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Optimal Thermal Placement of Electronic
Functional Blocks Using Symbolic algebra.
A new Application of Groebner Analysis

Gilbert De Mey, Andrzej Kos, Adam Miszczak, and Alexis De Vos

Abstract—The paper presents a new idea and algorithm for
arranging topography of functional blocks (hereinafter referred to
as components) on an integrated circuit substrate, e.g. a digital
processor, power circuit etc., in such a way as to minimize the
mutual thermal interactions of individual components. Our
analytical method finds the global optimum, which distinguishes it
from numerical methods that can only find local minima. This
leads to uniform temperature distribution, and therefore full use
of the thermal properties of the electronic system, minimizing the
maximum temperature on the substrate, and consequently allows
for increasing the throughput. Presented approach is universal and
allows for solving many similar global minimum search problems.

Keywords—analytical optimization; arrangement of functional
blocks on integrated circuit substrate; reduction of maximum
temperature of integrated circuit

I. INTRODUCTION

UR analytical method finds the global optimum, which

distinguishes it from numerical methods that can only find
local minimums. It is universal and allows for solving many
similar global minimum search problems. Functional blocks of
integrated circuits that dissipate a significant amount of heat,
hereinafter referred to as components, must be placed on a
substrate with good thermal conductivity, e.g., silicon, ceramic,
sapphire or other, in such a way that the electrical connections
are as short as possible, which ensures the appropriate speed of
data processing. However, reducing the distance between power
components leads to parasitic thermal coupling. Therefore, the
trade-off must be considered when designing the IC layout. The
optimal arrangement of power components leads to the
minimization of the temperature on the substrate. It ensures that
the maximum temperature on the substrate is minimized as
much as possible under the given conditions [1,2] and at the
same time the shortest possible delay times between the
different components are achieved. In the case of a component
with a certain amount of power dissipation, other criteria, such
as heat transfer through the substrate, also play a role. In this
paper, we focus on the optimal layout of components from the
thermal perspective i.e., minimizing the temperature of each
component while taking into account the geometric conditions
of the substrate and the power dissipated in the individual
components. Fig. 1 shows an example arrangement of the
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components dissipating heat on the substrate. One observes that
placement has a major influence on the temperature distribution.
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Fig.1. Exemplary placement of components dissipating different power [2]
We consider components with varying power dissipation that

cannot be cooled by powerful cooling systems (e.g., thermal

Peltier pumps, forced convection by a fan, etc.). Most often, the
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cooling path is the substrate itself. However, additional cooling
layers such as aluminum, copper, or ceramics that have good
thermal conductivity can be very helpful from this point of view.

It has been pointed out that the substrate is not only used to
guarantee the electric interconnections between the components
but also serves as a cooling fin. If two or more power
components are located on one substrate they should be put as
far away from each other. Neither they should be placed close
to the boundary. This guarantees that each power component
has a certain part of the substrate available for its heat removal.

This problem has been attacked by several authors [1-10].
Most techniques used the numerical extremisation of a cost
function in order to find the optimal placement of the
components.

One disadvantage of a pure numerical method is that in most
cases only one solution is obtained. Although these problems
are nonlinear and should provide several solutions. If a solution
has been obtained numerically, one is never sure that other
possible solutions might be better ones. In this paper the
minimization of the cost function is done using symbolic
algebra techniques. One has to limit oneself to cost functions
which be written as simple functions involving polynomials in
xi and y;, where x; and y; are the coordinates of the middle of i-
th component on the substrate. This allows us to use an
elimination technique called Groebner algebra [11-17]. One
obtains at the end a set of algebraic equations arranged is such a
way all mathematically possible solutions are easily obtained.
For every x; or yi an n-th degree algebraic equation is obtained.
Nowadays simple numerical methods are available to find all n
roots of an algebraic equation.

By combining all possible solutions, one obtains a spectrum
of all the possible placements of power components on a
substrate, each of them corresponding to a local minimum of the
cost function. It is then quite straightforward to find among them
the solution with the most extreme value of the cost function.

Il. BASIC ANALYSIS

The method will be explained with the help of the particular
example shown in Fig.2.

