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Abstract—This study proposes a modular structure designed 

for pattern and word sequence recognition. The developed 

structure is based on an extended Hopfield neural network. The 

architecture of the word sequence recognition system employs 

octonionic modules, which are implemented as transversal filter 

banks. The structure can be used to recognize word sequences  

containing data represented as both real and complex numbers. 

The proposed procedure for synthesizing the word sequence 

recognition system may be useful for the development of 

computational intelligence systems. 
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I. INTRODUCTION 

IGH-DIMESIONAL and large-scale datasets have become 

essential in the application of signal processing. In 

particular, generative AI-driven models (e.g., high-dimensional 

imaging) pose technological challenges in the selection of 

suitable deep-learning architectures. Currently, transformers 

seemingly outperform other neural architectures, such as 

Recurrent Neural Networks (RNN) and Convolutional Neural 

Networks (CCN) [1, 2]. However, the structure of transformers 

has been proposed as a language model, while other applications 

have been suggested in the literature, e.g., vision transformers. 

It is understood that most deep learning algorithms are 

implemented within the theory of optimization methods. 

Nevertheless, the optimal network technology has not yet been 

determined. In this study, Hopfield Neural Networks are 

proposed as a neural computing architecture. In a previous 

study, we proposed an extended Hopfield neural network model 

defined by the following equation [3, 4, 5]: 

 

 𝒙̇ = (𝜂𝑾 − 𝑤0𝟏 + 𝜀𝑾𝑠)𝜽(𝒙) + 𝒅 (1) 

 

where: 𝑾 – antisymmetric orthogonal matrix,  

𝑾𝑠 – real symmetric matrix, 

𝟏 – identity matrix,  

𝜽(𝒙) – activation functions ( 𝜃(0) = 0 ), 
𝒅  – input vector, 

𝜀, 𝑤0, 𝜂 – parameters. 

 

The equilibrium state of network (1) takes the following form: 
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 (𝜂𝑾 − 𝑤0𝟏 + 𝜀𝑾𝑠)𝜽(𝒙) + 𝒅 = 𝟎 (2) 

 

Equation (2) constitutes the basis for universal machine 

learning models based on biorthogonal transformations, 

enabling the implementation of common learning systems 

functions. One of these functions is an associative memories 

implementation. The use of the system for reconstruction and 

recognition of distorted or noisy images by employing 

associative memory was described in previous studies [3, 4, 5]. 

Of note, (2) enables the processing of complex-valued vectors 

or images when the 𝑾𝑠 matrix becomes complex-valued. 

Moreover, for 𝜀 = 0, the solution of (2) provides the structure 

of the orthogonal transformations described below for signal 

processing. 

II. SIGNAL PROCESSING BASED ON OCTONIONIC MODULES 

One of the forms of the neural network in (1) can be written 

as follows: 

 

 𝒙̇ = (𝑾 − 𝑤0𝟏)𝜽(𝒙) + 𝒅 (3) 

 

where: 𝑾 – skew-symmetric orthogonal matrix,  

𝟏 – identity matrix,  

𝜽(𝒙) – activation functions,  

𝒅 – input vector, 

𝑤0 – parameter. 

 

The stable equilibrium state of network (3) sets up an 

orthogonal transformation: 
 

 𝜽(𝒙) = 𝒚 =
1

1+𝑤0
2 (𝑾 + 𝑤0𝟏)𝒅 (4) 

 

where: 𝑾2 = −𝟏 and y is a Haar spectrum of 𝒅, 

𝒚 – output vector. 

 

We can see that for 𝑤0 = 0 in (3), the result is the structure of 

lossless/Hamiltonian neural networks (HNN) [6]. 

