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Severity is not exploitability: A simple taxonomy
and context score for better CVE triage

Grzegorz Siewruk, and Tomasz Bondaruk

Abstract—Modern security teams face a constant backlog of
vulnerabilities and limited engineering time for patching. In
practice, organizations turn this into a triage problem: deciding
which findings to remediate first, which to monitor, and which
to postpone, often encoding these choices into SLAs, dashboards,
and automated patching workflows driven by scanner output.
Today this prioritization is usually based on Common Vulnera-
bility Scoring System (CVSS) base severity, even though severity
does not equal exploitability. This paper presents a compact,
single-tag taxonomy for exploitability preconditions (exposure,
environment, configuration, authentication, cryptography, and
related factors) and a transparent context score that estimates
how easy a vulnerability is to exploit in a given deployment.
We enriched a dataset of 2,426 Common Vulnerabilities and
Exposures (CVE) with constraint annotations and compared the
context score against CVSS severity and the Exploit Prediction
Scoring System (EPSS). The score shows weak association with
both signals, indicating it captures complementary information
about situational ease rather than impact or ecosystem pressure.
Grouped by severity, notable shares of medium- and even low-
severity findings emerge as easy to exploit under common config-
urations. In a telecom self-care platform case study (100 findings),
reordering by the context score surfaced 28 straightforward fixes
across severities, reducing immediate exposure and consolidating
root causes that a severity-only plan would postpone. We conclude
that combining EPSS with the proposed context score yields a
more effective, auditable triage process for applied informatics
settings.

Keywords—devsecops; vulnerability analysis; vulnerability
management; cybersecurity

I. INTRODUCTION

SOFTWARE teams face a relentless backlog of CVEs.
Triage still leans on severity scores, yet severity is not

exploitability: some “High” issues never materialize as at-
tacks, while select “Medium” items are exploited quickly [1],
[2]. Public catalogs such as National Vulnerability Database
(NVD) provide identifiers, Common Weakness Enumeration
(CWE) classes, and CVSS vectors, but rarely encode the
concrete conditions that must hold in real deployments for
exploitation to succeed [3], [4].

We addressed this gap with a curated dataset of CVEs
enriched by explicit exploitability preconditions: human- and
machine-readable constraints about environment, configura-
tion, privilege boundaries, and code paths (e.g., network reach-
ability, default settings, feature flags, required library/build
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options) [5], [6]. These factors often determine whether a
theoretical weakness becomes a practical incident, yet they
are rarely modeled alongside CVSS or used systematically in
triage [7], [8].

In most cases the prioritization of the addressed vulnerabil-
ities typically chooses between coarse signals (severity) and
late signals such as: Known Exploited Vulnerabilities (KEV)
or public Proof of Concepts (PoCs). [9]. Encoding precon-
ditions on CVEs provides an ex-ante view: when required
conditions do not hold, risk drops immediately; when they
do, the item warrants elevation even before threat-intel arrives
[10].

In order to alter this approach and propose a more compre-
hensive and holistic approach, we gathered CVEs from public
sources and documented our enrichment pipeline. Later, based
on gathered data we introduced a taxonomy to categorize
preconditions to them, and finally proposed an exploitabil-
ity score derived from that taxonomy. The score maps to
CVE/CWE/CVSS fields and, where useful, operational frame-
works such as Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CK) [4], [5]. We analyzed distribution of
preconditions and compared prioritization using Severity-only
vs. Severity+Preconditions and our score.

When conducting the analysis and introducing the taxon-
omy, we focused our approach around the following research
questions (RQ1–RQ3). They center the study on practical
usability and improvement in triage of the most important
vulnerabilities:

• Prevalence (RQ1). How often do specific preconditions
occur across CVEs/CWEs, and how do they co-occur?

• Predictive value (RQ2). Do preconditions (and our
score) improve prediction of downstream exploitation
(e.g., Severity, EPSS) over severity-only baselines [2],
[9]?

• Practical triage (RQ3). How do preconditions change
prioritization in realistic enterprise settings, and with
what impact on time-to-mitigation?