Two components have to be placed on a substrate with
dimensions a and b. If (x1,y1) and (X2,y2) are the coordinates of
the two components, the following cost function C is used:

€ =n[x{(a—x)*yf(b —y)?*] + In[xF(a—
x,)? YZz(b - )’2)2] + In[(x, — x,)? O — J’Z)z] (1)

The terms x;? and (a-x1)? express the distance of the first
component to the boundaries at x=0 and x=a. One can easily
verify that the cost function C increases with x; due to the term
In x:2. Hence, we are looking for a maximum value of the cost
function in this paper. Strictly speaking the logarithmic function
is not necessary to construct the cost function.

The only reason it was introduced was to reduce the overall
computation time for the algebraic manipulations. The term (x;
— X2)? (y1 — y2 ) expresses the "distance" between the two
components. The expression (x1 — X2)2 + (y1 — Y2 )> would be
more justified but gives rise to more complicated algebraic
manipulations afterwards. Again In[(x1 — X2)? (y1 — y2 )?] was
used to reduce the CPU time. The other terms in (1) can be easily
interpreted in a similar way.
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Fig. 2. Two components to be placed on a rectangular substrate

If the second component dissipates more power than the first
one, coefficients can be inserted into (1) in order to stress the
fact that the second component requires more substrate area for
its cooling:

€ =nlxf(a—x)?yf (b—y1)?] +
alnfxf(a—x)?y3 (b —y,)*] + In[(x; — x3)* (y; — y2%;1

where o > 1.

In order to find the optimum value of C, one has to solve the

following set of equations:
9c _ 9c _oc _

=l=2C=0 3)

ax1_ axz_a_h_a_h_

In the next section, it will be shown how all the possible
solutions of a set like (3) can be obtained using the so called
Groebner analysis, developed by Buchberger [14-17]. The
computer algebra software package REDUCE has been used to
which a Groebner analysis package has been added.

Now, most computer algebra software packages offer a
Groebner analysis package.

I1l. GROEBNER ANALYSIS

The Groebner analysis will be outlined in detail for a simple
situation: two components have to be placed on one axis in the
interval [0,1] i.e. a one-dimensional substrate. The cost
function reads:

C =ln(x; —x)? + In[xf (1 — x)?] + In[xF (1 — x2)’]  (4)

The derivative of C with respect to x; turns out to be:
ac 2 n 2 2 2X1 =X+ 2X1X2—-3%% 0

1-x, (x1=2x2)x1(1~x1)
®)

A similar relation is found for the derivative with respect to x,.
Hence, one has to solve following nonlinear algebraic set:
3x2 — 2xyx, — 2%, + X, =0 (6)

aX1 X1—X2 X1

3x2 — 2x%:X, — 2%, + X, =0 @)

This is a 4-th order algebraic set so that 4 solutions are expected.
The principle of the Groebner algebra is quite complicated, but
roughly speaking this analysis gives always an equivalent
algebraic set which is much easier to handle. One could say that
it is some kind of generalised elimination method. The results
are:

x; — 10x3 + 15x3 — 6x, = 0 8)

(5%3 — 5%, + D(x, — Dx,

0 )
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The second equation (9) is a 4th order algebraic equation in x,.
For this particular case the REDUCE software performed
already a factorial decomposition, so that two roots are found by
inspection. But in the most general case, one has to determine
all roots numerically, which is no longer a problem from a
numerical point of view. For each solution x», this value can be
inserted into equation (8) to find the corresponding value Xi.
Therefore, it was shown that using Groebner analysis it is
possible to find all possible solutions. In this simple example,
the calculation can also be performed by hand by simply
subtracting (6) and (7).
It is quite easy to obtain all the solutions of (9):

X, =0;%, = 1; x, =0.7236;%, = 0.2763 (10)
It is clear that the first two solutions x, = 0 and x, = 1 provide
an extremum value for C but not a maximum. Hence, only the
last two solutions of (10) are acceptable from physical point of
view. Inserting the solutions (10) in (8) yield the corresponding
X1 values. An overview is shown in table I.