 

Note 1  

A Haar spectrum is the result of a Haar transformation, where 

the transformation matrix {-1, 0, 1} is orthogonal but not skew-

symmetric. By contrast, the main challenge in HNN-based  
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orthogonal transformations is to create weight matrices, 𝑾, that 

are both skew-symmetric and orthogonal. The most suitable 

mathematical framework for this task can be an algebraic 

theory of Hurwitz-Radon matrices [7]. Hence, we show how 

Hurwitz-Radon matrices can be used in the construction of 

orthogonal transformations (filters) by defining matrices 𝑾 as 

the superposition of Hurwitz-Radon matrices. Moreover, only 

the matrix 𝑾8 has available eight free design parameters, 

𝑤0, 𝑤1, … , 𝑤7,  to synthesize any eight-dimensional orthogonal 

filter and solve the synthesis problem. Thus, an eight-

dimensional orthogonal transformation, referred to as an 

octonionic module, can be synthesized by the following 

formula: 

 

 𝒚 = 𝑯8𝒅 (5) 

 

where: 𝑯8 =
1

𝑎2
(𝑾8 + 𝑤0𝟏) - transformation matrix of the 

octonionic module, 

𝑎 = √∑ 𝑤𝑖
27

𝑖=0  - scaling parameter. 

 

The weight matrix 𝑾8 of octionic module is written as: 
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and 
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We can see that (7) is a solution for the following synthesis 

problem: 

For a given input vector d = [d1, … , d8]T and a given output 

vector y = [y1, … , y8]T, find the weight matrix 𝑯8 of an NN-

based orthogonal transformation (octonionic module). Matrix 

𝑯8, belonging to the family of matrices, can be obtained by the 

superposition of seven Hurwitz-Radon matrices. Moreover, 𝑯8 

can be observed as the best-adapted orthogonal basis. The 

output y in (5) is a Haar spectrum of the input vector d. Of note, 

an octonionic module sets up an elementary memory module as 

well. For example, designing an orthogonal filter using (6) and 

(7), performs the following transformation: 

 

 𝒚[1] =
1

𝑎2
(𝑾𝟖 + 𝑤𝟎𝟏)𝒎 = 𝑯8(𝒎) 𝒎 (8) 

 

where: 𝒚[𝟏] = [1,… , 1]𝑇 , i.e., synthesizing by (5) a flat Haar 

spectrum for the given input vectors, 𝒎, so that: 

 

 𝑤0 = [1,… ,1] ∙ 𝒎 > 0,   i. e.  ∑ 𝑚𝑖 > 08
𝑖=1  (9) 

 

yields an implementation of a real memory module, 

where 𝑯8(𝒎) is the orthogonal matrix.  

Thus, when: 𝒚 = 𝑯8(𝒎)𝒙, for 𝒙 ≠ 𝒎 and ‖𝒙‖ = ‖𝒎‖ ,then 

‖𝒚‖ > ‖𝒚[𝟏]‖. This inequality can be used as a valuable tool for 

pattern recognition. 

 

To summarize, the octonionic module is a universal building 

block producing very large-scale orthogonal filters and, 

specifically, memory blocks. Multidimensional octonionic 

module-based orthogonal filters can be generated using the 

family of Hurwitz-Radon matrices. Thus, a 16-dimensional 

orthogonal filter, for example, can be determined by the 

following matrix: 

 

 𝑯16 =

[
 
 
 
 
 𝑯8 [ 

−𝑤8 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝑤8

]

[
−𝑤8 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ −𝑤8

] 𝑯8
𝑇

]
 
 
 
 
 

 (10) 

 
where: 𝑤8 ∈ 𝑅, 𝑯8 - weight matrix of an octonionic module. 

 

Similarly, for the dimension 𝑞 = 2𝑘 , 𝑘 = 5, 6, 7, … all matrices 

can be determined as:  

 

 𝑯2𝑘 = [
𝑯2𝑘−1 𝟎

𝟎 𝑯
2𝑘−1
𝑇 ] + 𝑤𝐾 [

   𝟎 𝟏
−𝟏 𝟎

] (11) 

 

where: 𝑤𝐾 ∈ 𝑅, 1 - identity matrix. 

 

This analysis supports the following statements: 

- A q-dimensional HNN or a q-dimensional orthogonal 

basis can be created by a compatible connection of 

octonionic modules. 

