

	Introduction
	Paper Organization
	Related Work

	Methodology
	Phase Zero of The Framework
	Problem definition
	Graph Isomorphism Network
	Data preparation and training
	Main Algorithm

	Phase One of The Framework
	Phase Two and Three of The Framework
	Merging scores

	Results and Their Analysis
	Phase Zero
	Other Phases
	Phase One
	Phase Two
	Phase Three

	Final Results

	Discussion
	Conclusion and Future Work
	References