TABLE |
TwO COMPONENTS ON AN INTERVAL [0,1]

Solution X1 X2 C
(1) 0 0 -0
(2) 1 1 -00
(3) 0.2763 0.7236 -3.4938
(4) 0.7236 0.2763 -3.4938

The corresponding values of the cost function C has been
displayed as well. Strictly speaking only one acceptable solution
is found, the second one being found by interchanging x; and xz,
i.e. the symmetrical solution.

IV. EXAMPLES

A. Two Components on a Line with Different Weight Factors
We consider now the same case as the previous one, but the first
component is dissipating more heat that the other one. Hence a
coefficient =2 is inserted into the cost function:

C=Mmn(y—x)%+2mn[x2(1 —x)?] + In[x2(1 — x,)?]

(11)

The Groebner analysis gives rise to the following polynomial
equations:

5x; — 42x3 + 63x3 — 26x, = 0 (12)

and

(21x2 — 26%, + 4)(x, — Dx, = 0 (13)
The solutions are listed in table 11.

TABLE Il
TWO COMPONENTS ON AN INTERVAL [0,1]. DIFFERENT HEAT DISSIPATION

Solution X1 X2 C
&) 0 0 -0
@ 1 1 -0
?3) 0.6463 0.2560 -4.8213
4 0.3536 0.7439 -4.8213

Again two unacceptable solutions are corresponding to C = -
oo, It is clearly seen that more space is now provided for the first
element. The solution 4 cannot be found from solution 3 by
interchanging the coordinates x; and X.. However both solutions
are equivalent from thermal point of view because they give rise
to the same value of the cost function and symetry, i.e. xi (3)=
(1-x)(4).

B. Three Elements on a Line

If three elements with equal power dissipations are put
one a single line in the interval [0,1], the following cost
function is used:

C =In[(x; — x2)2(x1 - x3)2(x2 - x3)2] + ln[x%(l -

x)?] + In[xf(1 = x2)?] + In[x3 (1 — x3)°] (14)

Extremisation of C gives rise to a 12th order algebraic system.
The Groeber analysis provides the following polynomial

equations:
(1 = x5 = x3) (g — Dxg + 2oxg = (g — x) (g —x3) = 0
(15)
(e + x5 = 2x3) (03 — Dxg + (1 — x3) (X — x3)(2x3 — 1) = 0( )
16
(xp = x3)(7x§ = 7x3+ 1)(4x3 — D(4x3 — 3)(2x3 — 1) (x5 —
1)2x2=0 a7

Remark that the last equation (17) gives all the possible
solutions for the unknown xs.

This time 6 unacceptable solutions are observed. The
remaining ones are permutations so that only one single solution
is found here as shown in table I11.

TABLE Il
THREE COMPONENTS ON AN INTERVAL [0,1]

Solution X1 X2 X3 C
(1) 0.75 0 0 -o0
2 0 0.75 0 -00
(3) 0 0 0.75 -00
@ 0.25 ! ! 0
) 1 0.25 1 .
(6) 1 1 0.25 -0
%) 0.8274 0.1726 0.5 -6.8925
(8) 0.1726 0.8273 0.5 -6.8925
9) 0.8273 0.5 0.1726 -6.8925
(10) 0.1726 0.5 0.8273 -6.8925
(11) 0.5 0.8273 0.1726 -6.8925
(12) 0.5 0.1726 0.8273 -6.8925

C. Two components on a square substrate

If two components with coordinates (x1 , y1) and (X2 , y2) have
to be positioned on a square substrate with unit side length, the
following cost function has been presented:

C=In[(x; = x2)2(v1 — ¥2)°] + Inlxf (1 — x)?yF (1 = y1)?] +
In[xF (1 = x2)%y3 (1 = y2)?] (18)