- The basic function of orthogonal filters is the Haar 

spectrum analysis of the input data d. In particular, an 

orthogonal filter performs the memory function, as given 

by (8). 

 

Matrix 𝑯𝟐𝒌  can be designed as the best-adapted base by using 

(6) and (7) (i.e., given 𝒅 - data, 𝒚 - demanded spectrum). 

 

Note 2 

The synthesis problem formulated in (6) and (7) for real vectors 

𝒅 and 𝒚 can be used for complex-valued vectors as well, 

obtaining the complex-valued matrix 𝑯. This thereby facilitates 

signal processing with complex-valued wavelets and complex 

memories 𝑯8(𝒎), 𝒎 – complex-valued vector. 

III. PATTERN/SENTENCE RECOGNITION 

One of the tasks performed by the Computational Intelligence 

System, which can be classified as pattern recognition, obtains  
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the following formulation: In the given text, 𝑑(𝑘);  𝑘 =
0, 1, … , 𝑁, find a sentence that is encoded as a sequence of 

tokens. Without limitation of consideration generality, the 

searched sentence is assumed to have a length of eight complex 

numbers: 

 

 𝒅𝑝 = [𝑑𝑝1,, 𝑑𝑝2, … , 𝑑𝑝8, ]
𝑇
, 𝒅𝑝 ∈ 𝐶 (12) 

 

Synthesizing the matrix 𝑯8 of complex memory for given 𝒅𝑝, 

i. e., 𝑯8(𝒎) = 𝑯8(𝒅𝑝),  Equation (8) becomes: 

 

 𝒅(𝑘0) = [

𝑑(𝑘0)
𝑑(𝑘0 − 1)

⋮
𝑑(𝑘0 − 7)

] = 𝒅𝑝 (13) 

 

If for 𝑘 = 𝑘0 the input sequence fulfills (13), then the output 

spectrum is 𝒚[1] = [1, 1, … ,1]𝑇, meaning a searched sequence 

is recognized. The structure shown in Fig. 1 can be employed 

as the sequence recognizer. 

 

H8(dp)

D

D

d1(k) y1(k)

y2(k)

y8(k)

d2(k)

d8(k)

d(k) (tokens of text), k = 0, 1 ,     k0,k0+1,     k0+7,   

 
 

Fig. 1. Structure of the sequence recognizer 
 

A structure such as that shown in Fig. 1 can be parallel-

extended to search for multiple sentences in a given text 𝑑(𝑘). 

This structure can be seen as a connection of eight transversal 

(FIR) filters with the rows of matrix 𝑯8 as the impulse 

responses.  

 

Example 1 

The following computation illustrates the robustness of 

octonionic modules-based memory. 

For a given complex memory: 

 

𝒎 = [𝑒0.89j, 𝑒−1.06j, 𝑒−1.20j, 𝑒0.84j, 𝑒1.13j, 𝑒1.67j, 𝑒−1.57j, 𝑒−1.28j  ]
𝑇
 

 

The octonionic module is synthesized as shown in Fig. 2a.  

 

Transforming a randomly selected input vector gives: 

 
𝒙 = [𝑒−1.22j, 𝑒−0.08j, 𝑒0.18j, 𝑒−2.91j, 𝑒0.54j, 𝑒−1.24j, 𝑒  −0.06j, 𝑒0.42j]𝑇 

 

which obtains a spectrum: 

 
𝒚 = [1.53𝑒1.81j, 1.74𝑒−1.95j, 2.28𝑒−2.79j, 1.89𝑒0.99j, 0.86𝑒1.97 j,

2.40𝑒−2.16j, 1.41𝑒
−1.38j 

  , 1.34𝑒−2.71j]𝑇
 

 

as shown in Fig. 2b.  

As mentioned above, the inequality is fulfilled: 

 

 ‖𝒚[𝟏]‖ = 8 < ‖𝒚‖ = ∑ |𝑦𝑖|
8
𝑖=1 = 13,50 (14) 

 

The inequality from (14) has been noted in computational 

experiments with text encoded by hundreds of random tokens. 

