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Abstract—The paper presents a new idea and algorithm for 

arranging topography of functional blocks (hereinafter referred to 

as components) on an integrated circuit substrate, e.g. a digital 

processor, power circuit etc., in such a way as to minimize the 

mutual thermal interactions of individual components. Our 

analytical method finds the global optimum, which distinguishes it 

from numerical methods that can only find local minima. This 

leads to uniform temperature distribution, and therefore full use 

of the thermal properties of the electronic system, minimizing the 

maximum temperature on the substrate, and consequently allows 

for increasing the throughput. Presented approach is universal and 

allows for solving many similar global minimum search problems. 

 

Keywords—analytical optimization; arrangement of functional 

blocks on integrated circuit substrate; reduction of maximum 

temperature of integrated circuit 

 

I. INTRODUCTION 

UR analytical method finds the global optimum, which 

distinguishes it from numerical methods that can only find 

local minimums. It is universal and allows for solving many 

similar global minimum search problems. Functional blocks of 

integrated circuits that dissipate a significant amount of heat, 

hereinafter referred to as components, must be placed on a 

substrate with good thermal conductivity, e.g., silicon, ceramic, 

sapphire or other, in such a way that the electrical connections 

are as short as possible, which ensures the appropriate speed of 

data processing. However, reducing the distance between power 

components leads to parasitic thermal coupling. Therefore, the 

trade-off must be considered when designing the IC layout. The 

optimal arrangement of power components leads to the 

minimization of the temperature on the substrate. It ensures that 

the maximum temperature on the substrate is minimized as 

much as possible under the given conditions [1,2] and at the 

same time the shortest possible delay times between the 

different components are achieved. In the case of a component 

with a certain amount of power dissipation, other criteria, such 

as heat transfer through the substrate, also play a role. In this 

paper, we focus on the optimal layout of components from the 

thermal perspective i.e., minimizing the temperature of each 

component while taking into account the geometric conditions 

of the substrate and the power dissipated in the individual 
components. Fig. 1 shows an example arrangement of the 
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components dissipating heat on the substrate. One observes that 

placement has a major influence on the temperature distribution. 

 

 
Fig.1. Exemplary placement of components dissipating different power [2] 

We consider components with varying power dissipation that 

cannot be cooled by powerful cooling systems (e.g., thermal 

Peltier pumps, forced convection by a fan, etc.). Most often, the 

Third Author is with Technical University of Lodz, Poland (e-mail: 

adam.miszczak@p.lodz.pl). 
 

Optimal Thermal Placement of Electronic 

Functional Blocks Using Symbolic algebra. 

A new Application of Groebner Analysis 
Gilbert De Mey, Andrzej Kos, Adam Miszczak, and Alexis De Vos 

O 

  

  

  

  

https://creativecommons.org/licenses/by/4.0/


2 G. DE MEY, et al. 

 

cooling path is the substrate itself. However, additional cooling 

layers such as aluminum, copper, or ceramics that have good 

thermal conductivity can be very helpful from this point of view. 

It has been pointed out that the substrate is not only used to 

guarantee the electric interconnections between the components 

but also serves as a cooling fin. If two or more power 

components are located on one substrate they should be put as 

far away from each other. Neither they should be placed close 

to the boundary. This guarantees that each power component 

has a certain part of the substrate available for its heat removal.  

This problem has been attacked by several authors [1-10]. 

Most techniques used the numerical extremisation of a cost 

function in order to find the optimal placement of the 

components. 

One disadvantage of a pure numerical method is that in most 

cases only one solution is obtained. Although these problems 

are nonlinear and should provide several solutions. If a solution 

has been obtained numerically, one is never sure that other 

possible solutions might be better ones. In this paper the 

minimization of the cost function is done using symbolic 

algebra techniques. One has to limit oneself to cost functions 

which be written as simple functions involving polynomials in 

xi and yi, where xi and yi are the coordinates of the middle of i-

th component on the substrate. This allows us to use an 

elimination technique called Groebner algebra [11-17]. One 

obtains at the end a set of algebraic equations arranged is such a 

way all mathematically possible solutions are easily obtained. 