This paper makes the following contributions to vulnerabil-
ity management and treatment research:

• Dataset & enrichment. A reproducible pipeline and
curated dataset of CVEs annotated with exploitability
preconditions [3].
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• Taxonomy. A concise categorization scheme for vulner-
ability preconditions, aligned with CVE/CWE/CVSS and
optionally ATT&CK.

• Exploitability score. A calculation method based on the
taxonomy that outperforms severity-only CVSS in triage-
oriented evaluations.

In our investigation, we have focused on software vulner-
abilities recorded in CVE/NVD and described by CWE. Ex-
ternal indicators (KEV, public PoCs) are treated as outcomes,
used to evaluate preconditions and the proposed score [3], [9].

The paper has the following organization. Section II pro-
vides background and related work on vulnerability priori-
tization and exploitability modeling. Section III details data
sources and enrichment, and Section IV presents the taxonomy
and scoring method. Section V reports the main results,
analyses, and comparisons. Section VI gives a case study.
Section VII discusses implications and limitations, and Sec-
tion VIII concludes our research.

II. BACKGROUND & RELATED WORK

The Common Vulnerabilities and Exposures (CVE) system
provides standardized identifiers (e.g., CVE-2024-12345)
for publicly known cybersecurity vulnerabilities, so that dif-
ferent tools and databases can refer to the same issue in
a consistent way. It is maintained by the CVE Program, a
community-driven initiative that coordinates the creation and
publication of these identifiers rather than a software “pro-
gram” in the executable sense. Within this initiative, the CVE
Program assigns a stable identifier and a structured JavaScript
Object Notation (JSON 5.x) record to each vulnerability. A
CVE Record contains a CVE Numbering Authority (CNA)
authored container and may include enrichments from Autho-
rized Data Publishers (ADPs) in the optional adp container
array; the CVE Program may also publish its own ADP
entry (the “CVE Program Container”) [11]. The National
Vulnerability Database (NVD) consumes CVE records, adds
standardized mappings (e.g., CWE), applicability via Common
Platform Enumeration (CPE), curated references and tags,
and exposes versioned JSON 2.0 Application Programming
Interfaces (API) for reproducible analysis [12]. In this study
we treat CVE/NVD as the canonical spine (identifiers, de-
scriptions, CWE/CPE mappings, references) and then add
what they intentionally do not capture: explicit exploitability
preconditions—the conditions that must hold in a real target
for an attack to work.

On top of this identifier and metadata layer, modern practice
relies on severity and likelihood signals. CVSS v4.0 is a
transparent severity standard: Base metrics are environment-
agnostic, while the Environmental and Threat metric groups let
operators adjust scores using local context and current threat
intelligence [13]. This still does not answer the question “how
likely is this to be exploited soon?” Signals closer to likelihood
include the Exploit Prediction Scoring System (EPSS), which
estimates the short-term probability of exploitation [14], and
CISA’s KEV catalog, which is effectively a ground-truth list of
vulnerabilities known to be exploited in the wild [15]. In short,
CVSS tells us how bad a vulnerability could be, EPSS and

KEV indicate how likely exploitation is, and our preconditions
aim to describe whether it is actually reachable here in a given
system.

A complementary ecosystem has emerged around soft-
ware inventories and advisories. An SBOM (Software Bill
of Materials) is a structured, machine-readable inventory of
the components and dependencies that make up a software
product; it allows producers and consumers to understand
which libraries, packages, and versions are present in a
given build. In the SBOM/advisory world, CISA Vulnerability
Exploitability eXchange (VEX) documents already express
“affected” or “not affected” status for a given product and
CVE, together with justifications. Common Security Advisory
Framework (CSAF) v2.0 defines a formal VEX profile, and
CycloneDX offers a practical VEX representation used along-
side SBOMs [16], [17]. CISA has also published minimum
content requirements to keep VEX useful and consistent across
producers [18]. Our contribution aligns with this ecosystem:
we make the conditions explicit at CVE granularity (e.g.,
feature use, network exposure, authentication mode) so that
product teams can prove “not affected” when those conditions
do not hold—and verify “affected” when they do.

