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Signal processing using octonionic modules —
a path towards a new computational
Intelligence model

Wieslaw Citko, and Wieslaw Sienko

Abstract—This study proposes a modular structure designed
for pattern and word sequence recognition. The developed
structure is based on an extended Hopfield neural network. The
architecture of the word sequence recognition system employs
octonionic modules, which are implemented as transversal filter
banks. The structure can be used to recognize word sequences
containing data represented as both real and complex numbers.
The proposed procedure for synthesizing the word sequence
recognition system may be useful for the development of
computational intelligence systems.
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I. INTRODUCTION

IGH-DIMESIONAL and large-scale datasets have become

essential in the application of signal processing. In
particular, generative Al-driven models (e.g., high-dimensional
imaging) pose technological challenges in the selection of
suitable deep-learning architectures. Currently, transformers
seemingly outperform other neural architectures, such as
Recurrent Neural Networks (RNN) and Convolutional Neural
Networks (CCN) [1, 2]. However, the structure of transformers
has been proposed as a language model, while other applications
have been suggested in the literature, e.g., vision transformers.
It is understood that most deep learning algorithms are
implemented within the theory of optimization methods.
Nevertheless, the optimal network technology has not yet been
determined. In this study, Hopfield Neural Networks are
proposed as a neural computing architecture. In a previous
study, we proposed an extended Hopfield neural network model
defined by the following equation [3, 4, 5]:

x=W —wyl+eW,)0(x)+d 1)

where: W — antisymmetric orthogonal matrix,
W — real symmetric matrix,

1 — identity matrix,

6(x) — activation functions (6(0) = 0),

d — input vector,

&, Wy, — parameters.

The equilibrium state of network (1) takes the following form:
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MW —wyl+eW)0(x)+d =0 2)

Equation (2) constitutes the basis for universal machine
learning models based on biorthogonal transformations,
enabling the implementation of common learning systems
functions. One of these functions is an associative memories
implementation. The use of the system for reconstruction and
recognition of distorted or noisy images by employing
associative memory was described in previous studies [3, 4, 5].
Of note, (2) enables the processing of complex-valued vectors
or images when the W, matrix becomes complex-valued.
Moreover, for € = 0, the solution of (2) provides the structure
of the orthogonal transformations described below for signal
processing.

Il. SIGNAL PROCESSING BASED ON OCTONIONIC MODULES

One of the forms of the neural network in (1) can be written
as follows:

k=W -w,1)0(x) +d 3)

where: W — skew-symmetric orthogonal matrix,
1 — identity matrix,

0(x) — activation functions,

d — input vector,

w, — parameter.

The stable equilibrium state of network (3) sets up an
orthogonal transformation:
0(x)=y=

1
1+wd

(W + wo1)d (@)

where: W2 = —1 and y is a Haar spectrum of d,
y — output vector.

We can see that for wy = 0 in (3), the result is the structure of
lossless/Hamiltonian neural networks (HNN) [6].

Note 1

A Haar spectrum is the result of a Haar transformation, where
the transformation matrix {-1, 0, 1} is orthogonal but not skew-
symmetric. By contrast, the main challenge in HNN-based
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orthogonal transformations is to create weight matrices, W, that
are both skew-symmetric and orthogonal. The most suitable
mathematical framework for this task can be an algebraic
theory of Hurwitz-Radon matrices [7]. Hence, we show how
Hurwitz-Radon matrices can be used in the construction of
orthogonal transformations (filters) by defining matrices W as
the superposition of Hurwitz-Radon matrices. Moreover, only
the matrix W4 has available eight free design parameters,
Wy, Wy, ..., W, to synthesize any eight-dimensional orthogonal
filter and solve the synthesis problem. Thus, an eight-
dimensional orthogonal transformation, referred to as an
octonionic module, can be synthesized by the following
formula:

y=Hgd ()

where: Hg = aiz(w8 + wy1) - transformation matrix of the
octonionic module,

a =/%7_,w? - scaling parameter.

The weight matrix Wy of octionic module is written as:

W= w, -ws -w, -w, 0 LW, Wy
ws w, -w, w, -w, 0 -w, w,
w, w, w, -w, -w, w, 0 -w,
:W7 Wy w w, -W; -W, w, 0 B (6)
and
[w,] (ve ve v ve ¥ Ve Vo Vel [d/]
w, Vo Vi Ve Vs Vs Vs Vs Vr| |ds
w, Vs Vi Vi Ve YV, Ve Vs Vs| |ds
wyl 1 Ve Vi Vo Vi Ve V: Vs Vs d,
w, 3 2\ Vs Vs VYV Ve Vi V2 Vi Vs d;
wo| &V v v v v v v v v |d,
W YV, Ve Vs Ve Vi Vi Vi V2 d7
LW | \ Ve Vr Ve Vs Vi Vi V2 Vi) _ds_ (7)