For every xi or yi an n-th degree algebraic equation is obtained. 

Nowadays simple numerical methods are available to find all n 

roots of an algebraic equation.  

By combining all possible solutions, one obtains a spectrum 

of all the possible placements of power components on a 

substrate, each of them corresponding to a local minimum of the 

cost function. It is then quite straightforward to find among them 

the solution with the most extreme value of the cost function. 

II. BASIC ANALYSIS 

The method will be explained with the help of the particular 

example shown in Fig.2. 

Two components have to be placed on a substrate with 

dimensions a and b. If (x1,y1) and (x2,y2) are the coordinates of 

the two components, the following cost function C is used: 

 
              𝐶 = 𝑙𝑛[𝑥1

2(𝑎 − 𝑥1)2 𝑦1
2(𝑏 − 𝑦1)2] +  𝑙𝑛[𝑥2

2(𝑎 −
𝑥2)2 𝑦2

2(𝑏 − 𝑦2)2] + 𝑙𝑛[( 𝑥1 − 𝑥2)2  (𝑦1 − 𝑦2)2]            (1) 
 

The terms x1
2 and (a-x1)2 express the distance of the first 

component to the boundaries at x=0 and x=a. One can easily 

verify that the cost function C increases with x1 due to the term 

ln x1
2. Hence, we are looking for a maximum value of the cost 

function in this paper. Strictly speaking the logarithmic function 

is not necessary to construct the cost function.  

The only reason it was introduced was to reduce the overall 

computation time for the algebraic manipulations. The term (x1 

– x2)2 (y1 – y2 )2 expresses the "distance" between the two 

components. The expression (x1 – x2)2 + (y1 – y2 )2 would be 

more justified but gives rise to more complicated algebraic 

manipulations afterwards. Again ln[(x1 – x2)2 (y1 – y2 )2] was 

used to reduce the CPU time. The other terms in (1) can be easily 

interpreted in a similar way. 

 

Fig. 2. Two components to be placed on a rectangular substrate 

If the second component dissipates more power than the first 

one, coefficients can be inserted into (1) in order to stress the 

fact that the second component requires more substrate area for 

its cooling: 

                        𝐶 = 𝑙𝑛[𝑥1
2(𝑎 − 𝑥1)2 𝑦1

2 (𝑏 − 𝑦1)2] +
𝛼 𝑙𝑛[𝑥1

2(𝑎 − 𝑥2)2 𝑦2
2 (𝑏 − 𝑦2)2] + 𝑙𝑛[( 𝑥1 − 𝑥2)2  (𝑦1 − 𝑦2)2]      

(2) 
where α > 1.  

 

In order to find the optimum value of C, one has to solve the 

following set of equations: 
𝜕𝐶

𝜕𝑥1
=  

𝜕𝐶

𝜕𝑥2
=

𝜕𝐶

𝜕𝑦1
=

𝜕𝐶

𝜕𝑦2
= 0                        (3) 

                           
In the next section, it will be shown how all the possible 

solutions of a set like (3) can be obtained using the so called 
Groebner analysis, developed by Buchberger [14-17]. The 
computer algebra software package REDUCE has been used to 
which a Groebner analysis package has been added.  
    Now, most computer algebra software packages offer a 
Groebner analysis package. 

III. GROEBNER ANALYSIS 

The Groebner analysis will be outlined in detail for a simple 
situation: two components have to be placed on one axis in the 
interval [0,1] i.e. a one-dimensional substrate. The cost 
function reads: 

𝐶 = 𝑙𝑛(𝑥1 − 𝑥2)2 + 𝑙𝑛[𝑥1
2(1 − 𝑥1)2] + 𝑙𝑛[𝑥2

2(1 − 𝑥2)2]      (4) 

 
The derivative of C with respect to x1 turns out to be: 
𝜕𝐶

𝜕𝑥1
=  

2

𝑥1−𝑥2
+  

2

𝑥1
−  

2

1−𝑥1
=  

2𝑥1−𝑥2+ 2𝑥1𝑥2−3𝑥1
2

(𝑥1−𝑥2)𝑥1(1−𝑥1)
=  0  

(5) 

A similar relation is found for the derivative with respect to x2. 