By minimising the cost functions, one obtains the following
algebraic equations after Groebner analysis:



x; — 10xf 4+ 15x% — 6x, = 0
(B5x2—5x,+1D(x, —Dx, =0

y1 — 10y + 15y5 — 6y, =0

5y =5y, + Dy, — Dy, =0 (19)
The acceptable solutions are shown in table V.
TABLE IV
TWO COMPONENTS ON AN A SQUARE SUBSTRATE
Solution X1 Y1 X2 y2 C
(1) 0.7636 0.7236 0.2763 0.2763 -6.9897
2) 0.2763 0.2763 0.7636 0.7636 -6.9897
(3) 0.2763 0.7636 0.7636 0.2763 -6.9897
(4) 0.7636 0.2763 0.7636 0.2763 -6.9897

The 12 unacceptable solutions have not been included in table
4. Again the 4 solutions are all equivalent, they can be obtained
from each other by simple permutations

D. Two components with different weight factors on a square
substrate

Two different cases will be considered here. In the first one a
coefficient «=2 is inserted in the cost function:

C=lIn[(x; — xz)z(Jﬁ - YZ)Z] +2 ln[x12(1 - x1)ZY12(1 -
y1)?] + In[x5 (1 — x,)%y3 (1 = y,)?] (20)

It is clear from (20) that the first component (x1 ,y1) dissipates
more heat. The acceptable solutions are all listed in table V.

TABLEV
TWO COMPONENTS ON AN A SQUARE SUBSTRATE.
DIFFERENT HEAT DISSIPATION (0.=2)

Solution X1 Y1 x2 Y2 C
1) 0.6463  0.6463  0.2560  0.2560  -9.6426
) 0.3536  0.3536  0.7439  0.7439  -9.6426
(3) 03536  0.6463  0.7439  0.2560  -9.6426
4) 0.6463 0.3536 0.2560 0.7439  -9.6426

Again, the 4 solutions can be derived from each other by a
simple permutation of the coordinates. Thermally speaking,
these 4 solution are equivalent, they all correspond to the same
value of the cost function (-0.964).

By comparing these results with those of example 3, one
obeserves that the first component (x1, y1) is positioned closer to
the centre.

In other words, this component has more space availaible to
release its heat by thermal conduction through the substrate.

In order to see the influence of the power dissipation, a high
value has been used in the second case for the parameter a=10:

C =In[(x; — x2)%(y1 — ¥2)?1 + 10 In[x7 (1 — x,)2y7 (1 —
y1)?1+ In[x3(1 —x,)%y3(1 —y,)*]  (21)

The results are listed in table V1.
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TABLE VI
TWO COMPONENTS ON AN A SQUARE SUBSTRATE.
DIFFERENT HEAT DISSIPATION (a.=10)

Solution X1 Y1 x2 y2 C
1) 0.5394 0.5394 0.2242 0.2242  -29.2347
2) 0.4606 0.4606 0.7758 0.7758  -29.2347
3) 0.4606 0.5394 0.7758 0.2242  -29.2347
(4) 0.5394 0.4606 0.2242 0.7758  -29.2347

It is observed that the hottest component (x1 ,y1) is now almost
positioned in the centre of the substrate. In fig. 3 the first results
of tables IV, V and VI are presented graphically.

(a) (b)

a=1 a=2 a =10

Fig. 3. Two components on a square substrate (1x1). ® = (x1,y1),
° = (x2,y2) with (a) a=1, (b) a=2 and (c) a=10.

One clearly obeserves that in fig.3a both components are
placed symmetrically whereas in fig.3b (e=2) and fig.3c (a=10)
the first component moves towards the centre of the substrate.

It should be noted here that for both cases shown in table V
and table VI again 12 unacceptable solutions corresponding to
C = -0 have been obtained too.

E. Three components on a square substrate

With 3 components on a square substrate, the following cost
function is used:

C=In[(x — x2)% (21 — x3)% (%2 — %3)° (¥ — ¥2)* (1 —

¥3)2 (V2 — ¥3)%] + In[(xy — D*(yy — D*xf yf1+

In[(e, = D?(y, — 1%x% yi1 + In[Ces — 1)*(y3 — D?xF ¥5]
(22)

36 acceptable solutions and 8 unacceptable solutions are
obtained this time. All acceptable solutions give rise to the same
value of the cost function (C = -13.7851). Hence, from thermal
point of view all acceptable solutions can be considered as
equivalent.

