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Abstract—Cybersecurity in modern communication networks
is of paramount importance, particularly in critical infrastruc-
ture sectors. Anomaly detection in communication protocols is a
key component in identifying and mitigating cyber threats. This
study explores data-centric approaches for anomaly detection
using machine learning algorithms. We evaluate the effectiveness
of ensemble models incorporating Isolation Forest, XGBoost, and
Autoencoders to reduce false positives while maintaining high
accuracy. Our methodology involves training on both labeled
and unlabeled datasets, including NSL-KDD and CIC-IDS2017,
to simulate real-world attack scenarios. Experimental results
demonstrate that the proposed ensemble learning approach
enhances detection performance, offering a balanced trade-off
between precision and false alarm reduction. These findings
contribute to the development of robust and scalable intrusion
detection systems suitable for deployment in industrial and
critical infrastructure networks.

Keywords—Anomaly detection; communication protocols; cy-
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I. INTRODUCTION

CYBERSECURITY is a critical aspect of modern infor-
mation systems, particularly in the context of critical

infrastructure. The ability to quickly and accurately detect at-
tacks is essential for network security as contemporary threats
become increasingly complex. This need is especially pressing
in Industrial Control Systems (ICS), which form the backbone
of critical infrastructure in the energy, manufacturing, and
transportation sectors [1].

The history of the first cyberattack dates back to 1834
when the Blanc brothers (with the help of bribed telegraph
operators) manipulated the operation of the world’s first optical
telegraph [2] launched in France. Their idea was to insert
hidden information about directions in the financial market
into the transmitted government information, which allowed
them to access information much faster. The mechanism used
was based on the premise of steganography [3], where vital
information was hidden unnoticed in the transmitted content.
This attack shows that hacking, manipulation, and deception
have accompanied humans for centuries, and there is no
indication that they will stop.
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The modern history of cyber attacks begins in the mid-
1980s of the previous century. The first known attacks were
the Cascade virus, the Morris worm, or the Melissa virus,
released a decade [4]. The initial attacks were characterized by
randomness, with attacks targeting personal computers. With
the proliferation of mobile devices, the boundaries of acces-
sibility and security have been significantly pushed. Attacks
have become much more sophisticated, consisting of multi-
stage consecutive attack phases aimed at gaining full access
to specific resources on the network (kill chain attack [5]).

In addition to attacks in the IT area, the second decade of the
21st century has seen many attacks on computer networks (IT
and OT networks) of enterprises classified as critical infras-
tructure, such as power plants, transmission networks (water,
gas, power) mines, petrochemicals and other [6]. Some of the
best-known include Stuxnet (2010). [7], BlackEnergy (2015)
[8], WannaCry (2017) [9], NotPetya (2017) [10], Colonia
Pipeline (2021) [11], SolarWinds (2020) [12], Hydro Attack
(2019) [13], Oldsmar Water Treatment Plant (2021) [14]

Cyber attacks on critical infrastructure are becoming in-
creasingly sophisticated and pose a real threat to public
security, the economy and the functioning of states. Their
scale and impact underscore the need for investment in ad-
vanced protection technologies, international cooperation, and
threat awareness-building. The growing number of successful
attacks against ICS underscores the urgent need to create de-
fense mechanisms capable of accurately and timely detecting
anomalies [15].

Among security mechanisms are top-level mechanisms such
as protecting email, isolating and analyzing suspicious files,
encrypting sensitive data, blocking access to suspicious sites,
detecting and blocking exploits and malware, regularly up-
dating software, limiting user and device permissions to a
minimum level, and allowing only approved applications to
run [16]–[18]. The purpose of these mechanisms is to prevent
attacks.

Unfortunately, these mechanisms do not always provide
full protection, and the continuous improvement of attack
techniques allows attackers to break through them effectively.
As a result, attackers get inside the organization and move
on to the next stages of attacks. The key is to detect this
phase as soon as possible, even before the damage is done. To
this end, an effective way is to detect cybercriminals based
on observation of network traffic parameters using various
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methods to analyze network traffic to detect suspicious activity
[19].

There are many analysis techniques, also based on machine
learning [20]. They are mainly based on deep package in-
spection (DPI) [21] or the aforementioned analysis of traffic
parameters. The monitored data are compared with the learned
models; on this basis, anomalies that may be a symptom of
an attack are detected.

Data-centric approaches are not without their drawbacks.
The main problem is the lack of data from attacks. In real-
world installations, a great deal of normal traffic data is
available, and usually, there is no data from attacks, or if there
is, it is very little, covering the entire range of possible tech-
niques used by cyber criminals. The second problem is false
alarms, which can lead to unnecessary interventions, wasting
time and resources [22]. Given the context of communication
protocols, even a small percentage of false alarms can result in
a significant number of misleading alarms. Therefore, in this
article, we focus our research on comparing results obtained
on labeled and unlabeled samples and pay special attention to
false alarms.

Given the context of communication protocols, even a small
percentage of false alarms can result in a significant volume
of misleading alarms. Therefore, in this paper, we focus our
research on labeled and unlabeled samples when we assume
that we only know the data without attacks, and on such
learned models, we try to detect anomalies in the data.