Hence, one has to solve following nonlinear algebraic set: 

3𝑥1
2 − 2𝑥1𝑥2 − 2𝑥1 +  𝑥2 = 0                       (6) 

 

      3x2
2 − 2x1x2 − 2x2 + x1 = 0                       (7) 

 

This is a 4-th order algebraic set so that 4 solutions are expected. 

The principle of the Groebner algebra is quite complicated, but 

roughly speaking this analysis gives always an equivalent 

algebraic set which is much easier to handle. One could say that 

it is some kind of generalised elimination method. The results 

are: 

x1 −  10x2
3 +  15x2

2 −  6x2 =  0                      (8) 

 

(5x2
2 −  5x2 +  1)(x2 −  1)x2 =  0                      (9) 
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The second equation (9) is a 4th order algebraic equation in x2. 

For this particular case the REDUCE software performed 

already a factorial decomposition, so that two roots are found by 

inspection. But in the most general case, one has to determine 

all roots numerically, which is no longer a problem from a 

numerical point of view. For each solution x2, this value can be 

inserted into equation (8) to find the corresponding value x1. 

Therefore, it was shown that using Groebner analysis it is 

possible to find all possible solutions. In this simple example, 

the calculation can also be performed by hand by simply 

subtracting (6) and (7). 

It is quite easy to obtain all the solutions of (9): 

 

x2 = 0 ; x2 =  1 ; x2 = 0.7236 ; x2 = 0.2763          (10) 

 

It is clear that the first two solutions x2 = 0 and x2 = 1 provide 

an extremum value for C but not a maximum. Hence, only the 

last two solutions of (10) are acceptable from physical point of 

view. Inserting the solutions (10) in (8) yield the corresponding 

x1 values. An overview is shown in table I. 

 
TABLE I 

TWO COMPONENTS ON AN INTERVAL [0,1] 

Solution x1 x2 C 

(1) 0 0 -∞ 

(2) 1 1 -∞ 

(3) 0.2763 0.7236 -3.4938 

(4) 0.7236 0.2763 -3.4938 

 

The corresponding values of the cost function C has been 

displayed as well. Strictly speaking only one acceptable solution 

is found, the second one being found by interchanging x1 and x2, 

i.e. the symmetrical solution. 

IV. EXAMPLES 

A. Two Components on a Line with Different Weight Factors 

We consider now the same case as the previous one, but the first 

component is dissipating more heat that the other one. Hence a 

coefficient α=2 is inserted into the cost function: 

𝐶 = 𝑙𝑛(𝑥1 − 𝑥2)2 + 2 𝑙𝑛[𝑥1
2(1 − 𝑥1)2] + 𝑙𝑛[𝑥2

2(1 − 𝑥2)2] 

  (11)  
The Groebner analysis gives rise to the following polynomial 

equations: 
5x1 −  42x2

3 +  63x2
2 −  26x2 =  0             (12) 

and  
(21x2

2 −  26x2 +  4)(x2 −  1)x2 =  0             (13) 
 

The solutions are listed in table II. 

 
TABLE II 

TWO COMPONENTS ON AN INTERVAL [0,1]. DIFFERENT HEAT DISSIPATION 

 

Again two unacceptable solutions are corresponding to C = -

∞. It is clearly seen that more space is now provided for the first 

element. The solution 4 cannot be found from solution 3 by 

interchanging the coordinates x1 and x2. However both solutions 

are equivalent from thermal point of view because they give rise 

to the same value of the cost function and symetry, i.e. xi (3)= 

(1-xi )(4). 

B. Three Elements on a Line 

If three elements with equal power dissipations are put 

one a single line in the interval [0,1], the following cost 

function is used: 
 

𝐶 = 𝑙𝑛[(𝑥1 − 𝑥2)2(𝑥1 − 𝑥3)2(𝑥2 − 𝑥3)2] + 𝑙𝑛[𝑥1
2(1 −

𝑥1)2] +  𝑙𝑛[𝑥2
2(1 − 𝑥2)2] + 𝑙𝑛[𝑥3

2(1 − 𝑥3)2]                   (14) 
 

Extremisation of C gives rise to a 12th order algebraic system. 