We can see that (7) is a solution for the following synthesis
problem:

For a given input vector d =[ds, ..., dg]" and a given output
vector y = [ys, ..., ys]", find the weight matrix Hg of an NN-
based orthogonal transformation (octonionic module). Matrix
Hg, belonging to the family of matrices, can be obtained by the
superposition of seven Hurwitz-Radon matrices. Moreover, Hg
can be observed as the best-adapted orthogonal basis. The
output y in (5) is a Haar spectrum of the input vector d. Of note,
an octonionic module sets up an elementary memory module as
well. For example, designing an orthogonal filter using (6) and
(7), performs the following transformation:

Yy = 2 (W +wol)m = Hy(m) m ®)
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where: yq; = [1, ..., 1]7, i.e., synthesizing by (5) a flat Haar
spectrum for the given input vectors, m, so that:

wo =1[1,..,1]-m>0, ie. Y2, m; >0 9)

yields an implementation of a real
where Hg(m) is the orthogonal matrix.
Thus, when: y = Hg(m)x, for x # m and ||x|| = ||m|| ,then
lyll > ||y |- This inequality can be used as a valuable tool for
pattern recognition.

memory module,

To summarize, the octonionic module is a universal building
block producing very large-scale orthogonal filters and,
specifically, memory blocks. Multidimensional octonionic
module-based orthogonal filters can be generated using the
family of Hurwitz-Radon matrices. Thus, a 16-dimensional
orthogonal filter, for example, can be determined by the

following matrix:
—wg 0
H8 [ E . E l
0 LRy —W8

0 ves —Wg

(10)

where:  wg € R, Hg - weight matrix of an octonionic module.

Similarly, for the dimension ¢ = 2%,k = 5,6, 7, ... all matrices
can be determined as:

H i1 0
H,. = 0

where: wg € R, 1 - identity matrix.

0 1
Hgk_l] + Wg 1 0 (11)

This analysis supports the following statements:

- A g-dimensional HNN or a g-dimensional orthogonal
basis can be created by a compatible connection of
octonionic modules.

- The basic function of orthogonal filters is the Haar
spectrum analysis of the input data d. In particular, an
orthogonal filter performs the memory function, as given

by (8).

Matrix H,« can be designed as the best-adapted base by using
(6) and (7) (i.e., given d - data, y - demanded spectrum).

Note 2

The synthesis problem formulated in (6) and (7) for real vectors
d and y can be used for complex-valued vectors as well,
obtaining the complex-valued matrix H. This thereby facilitates
signal processing with complex-valued wavelets and complex
memories Hg(m), m — complex-valued vector.

I1l. PATTERN/SENTENCE RECOGNITION

One of the tasks performed by the Computational Intelligence
System, which can be classified as pattern recognition, obtains
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the following formulation: In the given text, d(k); k =
0,1,...,N, find a sentence that is encoded as a sequence of
tokens. Without limitation of consideration generality, the
searched sentence is assumed to have a length of eight complex
numbers:

T
d, = [dy1,dpy . dps | ,dy €C (12)

Synthesizing the matrix Hg of complex memory for given d,,,
i. e., Hg(m) = Hg(d,), Equation (8) becomes:

d(ko)
d(ky) = |**0 7P| =4, (13)
dko ~7)

If for k = k, the input sequence fulfills (13), then the output
spectrum is y4; = [1,1, ...,1]T, meaning a searched sequence
is recognized. The structure shown in Fig. 1 can be employed
as the sequence recognizer.

d(k) (tokens of text), k=0, 1, ..., ko,ko+1, ..., ko+7, ...

(k) VK
d?(k 2(k
P gy 2
(k) | YK

Fig. 1. Structure of the sequence recognizer

A structure such as that shown in Fig. 1 can be parallel-
extended to search for multiple sentences in a given text d(k).
This structure can be seen as a connection of eight transversal
(FIR) filters with the rows of matrix Hg as the impulse
responses.

Example 1
The following computation illustrates the robustness of

octonionic modules-based memory.
For a given complex memory:

m= [60‘89], 8_1‘06], 6_1'20], 80‘84], 81‘13], 81'67], 6_1'57], e—1.28] ]

The octonionic module is synthesized as shown in Fig. 2a.
Transforming a randomly selected input vector gives:
x = [6—1.22j e~ 0.08] ,0.18] ,—-2.91j ,0.54] ,—124j , —0.06j eO.42j]T

which obtains a spectrum:

y = [1.53¢18Y,1.74e719%,2.28¢727%,1.89¢%%%, 0.86¢1%7],
240072161, 1,417 "3%  1.34¢ 2717

as shown in Fig. 2b.
As mentioned above, the inequality is fulfilled:

vl = 8 < llyll = T 1yl = 13,50 (14)