Empirical studies show that high severity does not automat-
ically translate into frequent exploitation; the relationship is
weak and strongly context dependent [19]. At the feasibility
layer, prerequisite-based attack graphs (e.g., MulVAL and
its follow-ups) model “if these preconditions hold, the next
step is possible,” which mirrors our per-CVE precondition
view—but we drive this idea down into code and configura-
tion checks suitable for continuous integration (CI) pipelines
[20]. To prioritize effectively, organizations therefore need
to join standardized severity information, real-world threat
signals, and concrete feasibility constraints. That is the gap
our precondition-enriched CVE dataset is designed to close.

In this study we anchor our data model on CVE/NVD,
which provide the identifiers and baseline facts we rely on,
including descriptions, CWE/CPE mappings, and curated ref-
erences [11], [12]. On top of this canonical layer we use
CVSS as the standardized severity framework that supplies
transparent and reproducible scoring [13]. We then align
with EPSS and KEV to incorporate threat-aware signals that
capture how vulnerabilities are exploited in practice, rather
than only how severe they could be in theory [14], [15].
Finally, we extend this stack with validated preconditions that
connect these existing signals to the concrete reality of a
given system, so that we can answer the practical question:
“Can this be exploited here, given our code, configuration,
and deployment?”

III. DATASET SOURCES

Our research is based on a large, curated dataset of public
software vulnerabilities that augments standard (published)
records with a structured set of exploitability preconditions.
While public vulnerability feeds are rich in identifiers and
severity vectors, they rarely capture the concrete circumstances
that make exploitation feasible in practice. This section ex-
plains how we assembled, validated and enriched the dataset. It



SEVERITY IS NOT EXPLOITABILITY: A SIMPLE TAXONOMY AND CONTEXT SCORE FOR BETTER CVE TRIAGE 3

explains and describes the data sources we drew from. Later, it
describes the precondition schema we applied using our semi-
automated annotation workflow. Finally, it covers the resulting
statistics and their meaning to the triage.

A. Data Sources and Curation

To balance realism with coverage, we combined a
repository-driven sample with an NVD-driven sample.

a) Repository sample.: We analyzed 200 actively main-
tained public GitHub repositories across three ecosystems:
JavaScript (npm), Java (Maven) and Python (PyPI). Findings
were produced with widely used tools and anchored in real
codebases. In practice, the analysis processes (SCA, SAST and
IaC scanning) were implemented using the following concrete
tools:

• cdxgen + OWASP Dependency-Track (SCA) [21]:
we used cdxgen1 to generate CycloneDX SBOMs for
each repository, and imported these SBOMs into OWASP
Dependency-Track 2 to surface known issues in third-
party components.

• Bearer (SAST) [22]: we used Bearer3 as the static
analysis tool to flag insecure code patterns in first-party
application code.

• KICS (IaC scanning) [23]: we used Keeping Infrastruc-
ture as Code Secure (KICS)4 to detect misconfigurations
in infrastructure-as-code and deployment artifacts.

This bottom-up pass yielded roughly 1,000 CVE-backed find-
ings, each tied to a specific software context.

b) NVD sample.: For breadth, we ingested CVEs from
the NVD published between January 2022 and October 2025.
For each record we retained the CVE ID, mapped CWEs,
CVSS v2/v3 vectors and base scores, the official description,
and references. Using CPE metadata and keyword filtering, we
excluded entries focused on hardware, operating systems or
closed-source enterprise appliances to keep the corpus aligned
with the ecosystems above. This top-down pass contributed
approximately 1,500 CVEs.

After de-duplication, the combined corpus contains 2,426
unique CVEs and forms the basis for our precondition analy-
sis.

B. Precondition Taxonomy and Schema

Our central contribution is a taxonomy of exploitability pre-
conditions derived from a deep dive into advisories, technical
write-ups, and fixing commits. We identified recurring patterns
and grouped them into 12 categories (Table I) that cover all
possibilities, from network, application configuration to code
itself.