The Groeber analysis provides the following polynomial 

equations: 
(𝑥1 − 𝑥2 − 𝑥3)(𝑥1 − 1)𝑥1 + (2𝑥1 − 1)(𝑥1 − 𝑥2)(𝑥1 − 𝑥3) = 0  

  (15) 

 
(𝑥1 + 𝑥2 − 2𝑥3)(𝑥3 − 1)𝑥3 + (𝑥1 − 𝑥3)(𝑥2 − 𝑥3)(2𝑥3 − 1) = 0   
 (16) 
(𝑥2 − 𝑥3)(7𝑥3

2 −  7𝑥3 + 1)(4𝑥3 − 1)(4𝑥3 − 3)(2𝑥3 − 1)(𝑥3 −

1)2𝑥3
2 = 0  (17) 

Remark that the last equation (17) gives all the possible 
solutions for the unknown x3.  

This time 6 unacceptable solutions are observed. The 

remaining ones are permutations so that only one single solution 

is found here as shown in table III. 
 

TABLE III 

THREE COMPONENTS ON AN INTERVAL [0,1] 

 

C. Two components on a square substrate 

If two components with coordinates (x1 , y1) and (x2 , y2)  have 

to be positioned on a square substrate with unit side length, the 

following cost function has been presented: 
𝐶 = 𝑙𝑛[(𝑥1 − 𝑥2)2(𝑦1 − 𝑦2)2] + 𝑙𝑛[𝑥1

2(1 − 𝑥1)2𝑦1
2(1 − 𝑦1)2] +

𝑙𝑛[𝑥2
2(1 − 𝑥2)2𝑦2

2(1 − 𝑦2)2]  (18) 

By minimising the cost functions, one obtains the following 
algebraic equations after Groebner analysis: 

 

Solution x1 x2 C 

(1) 0 0 -∞ 

(2) 1 1 -∞ 

(3) 0.6463 0.2560 -4.8213 

(4) 0.3536 0.7439 -4.8213 

Solution x1 x2 x3 C 

(1) 0.75 0 0 -∞ 

(2) 0 0.75 0 -∞ 

(3) 0 0 0.75 -∞ 

(4) 0.25 1 1 -∞ 

(5) 1 0.25 1 -∞ 

(6) 1 1 0.25 -∞ 

(7) 0.8274 0.1726 0.5 -6.8925 

(8) 0.1726 0.8273 0.5 -6.8925 

(9) 0.8273 0.5 0.1726 -6.8925 

(10) 0.1726 0.5 0.8273 -6.8925 

(11) 0.5 0.8273 0.1726 -6.8925 

(12) 0.5 0.1726 0.8273 -6.8925 
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𝑥1 − 10𝑥1
2 + 15𝑥2

2 − 6𝑥2 = 0 
 

(5𝑥2
2 − 5 𝑥2 + 1)(𝑥2 − 1)𝑥2 = 0 

 
𝑦1 − 10𝑦1

2 + 15𝑦2
2 − 6𝑦2 = 0 

 
(5𝑦2

2 − 5 𝑦2 + 1)(𝑦2 − 1)𝑦2 = 0  (19) 

The acceptable solutions are shown in table IV. 

 

TABLE IV 

TWO COMPONENTS ON AN A SQUARE SUBSTRATE 

 

The 12 unacceptable solutions have not been included in table 

4. Again the 4 solutions are  all equivalent, they can be obtained 

from each other by simple permutations 

 

D. Two components with different weight factors on a square 

substrate 

Two different cases will be considered here. In the first one a 
coefficient α=2 is inserted in the cost function: 

𝐶 = 𝑙𝑛[(𝑥1 − 𝑥2)2(𝑦1 − 𝑦2)2] + 2 𝑙𝑛[𝑥1
2(1 − 𝑥1)2𝑦1

2(1 −
𝑦1)2] + 𝑙𝑛[𝑥2

2(1 − 𝑥2)2𝑦2
2(1 − 𝑦2)2] (20) 

 
It is clear from (20) that the first component (x1 ,y1) dissipates 

more heat. The acceptable solutions are all listed in table V. 