II. RELATED WORK

A review of the existing literature shows that many studies
have focused on analyzing popular datasets we will use in our
study. Researchers used various machine learning methods.
For example, in [23] authors achieved approximately 96%
accuracy using Random Forest and neural networks. Similarly,
in [24], authors used PCA for preprocessing and classified
attacks with DNN, LSTM, and CNN, reporting respective
accuracies of 94. 61%, 97.67% and 98.61%. Other works,
such as [25], used SMOTE and PCA to improve AdaBoost
performance, producing precision and recall of 81.83% and
100%, respectively. Finally, [26] demonstrated that Recurrent
Neural Networks (RNNs) excel at intrusion detection, out-
performing CNNs, and Naive Bayes by maintaining a better
balance between precision and recall.

In the context of the NSL-KDD dataset, researchers have
progressively tried to achieve improved performance in in-
trusion detection employing machine learning methods. For
instance, the 2015 study reported detection rates of 81.2% for
intrusion detection and 79.9% for attack type classification
tasks [27]. Six years later, in authors [28] demonstrated signifi-
cant advancements by employing recursive feature elimination
to select optimal features and using deep neural networks
(DNN) and recurrent neural networks (RNN) for classification.
This approach achieved a detection accuracy of 94%. DNN
was applied for binary classification (normal vs. attack), while
RNN was utilized for multi-class classification (Normal, DoS,
Probe, R2L, U2R).

In [29] the authors point out the problem of high false posi-
tive rates when using anomaly-based models. Anomaly-based

models classify an unobservable pattern as a hazard, where
it may be normal, but is not included in the training dataset.
The result is an over-fitting model lacking the generalization
feature. The authors suggest using a deep model instead of
traditional models because it can be generalized more easily.
Big data and deep models resulted in a lower percentage of
false-positive trials. Experiments conducted on the NSL-KDD
benchmark using deep learning instead of traditional learning
show a 10% lower percentage of false positives,

The authors used a different approach in [30], their method
is to test for significance using eXplainable Artificial Intelli-
gence (XAI) and, along with a confidence measure, identify
detections that are more likely to be false. The authors showed
that using the LYCOS-IDS2017 dataset, it is possible to
eliminate more than 65% of all false alarms, with a loss of only
0.38% of true alarms. Conversely, using only the confidence
measure, the elimination of false positives is about 50%, with
a loss of 0.42% of true positives.

Although the studies reviewed provided valuable informa-
tion and showed high accuracy rates, most prioritized detection
accuracy, the topic of false alarms is far less frequently
addressed. It is an ongoing problem in real systems. High
false positive rates can overwhelm security analysts, poten-
tially delaying responses to genuine threats. In addition, the
reviewed studies predominantly relied on individual models
rather than integrating multiple approaches, leaving room
for improvement in the development of robust and versatile
intrusion detection systems. In our work we use predefined
training and test sets to ensure a fair and realistic evaluation
of the performance of our models.

A. Article Contribution

Previous studies have demonstrated the potential of ma-
chine learning methods in intrusion detection using the CIC-
IDS2017 and NSL-KDD datasets; however, they mainly fo-
cused on achieving high detection accuracy without adequately
addressing critical limitations, such as managing false positive
rates and exploring approaches more complex than evaluating
different machine learning methods.

Our research seeks to address these gaps by proposing
an ensemble learning approach that combines the strengths
of Isolation Forest, XGBoost, and Support Vector Machines
(SVM). This method aims to reduce false positives while
maintaining or exceeding the high accuracy benchmarks set
by previous studies. By integrating diverse machine learning
techniques, our approach not only enhances precision and
recall, but also ensures a more balanced and reliable intrusion
detection system capable of real-world deployment.

We will evaluate our ensemble model in two scenarios:
the first involves training on labeled data with both normal
flow and attack samples, while the second uses only normal
flow data without labels. This second case reflects real-world
situations where labeled attack data may be unavailable, chal-
lenging the model to identify anomalies effectively.
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III. METHODOLOGY

A. Datasets analisys

In this paper, we present the results of our experiments,
which evaluate the effectiveness of this approach using two
popular datasets: NSL-KDD1 and CIC-IDS20172. These data
sets provide diverse representations of network traffic, includ-
ing both normal and anomalous activity, enabling a compre-
hensive evaluation of the proposed method.

1) NSL-KDD dataset: The NSL-KDD dataset is a widely
used benchmark dataset for intrusion detection research. It
was created as an improved version of the original KDD Cup
1999 dataset, which has been one of the most commonly used
datasets in the field of cybersecurity. It consists of two datasets:
KDDTrain+ and KDDTest+. We used KDDTrain+ to train
our models and evaluated them on KDDTest+. Both datasets
together consist of 148517 rows and 43 features.