To make this concrete, these are the kinds of conditions
our taxonomy captures. For instance, a precondition could
be related to network access, such as requiring a vulnerable
service to be reachable from the public internet. It might

1https://github.com/CycloneDX/cdxgen
2https://dependencytrack.org/
3https://github.com/Bearer/bearer
4https://github.com/Checkmarx/kics

involve the runtime environment, like needing a specific library
version or a particular Just-in-Time (JIT) compiler feature to
be active. Other common examples relate to application state,
such as a vulnerability that only triggers if a default password
has been left unchanged or if a specific feature flag is toggled
on. Finally, many preconditions involve privilege, where an
exploit is only possible if it can cross a security boundary,
like escaping a sandbox.

The dataset was stored in a simple schema: Entity-
Relationship (ER) JSON, linking each CVE to one or more
normalized precondition instances. Each instance is cross-
referenced to CVSS v4 metrics (e.g., AV, PR, UI, S) and, where
applicable, to MITRE ATT&CK technique IDs to situate the
precondition within a broader attack narrative.

C. Annotation Protocol and Quality Control

Annotating thousands of CVEs at high fidelity does not
scale with purely manual effort, so we adopted a semi-
automated pipeline with expert oversight. The process consists
of two phases.

In the Phase 1, for each of the 2,426 CVEs, we prompted
Google’s Gemini Large Language Model (LLM) as a research
assistant to propose candidate preconditions from the NVD
description and referenced advisories. The goal was accelera-
tion, not authority: the model surfaces hypotheses for human
review.

The following Phase 2 consists of two independent security
practitioners reviewing each candidate list. Reviewers first
validated statements against the source material (advisories,
vendor notes, PoCs) and discarded speculative items. Later
they assigned each validated item to exactly one of the 12
categories in Table I. Agreement was monitored using Cohen’s
κ statistical measure and disagreements were resolved through
adjudication by a senior reviewer following pre-registered
decision rules.

D. Final Dataset Composition

The final dataset comprises 2,426 CVEs annotated with
26,924 validated precondition instances (on average 11.1
per CVE), underscoring how multi-factor the notion of “ex-
ploitability” is compared to a single severity score.

Table II summarizes key statistics. Severity, taken from
CVSS base scores, reflects a typical backlog skew toward
MEDIUM (39.4%) and HIGH (34.9%). Precondition categories
are markedly imbalanced: ISO (Isolation/Privilege) and DEPS
(Dependency/Runtime) dominate with a combined 72.7%. In
other words, exploitability in modern stacks is most often
gated by how dependencies are assembled and where security
boundaries hold (or leak).

Figure 1 shows an example of a single vulnerability
record (simplified for readability). The record summarizes
CVE-2013-7285, rated CRITICAL with an EPSS of
0.15054, and enumerates eight defined constraints (precon-
ditions) that must be satisfied for the vulnerability to be
exploitable.

NVD content is used under its published license; we re-
distribute only derived annotations and identifiers, not full
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Fig. 1. Single record from database describing CVE-2013-7285

upstream texts. Where public PoCs are referenced, we redact
details that would materially lower the bar for exploitation.

IV. METHOD

Our goal is to move from “this CVE is HIGH” to “this CVE
is actually easy or hard to exploit in our setup”. To do that,
we started from the recorded constraints for each vulnerability
(for example: endpoint must be public, debug mode must be
enabled, default password must be present) and mapped each
constraint to exactly one of twelve single-tag categories: EXP,
ENV, CFG, AUTH, DATA, DEPS, EXT, INPUT, TIME, ISO,
LOG, CRYPTO - see Table I. Intuitively, these tags tell us
what needs to be true for exploitation to work: exposure,
environment, configuration, authentication, cryptography, and
so on. We then turned these tags into a single context score per
vulnerability, and, when available, combine it with an external
prior such as EPSS.

a) Constraint tagging (deterministic).: Each constraint
row receives exactly one tag. We used a fixed precedence to
break ties when a constraint could fit several categories:

ISO > AUTH > EXP > CFG > ENV > INPUT,

CRYPTO > DEPS > EXT > DATA > TIME > LOG.