 
TABLE V 

TWO COMPONENTS ON AN A SQUARE SUBSTRATE.  

DIFFERENT HEAT DISSIPATION (=2) 

Again, the 4 solutions can be derived from each other by a 
simple permutation of the coordinates. Thermally speaking, 
these 4 solution are equivalent, they all correspond to the same 
value of the cost function (-0.964).  

By comparing these results with those of example 3, one 
obeserves that the first component (x1, y1) is positioned closer to 
the centre.  

In other words, this component has more space availaible to 

release its heat by thermal conduction through the substrate. 

In order to see the influence of the power dissipation, a high 

value has been used in the second case for the parameter α=10: 

 

𝐶 = 𝑙𝑛[(𝑥1 − 𝑥2)2(𝑦1 − 𝑦2)2] + 10 𝑙𝑛[𝑥1
2(1 − 𝑥1)2𝑦1

2(1 −
𝑦1)2] +  𝑙𝑛[𝑥2

2(1 − 𝑥2)2𝑦2
2(1 − 𝑦2)2]    (21) 

The results are listed in table VI. 

TABLE VI 

TWO COMPONENTS ON AN A SQUARE SUBSTRATE.  

DIFFERENT HEAT DISSIPATION (=10) 

 

Solution x1 y1 x2 y2 C 

(1) 0.5394 0.5394 0.2242 0.2242 -29.2347 

(2) 0.4606 0.4606 0.7758 0.7758 -29.2347 

(3) 0.4606 0.5394 0.7758 0.2242 -29.2347 

(4) 0.5394 0.4606 0.2242 0.7758 -29.2347 

 
It is observed that the hottest component (x1 ,y1) is now almost 

positioned in the centre of the substrate. In fig. 3 the first results 
of tables IV, V and VI are presented graphically. 
 

 

Fig. 3. Two components on a square substrate (1×1). • = (x1,y1),                
◦ = (x2,y2) with (a) α=1, (b) α=2 and (c) α=10. 

One clearly obeserves that in fig.3a both components are 

placed symmetrically whereas in fig.3b (α=2) and fig.3c (α=10) 

the first component moves towards the centre of the substrate. 

It should be noted here that for both cases shown in table V 

and table VI again 12 unacceptable solutions corresponding to 

C = -∞ have been obtained too. 

E. Three components on a square substrate  

With 3 components on a square substrate, the following cost 
function is used: 

𝐶 = 𝑙𝑛[(𝑥1 − 𝑥2)2(𝑥1 − 𝑥3)2(𝑥2 − 𝑥3)2(𝑦1 − 𝑦2)2(𝑦1 −
𝑦3)2(𝑦2 − 𝑦3)2] +  𝑙𝑛[(𝑥1 − 1)2(𝑦1 − 1)2𝑥1

2 𝑦1
2] +

𝑙𝑛[(𝑥2 − 1)2(𝑦2 − 1)2𝑥2
2 𝑦2

2] +  𝑙𝑛[(𝑥3 − 1)2(𝑦3 − 1)2𝑥3
2 𝑦3

2]  

  (22) 
36 acceptable solutions and 8 unacceptable solutions are 

obtained this time. All acceptable solutions give rise to the same 

value of the cost function (C = -13.7851). Hence, from thermal 

point of view all acceptable solutions can be considered as 

equivalent.  

In Fig. 4 two typical solutions are presented. Remark again 

that all 36 solutions can be derived from each other by 

permutations of the coordinates. They all give rise to the same 

value of the cost function C= -13.7851.             
 

 
 
Fig. 4. Two possible solutions for 3 components placed on a square substrate. 