2) CIC-IDS2017 dataset: The CIC-IDS2017 dataset is a
comprehensive dataset designed for research in intrusion de-
tection and cybersecurity. It was created by the Canadian
Institute for Cybersecurity (CIC) and is widely used to eval-
uate the performance of intrusion detection systems (IDS) in
detecting modern network attacks. The entire CIC-IDS2017
dataset consists of eight smaller subsets, each containing data
collected over different days and at various times. In our
research, we combined all subsets, and after preprocessing and
feature engineering we split it into train, and test datasets in
ratio 70:30.

B. Data preprocessing

In the process of preparing the dataset for network traffic
analysis, we undertook several critical data cleaning and
preprocessing steps. These measures ensured the integrity,
consistency, and suitability of the data for subsequent machine
learning and statistical analyses. Below, we detail the specific
actions carried out during this phase.

1) Duplicates removal: We identified and removed dupli-
cate records from the dataset to enhance its integrity and
reduce redundancy. Duplicate rows, if left unaddressed, could
have biased the analysis by overrepresenting specific patterns
in the data. This could lead to inflated importance of repeated
observations and inaccurate modeling outcomes. By eliminat-
ing duplicates, we ensured that the dataset more accurately
represented the underlying patterns of network traffic, provid-
ing a clean and streamlined foundation for analysis.

2) Handling missing values: To address missing values,
we carefully examined the dataset and identified key features,
which contained gaps. Missing data, if not handled, can disrupt
machine learning algorithms and distort statistical analyses.
We replaced these missing values with the median of their
respective columns. Alternatively, we also conducted tests
by removing the missing data, and the results were almost
identical.

1https://www.kaggle.com/datasets/hassan06/nslkdd
2https://www.kaggle.com/datasets/chethuhn/network-intrusion-dataset

3) Handling infinite values: During the inspection of nu-
merical features, we encountered infinite and undefined values,
which could have disrupted calculations and caused instability
in machine learning models. These values were replaced with
placeholders to signify missing data. Subsequently, appropriate
measures, such as imputation with the median, were applied
to restore meaningful values. This ensured that all numerical
features were numerically stable and ready for further process-
ing. This step was crucial in creating a dataset that was both
reliable and computationally manageable.

4) Balance of classes: The same preprocessing techniques
were used for both datasets. To adapt the them for binary
classification, we re-labeled all entries originally categorized
as attacks into a single ,,attack” class, while the ’normal’ labels
were left unchanged. The next step involved evaluating the
balance of classes within the datasets to ensure an appropriate
distribution for binary classification. The results have been
shown on the images 1 and 2. Due to the poorer class balance
in CIC-IDS2017, training in this data set presents a greater
challenge. However, NSL-KDD is much better balanced. Sub-
sequently, we used one-hot encoding for categorical features
and scaled numeric features. Additionally we changed text
labels to 1 for ,,normal” class and 0 for ,,attack” class.

Fig. 1. Class distribution in CIC-IDS2017 dataset

Fig. 2. Class distribution in NSL-KDD dataset

5) Correlation: Analyzing feature correlations was a key
step in understanding the relationships between variables and
selecting the most relevant predictors for attack detection. We
constructed a correlation matrix to measure the strength and
direction of linear relationships between numerical features.

https://www.kaggle.com/datasets/hassan06/nslkdd
https://www.kaggle.com/datasets/chethuhn/network-intrusion-dataset
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Features with strong positive or negative correlations with the
target variable were highlighted as potential predictors. These
features are likely to have a significant impact on the detection
and classification of attacks.

C. Feature engineering

For both datasets, we used Principal Component Analysis
(PCA) to select the best features for model training. Di-
mensionality reduction was a key step in preprocessing the
dataset, aimed at improving computational efficiency and en-
hancing model performance. With a high-dimensional dataset,
the risk of overfitting and computational challenges increases
significantly. To address this, we employed Incremental Prin-
cipal Component Analysis (IncrementalPCA) to reduce the
dimensionality of the feature set while retaining as much
relevant information as possible. PCA is a linear algebra-based
method aimed at transforming the original features into a new
coordinate system, referred to as principal components. These
principal components are linear combinations of the input
variables, capturing the maximum variance in the data. The
variance of each subsequent component decreases, meaning
that the first principal component contains the most informa-
tion about the data’s variability.

Advantages:
• Memory efficiency: By processing data in batches, IPCA

requires minimal RAM usage, as only the current data
batch and the result matrix are stored at any given time.

• Suitability for Large Datasets: IPCA enables the anal-
ysis of datasets too large to be loaded into memory all at
once.

• Scalability: The algorithm can easily adapt to streaming
data analysis, where data arrives continuously.

Disadvantages:
• Approximate results: IPCA results may be less accurate

than those of classical PCA, as the covariance matrix is
updated iteratively rather than computed for the entire
dataset simultaneously.

• Dependency on batch size: Choosing a batch size that is
too small may increase computation time, while a batch
size that is too large can lead to memory issues.

• Limited parameter modification: During the algo-
rithm’s execution, it is not easy to adjust the number
of principal components or the batch size. We used grid
search to find the parameters of the best models for the
validation set. The F1-score was employed as the primary
selection criterion, as it provides a balanced measure of
precision and recall.