In Fig. 4 two typical solutions are presented. Remark again
that all 36 solutions can be derived from each other by
permutations of the coordinates. They all give rise to the same
value of the cost function C=-13.7851.

a) (b

Fig. 4. Two possible solutions for 3 components placed on a square substrate.
(a) and (b) correspond to the same value of the cost function C=-13.7851
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F. Three components on a rectangular substrate with different
heat dissipation

As a final example, 3 components have to be placed on a
rectangular substrate (a=2, b=1). The first component (x1,y1)
dissipates the highest amount of power. The other two have the
same power dissipation. The cost function reads:

C= ln[(x1 - xz)z(x1 - xg)z(xz - x3)2(y1 - Y2)2
01— ¥3)* (2 —¥3)2] + 10 In[(x; — 2)*(yy — 1)%xf y7] +
In[(x; — 2)2(y, — D?x3 y3] + In[(x3 — 2)*(y3 — 1)*x5 3(’%])

23

The Groebner analysis gives rise to 36 acceptable solutions,
6 of them are listed in table 7. This time one gets 3 groups of

solutions corresponding to the obtained C-value. Only the
results (1), (2), (5), (6), (21) and (22) are displayed in table VII.

The first group corresponds to the highest value C = -
19.2037. With the other values obtained for C (-20.1820 and -
21.1604), two sets of 16 solutions are found. The solutions in
each set are all equivalent because the coordinates can be
obtained from each other by permutations or symmetry
operations like mirroring with respect to a central axis e.g.
Strictly speaking only 3 acceptable solutions independent
solutions are found here. This example illustrates very well the
features of our approach: namely that 3 possible solutions are
obtained, each corresponding to another value of the cost
function.

TABLE VII
THREE COMPONENTS ON AN A RECTANGULAR SUBSTRATE.
THE FIRST COMPONENTS DISSIPATES MORE

X1 y1 X2 Y2 X3 Y3 C
(1) 1.0 0.5 1.655 0.827 0.345 0.173  -19.2037
(2) 1.0 0.5 0.345 0.173 1.655 0.827  -19.2037
(5) 1.0 0.413 1.655 0.864 0.345 0.614  -20.1820
(6) 1.0 0.413 0.345 0.614 1.655 0.864  -20.1820
(21) 1.174 0.587 0.771 0.386 0.271 0.136  -21.1604
(22) 1.174 0.587 0.271 0.136 0.771 0.386  -21.1604

In Fig. 5 the solutions labelled 1, 5 and 21 in table VII are
presented graphically. It must be noted again that fig. 5a
corresponds to the highest value of the cost function so that this
is the best solution from a thermal point of view i.e. to put all
the components as far as possible from each other and from the
boundaries.

(a) (h (c)

C'=-21.1604

O

Fig. 5. Three components on a rectangular substrate. * = (x1,Y1), ° = (X2,y2) and
O = (x3,y3). The cost functions are (a) C = -19.2037, (b) C =-20.1820 and (c) C
=-21.1604.

Remark that the most dissipating component is always placed
near the center of the substrate.

V. DISCUSSION

Different authors should discuss the results and how they can
be interpreted from the perspective of previous studies and of
the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future
research directions may also be highlighted.

VI. CONCLUSIONS

The analytical method finds the global optimum, which
distinguishes it from numerical methods that can only find local
minimums. It is universal and allows for solving many similar
global minimum search problems.

The paper presents the optimization of the integrated circuit
layout with regard to the thermal aspect. This means that it is
proposed to arrange the functional blocks on the substrate in
such a way that the mutual thermal interference of the blocks is
minimal. This leads to the minimization of the maximum
substrate temperature, and thus allows for the increase of the
throughput of the considered integrated circuit. The proposed
analytical method, unlike numerical methods, leads to obtaining
a global minimum. The paper presents analytical formulas for
three heat sources. Of course, it is possible to extend it to a larger
number of functional blocks in a similar way. The proposed
method can be useful in the design of integrated circuits, in
which it is important to limit the mutual thermal interactions i.e.,
in the design of systems with significant power dissipation, for
example, the topography of numerical processors.
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