For example, if a constraint mentions both authentication
and exposure, it is tagged as AUTH, because identity re-
quirements are usually more decisive than simple reachabil-
ity. We also prefer developer–controlled levers (CFG, DEPS,
INPUT) over ops–controlled ones (ENV, EXT) in a situation
when both appear. Finally, we favor property-like keys (e.g.,
spring.foo=bar) over generic phrases. The result of the
tagging process is a single reproducible label (category) for
each constraint. This tagging simplifies analysis of the vul-
nerability and enables quick understanding of the condition
types to exploit it. For example: ”Vulnerability ABC is easily
exploitable, because it has several preconditions related to
network exposure (EXP) and weak cryptography (CRYPTO)”.

b) Tag polarity and weights.: Once every constraint was
tagged, we asked a simple question: does this tag make life
easier for an attacker, or does it stand in the way? We called
the first type enablers (they increase ease of exploitation) and
the second type gates (they make exploitation rarer or more
difficult). We assigned small weights w(t) to each tag:

• Enablers: EXP, CFG, ENV, INPUT (common formats),
LOG, CRYPTO, EXT.

• Gates: AUTH, TIME, ISO, DATA, DEPS, INPUT (exotic
encodings).

We then applied a few intuitive overrides. For example, an
AUTH constraint that says “anonymous/guest/no auth” clearly
makes the attacker’s life easier, so we treated it as an enabler.
A DATA constraint that requires default credentials or a hard-
coded API key is also an enabler. For INPUT, common
formats such as JSON behave as enablers (it is easy for
an attacker to send JSON), whereas niche formats (UTF-
7, SOAP/XML-only) behave more like gates. We kept these
weights small, interpretable, and easy to tune.

c) Vulnerability-level aggregation.: A single vulnerabil-
ity usually has more than one constraint. Some of them
must all hold together (AND-style), while others describe
alternative paths (ANY-of). Let Cv be the set of constraints for
vulnerability v, each tagged t(c). We aggregated tag weights
into a context logic:

zv = b0 +
∑

c∈CALL
v

w
(
t(c)

)
+

∑
G∈AANY

v

max
c∈G

w
(
t(c)

)
,

where CALL
v are AND-style preconditions and AANY

v are groups
of alternative paths. If we did not know the grouping, we
conservatively treated all constraints as AND-style. We then
converted zv into a probability using the standard logistic
function:

pctx(v) = σ(zv) =
1

1 + e−zv
.

Intuitively, more and stronger enablers push pctx towards 1
(easy to exploit), while more and stronger gates push it towards
0 (hard to exploit).

d) Fusion with a prior (optional).: In many environments
we already have a “global” signal about exploitation, such as
EPSS, which tells us how likely a CVE is to be exploited
somewhere on the Internet. We did not want to override that
signal, but to complement it with our local view. When a prior
probability p0(v) (e.g., EPSS) is available, we combine it with
the context probability using a simple noisy-OR:

pfinal(v) = 1−
(
1− p0(v)

)(
1− pctx(v)

)
.

In plain terms, pfinal becomes high if either the global model
says “this CVE is often exploited” or our context score says
“this CVE is easy in our setup” (or both). If no prior is
available, we simply use pctx(v).
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TABLE I
THE EXPLOITABILITY PRECONDITION TAXONOMY. THE 12 CATEGORIES USED TO ANNOTATE CVES,

WITH DESCRIPTIONS AND REPRESENTATIVE EXAMPLES

Code Category Name Description and Examples

EXP Exposure/Reachability Conditions related to network reachability and service exposure. Examples: a vulnerable port is
internet-exposed; CORS policy permits cross-origin access.

ENV Environment/Deployment Conditions tied to the deployment environment or OS. Examples: a specific environment variable is
set; running in a container without a hardening profile.

CFG Application Configuration Application-level settings, flags, or modes. Examples: a feature toggle is enabled; application runs
in debug mode.

AUTH Authentication/Access Identity, access control, and session state. Examples: vulnerable endpoint accessible to anonymous
users; attacker holds a specific role.