(a) and (b) correspond to the same value of the cost function C= -13.7851 

Solution x1 y1 x2 y2 C 

(1) 0.7636 0.7236 0.2763 0.2763 -6.9897 

(2) 0.2763 0.2763 0.7636 0.7636 -6.9897 

(3) 0.2763 0.7636 0.7636 0.2763 -6.9897 

(4) 0.7636 0.2763 0.7636 0.2763 -6.9897 

Solution x1 y1 x2 y2 C 

(1) 0.6463 0.6463 0.2560 0.2560 -9.6426 

(2) 0.3536 0.3536 0.7439 0.7439 -9.6426 

(3) 0.3536 0.6463 0.7439 0.2560 -9.6426 

(4) 0.6463 0.3536 0.2560 0.7439 -9.6426 
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F. Three components on a rectangular substrate with different 
heat dissipation 

As a final example, 3 components have to be placed on a 

rectangular substrate (a=2, b=1). The first component (x1,y1) 

dissipates the highest amount of power. The other two have the 

same power dissipation. The cost function reads: 
 

𝐶 = 𝑙𝑛[(𝑥1 − 𝑥2)2(𝑥1 − 𝑥3)2(𝑥2 − 𝑥3)2(𝑦1 − 𝑦2)2 

  (𝑦1 − 𝑦3)2(𝑦2 − 𝑦3)2] + 10 𝑙𝑛[(𝑥1 − 2)2(𝑦1 − 1)2𝑥1
2 𝑦1

2] +
𝑙𝑛[(𝑥2 − 2)2(𝑦2 − 1)2𝑥2

2 𝑦2
2] + 𝑙𝑛[(𝑥3 − 2)2(𝑦3 − 1)2𝑥3

2 𝑦3
2] 

 (23) 

The Groebner analysis gives rise to 36 acceptable solutions, 
6 of them are listed in table 7. This time one gets 3 groups of 

solutions corresponding to the obtained C-value. Only the 
results (1), (2), (5), (6), (21) and (22) are displayed in table VII. 

The first group corresponds to the highest value C = -

19.2037. With the other values obtained for C (-20.1820 and -

21.1604), two sets of 16 solutions are found. The solutions in 

each set are all equivalent because the coordinates can be 

obtained from each other by permutations or symmetry 

operations like mirroring with respect to a central axis e.g. 

Strictly speaking only 3 acceptable solutions independent 

solutions are found here. This example illustrates very well the 

features of our approach: namely that 3 possible solutions are 

obtained, each corresponding to another value of the cost 

function. 

 

 
TABLE VII 

THREE COMPONENTS ON AN A RECTANGULAR SUBSTRATE. 

THE FIRST COMPONENTS DISSIPATES MORE 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 5 the solutions labelled 1, 5 and 21 in table VII are 

presented graphically. It must be noted again that fig. 5a 

corresponds to the highest value of the cost function so that this 

is the best solution from a thermal point of view i.e. to put all 

the components as far as possible from each other and from the 

boundaries. 

 

 

Fig. 5. Three components on a rectangular substrate. • = (x1,y1), ◦ = (x2,y2) and 
□ = (x3,y3). The cost functions are (a) C = -19.2037, (b) C = -20.1820 and (c) C 
= -21.1604. 

Remark that the most dissipating component is always placed 
near the center of the substrate.  

V. DISCUSSION 

Different authors should discuss the results and how they can 

be interpreted from the perspective of previous studies and of 

the working hypotheses. The findings and their implications 

should be discussed in the broadest context possible. Future 

research directions may also be highlighted. 

VI. CONCLUSIONS 

The analytical method finds the global optimum, which 

distinguishes it from numerical methods that can only find local 

minimums. It is universal and allows for solving many similar 

global minimum search problems. 

The paper presents the optimization of the integrated circuit 

layout with regard to the thermal aspect. This means that it is 

proposed to arrange the functional blocks on the substrate in 

such a way that the mutual thermal interference of the blocks is 

minimal. This leads to the minimization of the maximum 

substrate temperature, and thus allows for the increase of the 

throughput of the considered integrated circuit. The proposed 

analytical method, unlike numerical methods, leads to obtaining 

a global minimum. The paper presents analytical formulas for 

three heat sources. Of course, it is possible to extend it to a larger 

number of functional blocks in a similar way. The proposed 

method can be useful in the design of integrated circuits, in 

which it is important to limit the mutual thermal interactions i.e., 

in the design of systems with significant power dissipation, for 

example, the topography of numerical processors. 
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