D. Applied machine learning methods

The core of our approach lies in ensemble learning, wherein
we integrate predictions from multiple models. Specifically,
we employ Isolation Forest, XGBoost, and Support Vector
Machines (SVM) due to their complementary strengths in
detecting anomalies and classifying network activity. The
ensemble decision process is based on a majority vote: an
instance is labeled as anomalous only if at least two out

of the three models classify it as such. In addition to using
Isolation Forest and XGBoost, our ensemble learning approach
also incorporates Autoencoders for anomaly detection. Au-
toencoders are a type of neural network architecture designed
for unsupervised learning. They consist of an encoder and a
decoder: the encoder compresses the input data into a lower-
dimensional representation, while the decoder reconstructs the
data back to its original form. The network is trained to
minimize the reconstruction error, and data points with high
reconstruction error are flagged as anomalies. By utilizing
Autoencoders, we can capture complex, non-linear patterns
in the data that other models might miss. Isolation Forest, on
the other hand, is a tree-based anomaly detection algorithm. It
isolates anomalies by recursively partitioning the data using
randomly selected features. Since anomalies are fewer and
different from normal data points, they are easier to isolate
in fewer splits. The algorithm assigns an anomaly score based
on the number of splits required to isolate a data point.

The combination of these models — Isolation Forest for
tree-based anomaly detection, Autoencoders for capturing non-
linear patterns, and XGBoost for classification — providdo-
daes a robust ensemble that leverages the strengths of each
model. The ensemble decision process, as mentioned earlier, is
based on a majority vote, ensuring that an instance is classified
as anomalous only if at least two out of the three models
classify it as such. This reduces false positives and enhances
the overall detection accuracy

E. Hyperparameters calibration

Hyperparameter optimization for each model was performed
using grid search and cross-validation on the training sets of
both datasets. Model-specific configuration details, including
contamination rates for Isolation Forest and size of Autoen-
coder, will be reported in subsequent sections. Hyperparameter
optimization for Isolation Forest and Autoencoder was per-
formed using grid search and cross-validation on the training
sets.

Isolation Forest: The optimized key parameters include the
contamination rate (proportion of anomalies in the dataset)
and the number of estimators (trees in the forest). The optimal
configuration ensures a balance between detection sensitivity
and false positives.

Autoencoder: The architecture was fine-tuned by varying the
number of layers, neurons per layer, and activation functions.
Furthermore, the learning rate and batch size were optimized
to achieve minimal reconstruction error during training.

F. Full research procedure

Our experimental procedure involves the following steps:
• Training individual models on the preprocessed NSL-

KDD and CIC-IDS2017 training sets.
• Evaluating individual model performance on the respec-

tive test sets to establish baselines.
• Combining predictions using the ensemble voting mecha-

nism and evaluating integrated performance. majority vot-
ing refereed to as hard voting was employed to aggregate
the predictions of individual classifiers.
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• Analyzing results based on metrics such as accuracy,
precision, recall, F1-score, and false positive rate.

Moreover, we also conducted a more realistic study, which
means that we trained the models exclusively on data originat-
ing from normal traffic. In this scenario, we selected only data
labeled as ,,normal” for training set, and evaluated models on
the original test set with both ,,normal” and ,,attack” instances.
Apart from this modification, in this section, we followed the
procedures outlined above.

IV. RESULTS

This section presents the results obtained from training dif-
ferent anomaly detection models on two datasets: NSL-KDD
and CIC-IDS2017. The evaluated models include Isolation
Forest (IF), Autoencoder (AE), a hybrid model combining
IF and AE, XGBoost, and a Voting Classifier. We report
the confusion matrices and key performance metrics for each
model.

A. Training on full datasets

In this scenario, models were trained on the entire dataset,
containing both normal and attack traffic. This setup allows
models to learn patterns from both classes and assess their
performance on detecting intrusions.

1) NSL-KDD:

BEST MODEL-SPECIFIC CONFIGURATION DETAILS

• Isolation Forest:
– Contamination Rate: 5.0%
– Autoencoder Size: N/A
– Filters: N/A
– Other Parameters: n estimators: 100

• Autoencoder:
– Contamination Rate: N/A
– Autoencoder Size: 128-64-32-64-128
– Filters: N/A
– Other Parameters: N/A

• Hybrid Model (IF + AE):
– Contamination Rate: 10.0%
– Autoencoder Size: 128-64-32-64-128
– Filters: N/A
– Other Parameters: n estimators: 100

• XGBoost:
– Contamination Rate: N/A
– Autoencoder Size: N/A
– Filters: Max Depth: 10, Learning Rate: 0.1
– Other Parameters: n estimators: 100, eta: 0.05,

objective: reg:tweedie

TABLE I
PERFORMANCE COMPARISON OF ANOMALY DETECTION MODELS

TRAINED ON NSL-KDD DATASET BASED ON CONFUSION MATRIX,
ACCURACY, AND FALSE POSITIVES

Model Confusion Matrix Accuracy FP

XGBoost
[
11784 1049
3005 6706

]
0.82 3005

Isolation Forest
[
9003 3830
816 8895

]
0.79 816

Autoencoder
[
8820 4013
436 9275

]
0.80 436

Voting Classifier
[
4102 8731
128 9583

]
0.61 128

2) CIC-IDS2017:

BEST MODEL-SPECIFIC CONFIGURATION DETAILS

• Isolation Forest:
– Contamination Rate: 16.8%
– Autoencoder Size: N/A
– Filters: N/A
– Other Parameters: n estimators: 200

• Autoencoder:
– Contamination Rate: N/A
– Autoencoder Size: 128-64-32-64-128
– Filters: N/A
– Other Parameters: N/A

• Hybrid Model (IF + AE):
– Contamination Rate: 10.0%
– Autoencoder Size: 128-64-32-64-128
– Filters: N/A
– Other Parameters: n estimators: 100

• XGBoost:
– Contamination Rate: N/A
– Autoencoder Size: N/A
– Filters: Max Depth: 6, Learning Rate: 0.1
– Other Parameters: n estimators: 100, eta: 0.05,

objective: reg:tweedie

TABLE II
PERFORMANCE COMPARISON OF ANOMALY DETECTION MODELS

TRAINED ON FULL CIC-IDS2017 DATASET BASED ON CONFUSION
MATRIX, ACCURACY, AND FALSE POSITIVES

Model Confusion Matrix Accuracy FP

XGBoost
[
126487 1276

39 627691

]
0.9979 39

Isolation Forest
(trained on

ATTACK + BENIGN)

[
19957 107805
109842 519977

]
0.6884 109842

Autoencoder
[
112038 15825
74961 554981

]
0.8796 74961

Voting Classifier
[
96021 31742
9514 619432

]
0.9321 9514

For the NSL-KDD dataset, XGBoost achieved the highest
overall accuracy at 82%, albeit with a relatively high false pos-
itive count (FP = 3005). The Autoencoder model demonstrated
a balanced performance, yielding an accuracy of 80% and the
lowest false positive rate (FP = 436), indicating strong dis-
criminatory capability. Isolation Forest attained a comparable
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accuracy of 79%, with a slightly higher false positive rate (FP
= 816). The Voting Classifier, while maintaining a low false
positive count (FP = 128), suffered from reduced accuracy
(61%), suggesting limited effectiveness in this context.

On the CIC-IDS2017 dataset, XGBoost significantly out-
performed the other models, achieving near-perfect accuracy
(99%) and a negligible false positive rate (FP = 39). In
contrast, Isolation Forest and Autoencoder models exhibited
lower accuracy (69% and 88%, respectively) and high false
positive rates (FP = 109842 and FP = 74961, respectively).
In contrast to the previous dataset, Voting Classifier showed
a performance of 93% and a false positive rate (FP = 9514).
This is worse than XGBoost, but better than Isolation Forest
and Autoencoder.

Overall, the results indicate that XGBoost consistently pro-
vides better performance in both data sets, particularly evident
in the second set where it was better at both accuracy and false
positive rates.

The use of a voting classifier in the first data set improved
the false positive rate at the expense of the accuracy. In the
second data set, the voting classifier is clearly worse than
XGBoost and better than Isolation Forest and Autoencoder.

The use of the XGBoost classifier is not always possible,
as it requires labeled data, which is not always available in
real-world conditions. Typically, attack data is not known, so
the use of XGBoost is limited. Results for a situation in which
normal traffic is available are presented in the next subsection.

B. Training on normal activity

In this experiment, models were trained only on normal
traffic data, without exposure to attack patterns during train-
ing. This setup tests their ability to detect anomalies in an
unsupervised manner.

1) NSL-KDD:

BEST MODEL-SPECIFIC CONFIGURATION DETAILS

• Isolation Forest:
– Contamination Rate: 3.0%
– Autoencoder Size: N/A
– Filters: N/A
– Other Parameters: n estimators: 100

• Autoencoder:
– Contamination Rate: N/A
– Autoencoder Size: 128-64-32-64-128
– Filters: N/A
– Other Parameters: N/A

• Hybrid Model (IF + AE):
– Contamination Rate: 5.0%
– Autoencoder Size: 128-64-32-64-128
– Filters: N/A
– Other Parameters: n estimators: 100

TABLE III
PERFORMANCE COMPARISON OF ANOMALY DETECTION MODELS

TRAINED ON NORMAL ACTIVITY FROM NSL-KDD DATASET BASED ON
CONFUSION MATRIX, ACCURACY, AND FALSE POSITIVES

Model Confusion Matrix Accuracy FP

Isolation Forest
[
5381 7452
336 9375

]
0.66 336

Autoencoder
[
9029 3804
533 9178

]
0.81 533

Voting Classifier
[
5381 7452
36 9675

]
0.67 36

2) CIC-IDS 2017:

BEST MODEL-SPECIFIC CONFIGURATION DETAILS

• Isolation Forest:
– Contamination Rate: 16.8%
– Autoencoder Size: N/A
– Filters: N/A
– Other Parameters: n estimators: 200