DATA Data State Data-dependent preconditions. Examples: default credentials present; object size exceeds a threshold.
DEPS Dependency/Runtime Dependency presence/version or runtime traits. Examples: vulnerable library in use; specific JVM/JIT

behavior required.
EXT External Service Preconditions involving external/cloud services. Examples: overly permissive S3/IAM policy; mis-

configured webhook endpoint.
INPUT Input Semantics Crafted input formats or protocol sequences. Examples: specific Content-Type; XML parser quirk

leveraged.
TIME Timing/Concurrency Timing or lifecycle constraints. Examples: race window in TOCTOU; overlapping batch jobs.
ISO Isolation/Privilege Security boundary or sandbox assumptions. Examples: runs outside a sandbox; container escape

requires kernel capability.
LOG Logging/Observability Observability as an enabler. Examples: verbose error logs leak secrets.
CRYPTO Cryptography/Trust Weak or misconfigured cryptography. Examples: weak TLS ciphers accepted; certificate validation

disabled.

TABLE II
DESCRIPTIVE STATISTICS OF THE CURATED DATASET (N = 2,426 CVES)

Metric Count Percentage

Vulnerability Severity Distribution
CRITICAL 392 16.2%
HIGH 847 34.9%
MEDIUM 956 39.4%
LOW 88 3.6%
INFO/NONE 142 5.9%

Total CVEs 2,426 100%

Precondition Category Distribution
ISO (Isolation) 11,993 44.5%
DEPS (Dependency) 7,578 28.1%
INPUT (Input Semantics) 1,773 6.6%
CFG (Configuration) 1,425 5.3%
EXP (Exposure) 1,232 4.6%
AUTH (Authentication) 1,097 4.1%
ENV (Environment) 975 3.6%
DATA (Data State) 419 1.6%
CRYPTO (Cryptography) 228 0.8%
EXT (External Service) 77 0.3%
LOG (Logging) 74 0.3%
TIME (Timing) 53 0.2%

Total Preconditions 26,924 100%

e) Fallback index.: Some teams prefer a simpler, non-
probabilistic signal that they can reason about on a whiteboard.
For them, we define an Exploitability Ease Index:

EEI(v) = #{enabler tags in v} − #{gate tags in v}.

If EEI is strongly positive, the vulnerability has many enablers
and few gates (it looks easy); if it is strongly negative, there
are many gates and few enablers (it looks hard). We map EEI
to {Low, Medium, High} using fixed thresholds, for example:
High if EEI < −1, Medium if −1 ≤ EEI ≤ 1, and Low if
EEI > 1. EEI is less precise than pctx, but it is extremely easy
to audit and explain.

f) Outputs.: For each vulnerability we therefore report:

1) the per-constraint tag (what has to be true),
2) the context probability pctx (and pfinal if a prior exists),
3) the EEI value and its bucket (Low/Medium/High).

Together, these outputs provide a compact, reproducible rank-
ing of vulnerabilities by context-driven exploitability, while
still keeping the reasoning human-readable (“this CVE is easy
because it is public, has no auth, and runs with weak TLS”).

V. RESULTS

We labelled each constraint with a single tag and aggregated
per-CVE into a context score (Section IV). A vulnerability is
considered easy to exploit if its context probability satisfies
pctx ≥ 0.5; we also reported a conservative check using the
Exploitability Ease Index (EEI > 0). In total, we scored 2,426
CVEs. The distribution of pctx is clearly right-skewed: the
median is 0.047, with the first and third quartiles at approx-
imately 0.002 and 0.574, respectively. In other words, many
vulnerabilities are gated by one or more strong preconditions
(very low pctx), while a non-trivial tail emerges as clearly easy
under typical configurations.

Table III summarizes how many vulnerabilities, grouped by
CVSS base severity, meet the easy criterion. The probability-
based view shows a clear gradient: CRITICAL has the largest
fraction flagged as easy (33.4%), followed by HIGH (28.3%),
MEDIUM (26.2%), and LOW (23.9%). The EEI view yields
lower rates—as intended for a sign-only index—yet preserves
the same general ordering.