This result, given the sentence 𝒅𝑝 recognition, provides 

justification for the key data for pattern recognition, i.e., 

‖𝒚[𝟏]‖ < ‖𝒚‖. 

 

a) 

H8(m)dp = m y[1]

1

1  
 

‖𝒚[𝟏]‖ = 8 

b) 

H8(m) y

y1

y8

dp = x

 
 

‖𝒚‖ = 13.50 

 
Fig. 2. Octonionic modules 

a) memorized vector as input 

b) random vector as input 

 

Moreover, it is worth noting how the parts of 𝒅(𝑝) sequences 

are transformed by the system from Fig. 1. This results in the 

maps for the following inputs: 

 

𝒙1 = [0, 𝑒0.89j, 𝑒−1.06j, 𝑒−1.20j, 𝑒0.84j, 𝑒1.13j, 𝑒1.67j, 𝑒−1.57j]𝑇 , 
‖𝒚1‖ = 11.67; 

 

𝒙2 = [𝑒−1.06j, 𝑒−1.20j, 𝑒0.84j, 𝑒1.13j, 𝑒1.67j, 𝑒−1.57j, 𝑒−1.28j, 0]𝑇 , 
‖𝒚2‖ = 10.30; 

 

𝒙3 = [𝑒0.89j, 𝑒−1.06j, 𝑒−1.20j, 0 , 𝑒1.13j, 𝑒1.67j, 𝑒−1.57j, 𝑒−1.28j]𝑇 , 
‖𝒚3‖ =  8.76; 

 

Thus:  

 

 ‖𝒚[𝟏]‖ < ‖𝒚1‖, ‖𝒚2‖, ‖𝒚3‖ (15) 

 

The inequality in (15) provides further evidence of the 

robustness of the sequence recognizer. 

The next experiment involved inserting a test sequence of 

normalized complex numbers (with a magnitude of one) into a 

sequence of d(k) random complex numbers. This test sequence 

was used, according to the procedure described in (5) – (8), for 

the synthesis of the octonionic module 𝑯8(𝒎). The sequence 

of random numbers containing the test sequence was then used 

as input into the module shown in Fig. 1. For each step, the 

norm of the output vector ‖𝒚‖ was calculated. Fig. 3 shows the 

change in the value of the norm ‖𝒚𝑘‖ in successive steps. When 
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the memorized sequence appears at the module's input, the 

norm of the output vector should reach its minimum value—in 

this case, 8. 

 
Fig. 3. Relationship between the value of the norm and the step number 

 

Based on the analyzed graph, it is evident that the desired 

sequence appeared at the input in step 51. 

IV. A PATH TOWARDS COMPUTATIONAL INTELLIGENCE 

MIMICKING DARWIN MACHINES 

As mentioned in preceding sections, synthesis procedures 

presented above can be relevant for computational intelligence. 

Moreover, the use of  complex or real valued octonionic 

modules gives rise to a neural network architecture mimicking 

the features of so-called Darwin machines, i.e., evolution 

processes led by recombination and selection forces[ . Indeed it 

is worth noting that forces as  antisymmetric (recombination) 

and symmetric (selection) components determine the structure 

of the extended Hopfield neural network [8, 9]. A Darwin 

machine network can be constructed by using the octonionic 

modules from Fig. 1. and Fig. 2. when the structure of sequence 

recognizer is augmented to form of selective perceptron, as 

shown in Fig. 4.  