• Autoencoder:
– Contamination Rate: N/A
– Autoencoder Size: 128-64-32-64-128
– Filters: N/A
– Other Parameters: N/A

• Hybrid Model (IF + AE):
– Contamination Rate: 5.0%
– Autoencoder Size: 1024-512-256-128-64-128-256-

512-1024
– Filters: N/A
– Other Parameters: n estimators: 100

TABLE IV
PERFORMANCE COMPARISON OF ANOMALY DETECTION MODELS

TRAINED ON NORMAL ACTIVITY FROM CIC-IDS2017 DATASET BASED ON
CONFUSION MATRIX, ACCURACY, AND FALSE POSITIVES

Model Confusion Matrix Accuracy FP

Isolation Forest
[
125266 2497
553795 75151

]
0.26 553795

Autoencoder
[
114986 12777
62895 566051

]
0.90 62895

Voting Classifier
[
98446 29317
5180 623766

]
0.95 5180

For the NSL-KDD dataset, the Autoencoder achieved the
highest accuracy (0.81), albeit with a moderate false positive
rate (FP = 533). The Voting Classifier reported the lowest false
positive rate (FP = 36), but exhibited slightly lower accuracy
(0.67). Isolation Forest showed limited performance with the
lowest accuracy (0.66), though its false positive count (FP =
336) remained moderate.

In the case of the CIC-IDS2017 dataset, the Voting Classi-
fier yielded the best overall performance, attaining the highest
accuracy (0.95) and the lowest false positive rate (FP = 5180).
The Autoencoder followed with a strong accuracy of 0.90 and
an FP count of 62895. Isolation Forest lagged behind in both
accuracy (0.26) and false positive performance (FP = 553795).

These results demonstrate that, in unsupervised scenarios,
the Autoencoder and Voting Classifier consistently outperform
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Isolation Forest across both datasets. The Voting Classifier, in
particular, proves highly effective on CIC-IDS2017, while the
Autoencoder shows a balanced performance on both datasets.

V. CONCLUSIONS

Our main goal was to reduce the number of false alarms.
Based on the results presented, we can draw the following
conclusions about performance in various training scenarios.

XGBoost outperforms other models, especially when train-
ing on a full dataset or on normal activity. Its tunability
and ability to handle complex function interactions make it a
good choice. However, this method has by far the most false
positives for the first dataset, which plays a key role in our
case. The second limiting factor in using XGBoost is the need
for labeled data, which is very rare in real-world use

Autoencoders are competitive in terms of accuracy, with
a much lower rate of false positives, but their effectiveness
depends on proper architecture design and hyperparameter
tuning, which takes time. In the examples studied, the results
obtained by Autoencoders were better than those obtained
by Isolation Forest. Autoencoders are particularly effective
at anomaly detection because they learn to compress and
reconstruct data in a way that best represents typical, frequent
patterns. When trained on normal data, the model reconstructs
well only those cases that are close to the training set, while
outliers (anomalies) result in a much higher reconstruction
error. This allows autoencoders to detect abnormal events
without having to manually flag anomalies, making them
particularly useful for unsupervised applications.

Isolation Forest struggles with unbalanced data sets and
performs worse when trained only on normal activity. This
is particularly evident with the second data set. Research
confirms that despite its effectiveness and simplicity, Isolation
Forests have some limitations in anomaly detection. Reserch
First of all, they assume that anomalies are rare and easy
to isolate, which can lead to errors with complex, high-
dimensional data, where the boundaries between normal and
anomalous classes are less clear. In addition, the method
can have difficulty detecting contextual anomalies that are
abnormal only under specific conditions, rather than globally.
Isolation forests are also sensitive to the scale of the data, so
they require careful normalization, and their performance can
deteriorate when the data contain large amounts of noise or
are unevenly dispersed in feature space.

A voting classifier helps increase classification accuracy by
combining the decisions of several different models, leading
to better generalizability and reducing the risk of overfitting.
This makes the system more resilient to the errors of single
classifiers, since the final decision is based on a majority
of votes. It also allows flexible combining of different types
of models to take advantage of their individual strengths. A
particularly positive effect observed was a significant reduction
in false positives which is highly desirable in real-world
applications.

ACKNOWLEDGMENT

The authors would like to thank experts for their appropriate
and constructive suggestions to improve this template.

REFERENCES

[1] N. Chowdhury and V. Gkioulos, “Cyber security training for
critical infrastructure protection: A literature review,” Computer
Science Review, vol. 40, p. 100361, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013721000010

[2] A. J. Field, “French optical telegraphy, 1793-1855: Hardware, software,
administration,” Technology and Culture, vol. 35, no. 2, pp. 315–347,
1994. [Online]. Available: http://www.jstor.org/stable/3106304

[3] I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, “Comprehensive
survey of image steganography: Techniques, evaluations, and trends
in future research,” Neurocomputing, vol. 335, pp. 299–326, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231218312591

[4] G. S. Smith, “Recognizing and preparing loss estimates from cyber-
attacks,” Inf. Secur. J. A Glob. Perspect., vol. 12, no. 6, pp. 46–57,
2004.