Two observations stand out. First, the gap between
MEDIUM and HIGH is small a roughly one in four MEDIUM
issues already looks easy in context. This suggests that a strict
“fix HIGH first, MEDIUM later” policy will postpone a non-
trivial set of vulnerabilities that are straightforward to exploit
in common deployments. Second, even LOW severity is not
uniformly harmless: almost a quarter of LOW entries cross the
pctx ≥ 0.5 threshold. In practice, many of these correspond to
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TABLE III
EASY-TO-EXPLOIT COUNTS BY SEVERITY (CVSS BASED).

PROBABILISTIC VIEW USES pCTX ≥ 0.5; INDEX VIEW USES EEI > 0

Severity N Easy (prob) Rate Easy (EEI) Rate

LOW 88 21 23.9% 6 6.8%
MEDIUM 956 250 26.2% 84 8.8%
HIGH 847 240 28.3% 104 12.3%
CRITICAL 392 131 33.4% 28 7.1%

configuration or exposure issues that do not change impact but
strongly affect reachability.

The EEI-based view provides a sanity check. Because EEI
only tracks the difference between counts of enabler and gate
tags, it is less sensitive than the probabilistic score. However,
it still highlights the same pattern: a growing share of “easy”
items as we move from LOW through MEDIUM and HIGH
to CRITICAL. This consistency across two simple metrics
increases confidence that the signal is not an artefact of a
particular threshold.

The context score provides complementary signal to EPSS:
the correlation between pctx and EPSS is weak (Pearson
correlation = 0.081, Spearman close to zero). In practice,
EPSS reflects global threat pressure (how likely a CVE is to
be exploited somewhere), while pctx captures deployment and
configuration enablers in a specific environment. Prioritization
benefits from considering both: act first where high severity
aligns with high EPSS and high pctx; re-check MEDIUM/LOW
items that surface as easy under local preconditions; and
monitor high-EPSS but low-pctx items while hardening the
relevant gates. In this way, the context score does not replace
existing metrics, but fills a missing piece between theoretical
impact and observed attacks.

VI. CASE STUDY (APPLIED INFORMATICS / TELECOM)

We applied the method to a telecom self-care platform
(Java/Spring microservices behind an API gateway, Kafka for
events, object storage for artifacts). A routine SAST/SCA scan
reported 100 unique vulnerabilities. The company’s standing
policy is severity-first (fix CRITICAL, then HIGH), which is
typical in large enterprises [24].

Base severities were: 12 CRITICAL, 34 HIGH, 44
MEDIUM, and 10 LOW. Under the baseline policy, devel-
opers would tackle the 46 CRITICAL+HIGH issues first.

We tagged constraints with a single category and computed
the per-CVE context probability pctx. Using a clear criterion
(pctx ≥ 0.5) to flag items as easy to exploit, we obtained the
counts in Table IV. Context surfaces “easy” items outside the
CRITICAL/HIGH bucket (e.g., exposed endpoints with weak
crypto or permissive configs) that a severity-only queue would
postpone.

A severity-only plan would fill the next development sprint
(Sprint 1, i.e., the first available change window for the team)
with 46 CRITICAL+HIGH items, yet only about 14 of those
are context-easy (4 CRITICAL + 10 HIGH). At the same time,
there are 14 MEDIUM/LOW findings that are also context-
easy (12 MEDIUM + 2 LOW). Reordering to fix all 28 easy

TABLE IV
TELECOM CASE: ITEMS FLAGGED AS easy (pCTX ≥ 0.5) BY SEVERITY

Sev. N Easy Rate p̃ctx

LOW 10 2 20% 0.018
MEDIUM 44 12 27% 0.019
HIGH 34 10 29% 0.039
CRITICAL 12 4 33% 0.119

Total 100 28 — —

items first yields two wins: (i) faster exposure reduction
(we remove reachable/misconfigured pathways early), and (ii)
fewer hotfix loops (shared root causes like reverse-proxy trust
or insecure defaults neutralize multiple CVEs at once).

Gateway rule hardening (drop trust in X-Forwarded-*)
eliminated 5 EXP/INPUT cases; TLS hostname verification
on removed 3 CRYPTO vulns; disable debug/actuator exposure
closed 4 CFG/EXP findings. All landed within one sprint with
minimal code churn.