The inequality from (14) has been noted in computational
experiments with text encoded by hundreds of random tokens.
This result, given the sentence d, recognition, provides
justification for the key data for pattern recognition, i.e.,

vl < lIyll.

a)
o —>1
dp= m : Hg(m) e Y
o 1
[yl =8
b)
o—p| > yl
llyll = 13.50

Fig. 2. Octonionic modules
a)  memorized vector as input
b)  random vector as input

Moreover, it is worth noting how the parts of d(p) sequences
are transformed by the system from Fig. 1. This results in the
maps for the following inputs:

X, = [0' 60'891, 6_1‘06], 6_1‘20], 60‘84], €1'13], €1'67], 6_1'57]]T,

ly.ll = 11.67,
X, = [e—1.06j’ e—1.20j’ eo.s4j’ el‘l3j, el.67j’ e_1'57j, e—1.28j’ O]T’
llyIl = 10.30;
X3 = [e0.89j’ e—1.06j’ e—1.20j, 0, e1'13j, el.67j’ 6_1'57j, e—1.28j]T’
llysll = 8.76;
Thus:
vl <yl w21, sl (15)

The inequality in (15) provides further evidence of the
robustness of the sequence recognizer.

The next experiment involved inserting a test sequence of
normalized complex numbers (with a magnitude of one) into a
sequence of d(k) random complex numbers. This test sequence
was used, according to the procedure described in (5) — (8), for
the synthesis of the octonionic module Hg(m). The sequence
of random numbers containing the test sequence was then used
as input into the module shown in Fig. 1. For each step, the
norm of the output vector ||y|| was calculated. Fig. 3 shows the
change in the value of the norm ||y, || in successive steps. When
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the memorized sequence appears at the module's input, the
norm of the output vector should reach its minimum value—in
this case, 8.
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Fig. 3. Relationship between the value of the norm and the step number

Based on the analyzed graph, it is evident that the desired
sequence appeared at the input in step 51.

IV. APATH TOWARDS COMPUTATIONAL INTELLIGENCE
MIMICKING DARWIN MACHINES

As mentioned in preceding sections, synthesis procedures
presented above can be relevant for computational intelligence.
Moreover, the use of complex or real valued octonionic
modules gives rise to a neural network architecture mimicking
the features of so-called Darwin machines, i.e., evolution
processes led by recombination and selection forces[ . Indeed it
is worth noting that forces as antisymmetric (recombination)
and symmetric (selection) components determine the structure
of the extended Hopfield neural network [8, 9]. A Darwin
machine network can be constructed by using the octonionic
modules from Fig. 1. and Fig. 2. when the structure of sequence
recognizer is augmented to form of selective perceptron, as
shown in Fig. 4.

¢(v) - activation

ol ly| & (bias) funCTtiprv)

. 1
X Hg(m)

) y

O—pri

lys| 2 Toa ¥

v

A —a parameter of ev.
adaptation

Fig. 4. A selective perceptron (b = - 8)

It is clear that induced local field of the perceptron i.e. number
v fulfils:

v=Ilyll+b =31yl + b (16)

Thus, assuming an appropriately selective activation function
o(*), one obtains y = 1 for input vector x =m, and y =0
otherwise (for x # m). The structure of the perceptron shown
in Fig. 4 is scalable through the use of multidimensional block-
diagonal matrices. For example:
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Hg(m,) : 0 m;
Y
0 i Hg(my) m,;

Hence the scaled-up structure (Fig. 5)

Hi,(m) =

b
A

* | Hig(m)

|yi6 |
Fig. 5. Scalable perceptron structure (16-dimensional)

Thus, the basic computational intelligence architecture, having
the form of Darwin machine networks, is proposed in Fig. 6.

INPUT OUTPUT
[ |
seq. of tokens : o) :
T dUk) m; . o M i
° . . |
|
o . . |
I . L4 I
| . b . |
|
| . |
| my : L) : My |
T . . |
| |
| |
| |

Fig. 6. An architecture of a Darwin machine network

It is worth noting that the architecture of the proposed neural
network (Darwin machine network) is based on a scalable
connection of selective specialized neurons. It is assumed that
the selective activation function can be tuned. In addition to
scalability, the network also offers an easy possibility of
parallelization.

To sum up, the structure shown in Fig. 6 constitutes an
implementation of mappings in vector space with the following
features:

- Learning via synthesis of selective neurons.

- Stability due to feed forward architecture without
vanishing and exploding gradients.

- Tokenization is performed using a word2complex.number
model, which enables the construction of both a
sentence2complex.vector model and an
image.patch2complex.vector model.

- Performing sequence to sequence tasks (seq2seq).