 

H8(m)

 y1 

 y8 

 b (bias)

φ(v) 

v y

v

φ(v) 

φ(v) - activation 

function 

-Δ      0    Δ 

1

Δ – a parameter of ev. 
adaptation

x

 
Fig. 4. A selective perceptron (b = - 8) 

 

It is clear that induced local field of the perceptron i.e. number 

v fulfils: 

 

 v = ‖𝒚‖ + 𝑏 = ∑ |𝑦𝑖| + 𝑏8
𝑖=1  (16) 

 

Thus, assuming an appropriately selective activation function 

φ(∙), one obtains 𝑦 = 1 for input vector 𝒙 = 𝒎, and 𝑦 = 0 

otherwise (for 𝒙 ≠ 𝒎). The structure of the perceptron shown 

in Fig. 4 is scalable through the use of multidimensional block-

diagonal matrices. For example: 

 

 𝑯16(𝒎) = [
𝑯8(𝒎1) ⋮ 𝟎

⋯ ⋮ ⋯
𝟎 ⋮ 𝑯8(𝒎2)

] ,𝒎 = [

𝒎2

⋯
𝒎1

] (17) 

 

Hence the scaled-up structure (Fig. 5)  

 

H16(m) x

 y1 

 y16 

b

φ(v) 

v y

 
 

Fig. 5. Scalable perceptron structure (16-dimensional) 

 

Thus, the basic computational intelligence architecture, having 

the form of Darwin machine networks, is proposed in Fig. 6. 
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OUTPUT INPUT 
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Fig. 6. An architecture of a Darwin machine network 

 

It is worth noting that the architecture of the proposed neural 

network (Darwin machine network) is based on a scalable 

connection of selective specialized neurons. It is assumed that 

the selective activation function can be tuned. In addition to 

scalability, the network also offers an easy possibility of 

parallelization.  

To sum up, the structure shown in Fig. 6 constitutes an 

implementation of mappings in vector space with the following 

features: 

- Learning via synthesis of selective neurons. 

- Stability due to feed forward architecture without 

vanishing and exploding gradients. 

- Tokenization is performed using a word2complex.number 

model, which enables the construction of both a 

sentence2complex.vector model and an 

image.patch2complex.vector model. 

- Performing sequence to sequence tasks (seq2seq). 

 

Tokenization 

We propose a tokenization model based on the 

word2complex.number scheme. In this approach, each word in 

the vocabulary is represented by a complex number of the form 

𝑒𝑗𝜑𝑖 , where 𝑖 = 1,… , v. The token segmenter processes a raw 

text sentence and converts it into a sequence of tokens 

contained in the vocabulary. Consequently, the n-dimensional 

(e.g.,8 -,16-dimensional) complex memory 𝒎𝑖, illustrated in 

Fig. 6, encodes sentences consisting of words. This 

representation can be referred to as the 

sentence2complex.vector model. 
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Seq2seq tasks 

One of the most popular types of seq2seq tasks is Machine 

Translation (MT). A common training set for MT comes as 

aligned pairs of sentences. It is easy to see that the network from 

Fig. 6 can perform the MT task. Moreover, when the input 

sentence is not recognized, the output vector has a value 0 (“I 

do not know”). Data for MT has the form of sentence pair set 
(𝑥𝑛, 𝑧𝑛), 𝑛 = 1,… , v where for example 𝑥 = 𝑎 sentence in 

English and 𝑧 = 𝑎 sentence in German. Every sentence 𝑥𝑛 is 

assigned 8-dim complex vector 𝒎𝑖 and to every 𝑧𝑛 is assigned 

8-dim complex vector 𝒎𝑖̂.  

Hence 𝒎𝑖̂ = 𝑴𝑖𝒚[1], 𝑖 = 1, … , v 

where: 𝒚[1] = [1,… , 1]𝑇and 𝑴𝑖 is a transformation matrix of 

the octonionic module Eq.(5) (𝒎𝑖̂,𝒎𝑖 – aligned pairs). 

 

Classification 

Another important task for computational intelligence is the 

classification of sentences. It is easy to see that the network 

from Fig. 6 can be extended to a parallel structure, thus 

performing the function of classification (Fig. 7). 

 

Darwin 
Machine 
Network

D

D

seq. of tokens 

Darwin 
Machine 
Network

Output 
vectors
 class N 

Output
vectors
 class 1 

 
Fig. 7. The architecture of a classifier 

 

Reconstruction of incomplete sentences 

By a ‘damaged’ sentence we mean deletion of one word in a 

given input sentence. Such a numerical experiment is presented 

in (15) and named as robustness of the recognizer. To point out 

such a feature for selective perceptron from Fig. 4, the sequence 

of random complex vectors encoding incomplete sentences was 

used as input to this perceptron.  