We still use EPSS as global threat pressure. Items with both
high EPSS and high pctx go first. When EPSS is low but pctx is
high, we still act because local preconditions make exploitation
easy in our deployment; conversely, high-EPSS but low pctx
items are monitored while we harden the gates.

For a telecom codebase, context-aware triage preserved
focus on CRITICAL/HIGH but also surfaced MEDIUM/LOW
vulnerabilities that were easier to exploit in situ. Fixing
those 28 first reduced immediate risk and delivered diagnostic
insight—outcomes aligned with Applied Informatics’ fault
detection and diagnostics.

VII. THREATS TO VALIDITY AND LIMITATIONS

Our dataset is centered on CVE/NVD. This skews coverage
toward what is disclosed and standardized, omitting private
advisories, narrow product lines, and configuration-only faults.
Prior empirical work shows that public vulnerability corpora
carry selection effects and do not fully capture exploitation
dynamics [19], [25], [26].

We compressed each constraint into exactly one tag for
auditability. Multi-faceted preconditions (e.g., auth and proto-
col) can be under-specified, and our enabler/gate polarity and
weights reflect curated heuristics. Light-weight adjudication
(spot checks, agreement metrics) would reduce coder bias;
nonetheless, the single-tag rule trades nuance for consistency.

Many practical preconditions live in deployment notes,
IaC, proxies, or Identity and Access Management (IAM)
policies—not in CVE text. Inferring them from code/config
patterns can miss or overstate gates/enablers. Exploitation in
the wild further depends on attacker incentives and ecosystem
conditions that public records under-represent [2], [19].

Our score estimates situational ease of exploitation given lo-
cal preconditions; it is not an impact metric. Weak association
with CVSS and modest association with exploit-in-the-wild
signals are expected, because these constructs differ (technical
impact vs. realized or likely exploitation) [25]. We therefore
interpret it as complementary, not substitutive.

The “easy” cutoff (pctx ≥ 0.5) and the sign-only EEI rule
are pragmatic defaults. Different risk appetites or noise levels
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may justify tighter/looser cutoffs; our reporting of medians
and simple correlations is intended to make such tuning
transparent.

To sum up these limits argue for using the context score
alongside CVSS (impact) and exploit-likelihood signals (e.g.,
EPSS analyses), yielding a triage view that is both auditable
and sensitive to local configuration.

VIII. CONCLUSIONS

This work introduced a compact, single-tag taxonomy for
vulnerability preconditions and a transparent context score that
estimates how easy a finding is to exploit in situ. Across our
dataset and the telecom case study, we observed that base
severity alone is a weak guide for action: a sizable fraction of
MEDIUM (and even LOW) issues become practically easy to
exploit once exposure, configuration, and crypto preconditions
are considered. This aligns with our quantitative result that the
context probability shows only weak association with CVSS,
because it measures a different construct (situational ease
rather than impact).

In practice, prioritization improves when teams combine
three complementary signals: CVSS for technical impact,
EPSS for ecosystem pressure, and our context score for
local enablers and gates. Items that are simultaneously high-
impact (CVSS), likely (EPSS), and easy in context (high
pctx) should lead. Conversely, context can justifiably elevate
certain MEDIUM/LOW findings ahead of harder-to-exploit
HIGH ones, cutting exposure faster and reducing hotfix churn.

Our Research summary is that pctx adds signal beyond
EPSS/CVSS (RQ1), flags sizable MEDIUM/LOW subsets as
easy in context (RQ2), and—when used for reordering—cuts
exposure faster than severity-only triage (RQ3).

Our recommendation is to not base vulnerability manage-
ment solely on base severity. Fuse EPSS with the context score
to obtain a triage queue that is both auditable and sensitive to
local deployment realities.

For future work, the largest expected lift comes from
code reachability analysis. Integrating static call-graphs and
request-path coverage (e.g., API routing to vulnerable sinks)
would down-weight unreachable code and up-weight paths
demonstrably exercised in the product, sharpening pctx and
further reducing noise in day-to-day triage. Complementary
directions include light calibration of tag weights on internal
incident data and tighter linkage to gateway/proxy policies to
reflect true exposure.
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