Tokenization

We propose a tokenization model based on the
word2complex.number scheme. In this approach, each word in
the vocabulary is represented by a complex number of the form
e/%i, where i = 1,...,v. The token segmenter processes a raw
text sentence and converts it into a sequence of tokens
contained in the vocabulary. Consequently, the n-dimensional
(e.g.,8 -,16-dimensional) complex memory m;, illustrated in
Fig. 6, encodes sentences consisting of words. This
representation can be referred to as the
sentence2complex.vector model.
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Seg2seq tasks
One of the most popular types of seq2seq tasks is Machine

Translation (MT). A common training set for MT comes as
aligned pairs of sentences. It is easy to see that the network from
Fig. 6 can perform the MT task. Moreover, when the input
sentence is not recognized, the output vector has a value 0 (“1
do not know”). Data for MT has the form of sentence pair set
(xn, z,),m=1,...,v where for example x = a sentence in
English and z = a sentence in German. Every sentence x,, is
assigned 8-dim complex vector m; and to every z, is assigned
8-dim complex vector mnq,.

Hence m, = My, i = 1,...,v

where: yiq; = [1, ..., 1]7and M; is a transformation matrix of
the octonionic module Eq.(5) (71, m; — aligned pairs).

Classification

Another important task for computational intelligence is the
classification of sentences. It is easy to see that the network
from Fig. 6 can be extended to a parallel structure, thus
performing the function of classification (Fig. 7).

seq. of tokens Darwin
0 Machine | o Output
Network | ®  vectors
class 1
—o
[ ]
[ ]
[ ]
Darwin
Machine | o Output
Network | ® vectors
class N
—o

Fig. 7. The architecture of a classifier

Reconstruction of incomplete sentences

By a ‘damaged’ sentence we mean deletion of one word in a
given input sentence. Such a numerical experiment is presented
in (15) and named as robustness of the recognizer. To point out
such a feature for selective perceptron from Fig. 4, the sequence
of random complex vectors encoding incomplete sentences was
used as input to this perceptron.

Example 2
To assess the robustness and detection capability of the

selective perceptron model, a numerical experiment was
performed. The experiment aimed to evaluate how the model
responds to input disturbances and incomplete data patterns.
During the tokenization process, a test vector x; was generated
and used to learn the selective perceptron model:

X = [62'731j e0-524] 5=227) 52.04] ,1.23] ,0.59 ,0.27] e_1'45j]T.
To investigate the model’s resistance to disturbances, modified
vectors X, were created by removing one component from x,:

’ft — [O eO.SZ4-]' e—2.27]' eZ.O4-]' €1'23j eO.SQj €0'27j e—1.45j]T

=~ _ [»2731] —2.27j ,2.04) ,1.23j ,0.59] ,0.27j ,—1.45j1T
X = e 10,e ] @404 o123] 059 00.27] o nr,

— 2.731j ,0.524j 2.04j ,1.23j ,0.59j ,0.27j ,—1.45]1T
_[e ];e ],O’e ];e ];e ];e ],e ]] ’

R

= [e2731 g0524] =227} ¢2.04] o123 0059 027 1T

R

These corrupted vectors represent an incomplete or noisy
version of the original input pattern. The corrupted vectors were
embedded within a random sequence of complex numbers
applied to the input of the selective perceptron model. The
sequence of interest began at step 20.

15

Step 20
Output 1

1 4

0.5

Output of selective perceptron

\
0

0 [
Step number
Fig. 8. Relationship between perceptron output and step number

Figure 8 presents the relationship between the model output and
the step number. In every instance where the distorted sequence
appeared at the model input, the output value reached 1.
Experiments were also conducted in which two or three
components were removed from the test vector. In most cases,
the selective perceptron correctly recognized the target symbol
sequence; for instance, vector X, was accurately identified:

X = [82.731]‘ 0 e~227] g2.04j o123] ( 027 O]T
for A =5.5 (Fig. 4).

When more components of the test vector are removed, the
selection of the A parameter in the perceptron becomes crucial.
If the value of this parameter is too high, incorrectly recognized
sequences may occur, whereas if it is too low, the learned
sequence may fail to be recognized. In summary, the selective
perceptron model effectively detects the damaged vector on
which it was trained, demonstrating a certain degree of
robustness to input disturbances.

V. CONCLUSION

In this study, we briefly show the design/synthesis of real and
complex wavelet bases for discrete finite and infinite-
dimensional  vector spaces. The decomposition and
reconstruction of an input signal in terms of wavelet basis is
implemented via a transversal filter-bank architecture that
employs octonionic modules as universal blocks. The primary
objective of this study is to present the structure of a
pattern/sentence recognizer. The proposed synthesis procedure
can be valuable for computational intelligence. Moreover, the
complex-valued octonionic modules give rise to neural networks
architecture mimicking the features of Darwin machines. We
claim that Darwin machine networks can be used as a framework
for (non LLM) Al systems. But unlike standard neural network
learning, we propose learning by synthesis.
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