[5] T. Yadav and A. M. Rao, “Technical aspects of cyber kill chain,”
in Security in Computing and Communications: Third International
Symposium, SSCC 2015, Kochi, India, August 10-13, 2015. Proceedings
3. Springer, 2015, pp. 438–452.

[6] T. J. Holt and M. Kilger, “Examining willingness to attack critical
infrastructure online and offline,” Crime & Delinquency, vol. 58, no. 5,
pp. 798–822, 2012.

[7] D. Kushner, “The real story of stuxnet,” ieee Spectrum, vol. 50, no. 3,
pp. 48–53, 2013.

[8] R. Khan, P. Maynard, K. McLaughlin, D. Laverty, and S. Sezer, “Threat
analysis of blackenergy malware for synchrophasor based real-time
control and monitoring in smart grid,” in 4th International Symposium
for ICS & SCADA Cyber Security Research 2016. BCS, 2016, pp.
53–63.

[9] S. Mohurle and M. Patil, “A brief study of wannacry threat: Ransomware
attack 2017,” International journal of advanced research in computer
science, vol. 8, no. 5, pp. 1938–1940, 2017.

[10] S. Y. A. Fayi, “What petya/notpetya ransomware is and what its
remidiations are,” in Information technology-new generations: 15th
international conference on information technology. Springer, 2018,
pp. 93–100.

[11] J. Beerman, D. Berent, Z. Falter, and S. Bhunia, “A review of colonial
pipeline ransomware attack,” in 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing Workshops (CC-
GridW). IEEE, 2023, pp. 8–15.

[12] R. Alkhadra, J. Abuzaid, M. AlShammari, and N. Mohammad, “Solar
winds hack: In-depth analysis and countermeasures,” in 2021 12th In-
ternational Conference on Computing Communication and Networking
Technologies (ICCCNT). IEEE, 2021, pp. 1–7.

[13] S. Leppänen, S. Ahmed, and R. Granqvist, “Cyber security incident
report—norsk hydro,” Procedia Economics and Finance, vol. 11, 2019.

[14] J. Cervini, A. Rubin, and L. Watkins, “Don’t drink the cyber: Extrap-
olating the possibilities of oldsmar’s water treatment cyberattack,” in
International conference on cyber warfare and security, vol. 17, no. 1.
Academic Conferences International Limited, 2022, pp. 19–25.

[15] M. R. Gauthama Raman, C. M. Ahmed, and A. Mathur, “Machine
learning for intrusion detection in industrial control systems: Challenges
and lessons from experimental evaluation,” Facebook AI research,
2021. [Online]. Available: https://doi.org/10.1186/s42400-021-00095-5

[16] J. Lo, Whitelisting for Cyber Security: What It Means for Consumers.
Public Interest Advocacy Centre, 2011.

[17] N. Pureti, “Firewalls explained: The first line of defense in cybersecu-
rity,” Revista de Inteligencia Artificial en Medicina, vol. 15, no. 1, pp.
60–86, 2024.

[18] M. Plachkinova and K. Knapp, “Least privilege across people, process,
and technology: Endpoint security framework,” Journal of Computer
Information Systems, vol. 63, no. 5, pp. 1153–1165, 2023.

[19] K. Thakur, M. L. Ali, S. Kopecky, A. Kamruzzaman, and L. Tao,
“Connectivity, traffic flow and applied statistics in cyber security,” in
2016 IEEE International Conference on Smart Cloud (SmartCloud).
IEEE, 2016, pp. 295–300.

[20] J. Bharadiya, “Machine learning in cybersecurity: Techniques and chal-
lenges,” European Journal of Technology, vol. 7, no. 2, pp. 1–14, 2023.

[21] G. A. Pimenta Rodrigues, R. de Oliveira Albuquerque, F. E. Gomes de
Deus, R. T. de Sousa Jr, G. A. de Oliveira Júnior, L. J. Garcia Villalba,
and T.-H. Kim, “Cybersecurity and network forensics: Analysis of
malicious traffic towards a honeynet with deep packet inspection,”
Applied Sciences, vol. 7, no. 10, p. 1082, 2017.

https://www.sciencedirect.com/science/article/pii/S1574013721000010
http://www.jstor.org/stable/3106304
https://www.sciencedirect.com/science/article/pii/S0925231218312591
https://www.sciencedirect.com/science/article/pii/S0925231218312591
https://doi.org/10.1186/s42400-021-00095-5


8 M. KACZMARCZYK et al.

[22] M. Sourour, B. Adel, and A. Tarek, “Environmental awareness intrusion
detection and prevention system toward reducing false positives and false
negatives,” in 2009 IEEE Symposium on Computational Intelligence in
Cyber Security. IEEE, 2009, pp. 107–114.