 

Example 2 

To assess the robustness and detection capability of the 

selective perceptron model, a numerical experiment was 

performed. The experiment aimed to evaluate how the model 

responds to input disturbances and incomplete data patterns. 

During the tokenization process, a test vector 𝒙𝑡 was generated 

and used to learn the selective perceptron model:  

 

𝒙𝑡 = [𝑒2.731j, 𝑒0.524j, 𝑒−2.27j, 𝑒2.04j, 𝑒1.23j, 𝑒0.59j, 𝑒0.27j, 𝑒−1.45j]
𝑇
. 

 

To investigate the model’s resistance to disturbances,  modified 

vectors 𝒙𝑡 were created by removing one component from 𝒙𝑡: 

 

𝒙𝑡 = [0, 𝑒0.524j, 𝑒−2.27j, 𝑒2.04j, 𝑒1.23j, 𝑒0.59j, 𝑒0.27j, 𝑒−1.45j]𝑇 , 
 

𝒙𝑡 = [𝑒2.731j, 0 , 𝑒−2.27j, 𝑒2.04j, 𝑒1.23j, 𝑒0.59j, 𝑒0.27j, 𝑒−1.45j]𝑇 , 

 

𝒙𝑡 = [𝑒2.731j, 𝑒0.524j, 0 , 𝑒2.04j, 𝑒1.23j, 𝑒0.59j, 𝑒0.27j, 𝑒−1.45j]𝑇 , 
 

𝒙𝑡 = [𝑒2.731j, 𝑒0.524j, 𝑒−2.27j, 𝑒2.04j, 𝑒1.23j, 𝑒0.59j, 𝑒0.27j, 0 ]𝑇 . 
 

These corrupted vectors represent an incomplete or noisy 

version of the original input pattern. The corrupted vectors were 

embedded within a random sequence of complex numbers 

applied to the input of the selective perceptron model. The 

sequence of interest began at step 20.  

 
Fig. 8. Relationship between perceptron output and step number 

 

Figure 8 presents the relationship between the model output and 

the step number. In every instance where the distorted sequence 

appeared at the model input, the output value reached 1. 

Experiments were also conducted in which two or three 

components were removed from the test vector. In most cases, 

the selective perceptron correctly recognized the target symbol 

sequence; for instance, vector 𝒙𝑡 was accurately identified: 

 

𝒙𝑡 = [𝑒2.731j, 0 , 𝑒−2.27j, 𝑒2.04j, 𝑒1.23j, 0 , 𝑒0.27j, 0 ]𝑇 

 

for Δ = 5.5 (Fig. 4).     

 

When more components of the test vector are removed, the 

selection of the Δ parameter in the perceptron becomes crucial. 

If the value of this parameter is too high, incorrectly recognized 

sequences may occur, whereas if it is too low, the learned 

sequence may fail to be recognized. In summary, the selective 

perceptron model effectively detects the damaged vector on 

which it was trained, demonstrating a certain degree of 

robustness to input disturbances.  

V. CONCLUSION 

In this study, we briefly show the design/synthesis of real and 

complex wavelet bases for discrete finite and infinite-

dimensional vector spaces. The decomposition and 

reconstruction of an input signal in terms of wavelet basis is 

implemented via a transversal filter-bank architecture that 

employs octonionic modules as universal blocks. The primary 

objective of this study is to present the structure of a 

pattern/sentence recognizer. The proposed synthesis procedure 

can be valuable for computational intelligence. Moreover, the 

complex-valued octonionic modules give rise to neural networks 

architecture mimicking the features of Darwin machines. We 

claim that Darwin machine networks can be used as a framework 

for (non LLM) AI systems. But unlike standard neural network 

learning, we propose learning by synthesis. 
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