[23] Z. Pelletier and M. Uryasev, Abualkibash, “Evaluating the cic
ids-2017 dataset using machine learning methods and creating
multiple predictive models in the statistical computing language r,”
International Research Journal of Advanced Engineering and Science,
2020. [Online]. Available: https://irjaes.com/wp-content/uploads/2020/
10/IRJAES-V5N2P184Y20.pdf

[24] J. Jinsi, “Deep learning algorithms for intrusion detection systems
in internet of things using cic-ids 2017 dataset,” International
Journal of Electrical and Computer Engineering, 2023. [Online].
Available: https://www.researchgate.net/publication/367762160 Deep
learning algorithms for intrusion detection systems in internet of
things using CIC-IDS 2017 dataset

[25] A. Yulianto, N. Suwestika, and P. Sukarno, “Improving
adaboost-based intrusion detection system (ids) performance on
cic ids 2017 dataset,” Journal of Physics Conference Series,
2019. [Online]. Available: https://www.researchgate.net/publication/
333169769 Improving AdaBoost-based Intrusion Detection System
IDS Performance on CIC IDS 2017 Dataset

[26] O. O. Oluwakemi and U. A. Muhammad, “Comparative evaluation
of machine learning algorithms for intrusion detection,” Asian
Journal of Research in Computer Science, 2023. [Online]. Available:
https://www.researchgate.net/publication/374056114 Comparative
Evaluation of Machine Learning Algorithms for Intrusion Detection

[27] B. Ingre and A. Yadav, “Performance analysis of nsl-kdd dataset
using ann,” in 2015 International Conference on Signal Processing
and Communication Engineering Systems, 2015, pp. 92–96. [Online].
Available: https://ieeexplore.ieee.org/document/7058223

[28] E. Gbashi and B. Mohammed, “Intrusion detection system for
nsl-kdd dataset based on deep learning and recursive feature
elimination,” Engineering and Technology Journal, vol. Vol. 39
No. 7 (2021): Engineering & Science Issue /, 09 2021. [Online].
Available: https://www.researchgate.net/publication/354523827
Intrusion Detection System for NSL-KDD Dataset Based on Deep
Learning and Recursive Feature Elimination

[29] K. Al Jallad, M. Aljnidi, and M. S. Desouki, “Anomaly detection
optimization using big data and deep learning to reduce false-positive,”
Journal of Big Data, vol. 7, pp. 1–12, 2020.

[30] R. da Silveira Lopes, J. C. Duarte, and R. R. Goldschmidt, “False
positive identification in intrusion detection using xai,” IEEE Latin
America Transactions, vol. 21, no. 6, pp. 745–751, 2023.

https://irjaes.com/wp-content/uploads/2020/10/IRJAES-V5N2P184Y20.pdf
https://irjaes.com/wp-content/uploads/2020/10/IRJAES-V5N2P184Y20.pdf
https://www.researchgate.net/publication/367762160_Deep_learning_algorithms_for_intrusion_detection_systems_in_internet_of_things_using_CIC-IDS_2017_dataset
https://www.researchgate.net/publication/367762160_Deep_learning_algorithms_for_intrusion_detection_systems_in_internet_of_things_using_CIC-IDS_2017_dataset
https://www.researchgate.net/publication/367762160_Deep_learning_algorithms_for_intrusion_detection_systems_in_internet_of_things_using_CIC-IDS_2017_dataset
https://www.researchgate.net/publication/333169769_Improving_AdaBoost-based_Intrusion_Detection_System_IDS_Performance_on_CIC_IDS_2017_Dataset
https://www.researchgate.net/publication/333169769_Improving_AdaBoost-based_Intrusion_Detection_System_IDS_Performance_on_CIC_IDS_2017_Dataset
https://www.researchgate.net/publication/333169769_Improving_AdaBoost-based_Intrusion_Detection_System_IDS_Performance_on_CIC_IDS_2017_Dataset
https://www.researchgate.net/publication/374056114_Comparative_Evaluation_of_Machine_Learning_Algorithms_for_Intrusion_Detection
https://www.researchgate.net/publication/374056114_Comparative_Evaluation_of_Machine_Learning_Algorithms_for_Intrusion_Detection
https://ieeexplore.ieee.org/document/7058223
https://www.researchgate.net/publication/354523827_Intrusion_Detection_System_for_NSL-KDD_Dataset_Based_on_Deep_Learning_and_Recursive_Feature_Elimination
https://www.researchgate.net/publication/354523827_Intrusion_Detection_System_for_NSL-KDD_Dataset_Based_on_Deep_Learning_and_Recursive_Feature_Elimination
https://www.researchgate.net/publication/354523827_Intrusion_Detection_System_for_NSL-KDD_Dataset_Based_on_Deep_Learning_and_Recursive_Feature_Elimination

	Introduction
	Related work
	Article Contribution

	Methodology
	Datasets analisys
	NSL-KDD dataset
	CIC-IDS2017 dataset

	Data preprocessing
	Duplicates removal
	Handling missing values
	Handling infinite values
	Balance of classes
	Correlation

	Feature engineering
	Applied machine learning methods
	Hyperparameters calibration
	Full research procedure

	Results
	Training on full datasets
	NSL-KDD
	CIC-IDS2017

	Training on normal activity
	NSL-KDD
	CIC-IDS 2017


	Conclusions
	References

