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Abstract—The video streaming industry is growing. There is
demand for high quality videos. These videos are stream to the
consumers with a promising quality and low latency. There are
various methods to measure the video quality of experience (QoE)
in a streaming environment. The main goal of this paper is to
provide an overview of methods and techniques to measure the
QOE in adaptive streaming domain. This paper provide overview
of metrics and QoE models which asses the video quality in
streaming. This paper also discusses the dataset exist in video
streaming. This paper highlights the challenges and future
strategies that should be considered building models for assessing
the video quality in adaptive streaming.
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. INTRODUCTION

HE is exponential growth in the use of video streaming

services. This trend likely continue to grow in the future.
A statistical trend [1] show that by year 2026 77 % of the
streaming applications will be video centric. The HTTP
Adaptive Streaming (HAS) is the popular industry for the
delivery of video in streaming environment [2] [3]. There are
two media delivery format, one is HTTP Live streaming (HAS)
and the second is Dynamic adaptive streaming over HTTP
(MPEG-DASH). In HAS media [4] delivery standard video is
encoded into the segments. The segment duration varies from 2
seconds to 15 seconds. The segments are encoded using various
bitrates and resolutions. These segments are stored on a
streaming server as shown in (Fig. 1). The client access the
video segments through adaptive bitrate (ABR) algorithm.
These ABR algorithm consider technical factors before
downloading the segments. These are network bandwidth,
buffer size and latency [5] .
The video streaming industry is growing which increases the
demand for video on demand (VOD) and Live streaming [6].
This trend also made service providers competition with each
other, The service providers promised to deliver high quality
services to the consumer and fulfill their expectations. The
service providers want o provide services for better quality of
experience (QoE). Measuring quality of experience is very
crucial. There is a requirement to build QoE models which are
based on network factors and asses the user QoE [5][7].
In Live streaming the video content is effected by latency. It take
time to record the content using camera and deliver it to the
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Fig. 1. DASH Network Environment

consumer. This delay have potential impact on the user viewing
experience. In Live streaming environment it is very
challenging to design ABR algorithms and other techniques to
minimize the latency [8][4][5]. The buffer capacity also
important factor to minimize latency. The buffer at client side
should be minimized which results lower latency. The ABR
algorithms should perform efficiently and adopt the network
conditions in efficient manner.

The article focuses on the overview of experimental procedure
measuring the video quality in adaptive streaming domain.
Moreover, the paper explains the cutting-edge methods and
evaluation strategies. In this work various methods will be
reviewed and analysed for the aptness of full high-definition
(FHD) and 4K video resolutions. The study responds on the
following research questions.

1) What are the strategies for setting the experiment in
adaptive streaming domain?

2) What methods are used to evaluate the video quality in
adaptive streaming?

The rest of the article is organized as follows. Section Il
describes the basics concepts of adaptive streaming. Section 11
mention the QOE models in adaptive streaming domain. Section
IV provides the details about ABR algorithms and its utilization
in adaptive streaming. Section V demonstrate the metrics used
to calculate the QOE in adaptive streaming. Section VI is
dedicated to the datasets developed specifically for adaptive
streaming. Section VIl summarize the paper, identifies the
research gaps, and proposes future research work in the adaptive
streaming domain.
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1. BACKGROUND

In this section, we will discuss the background information on
the methods evaluating the video quality in adaptive streaming.

A. Adaptive Streaming Technology

In adaptive streaming [5][2][9] the video sequence is encoded
at various quality levels and then further divided into segments.
The segments can be 2, 4, 8 or 10 seconds long in duration.
These segments are stored on the streaming server. The
information about the video content such as codec, bandwidth
and downloaded URLs, is provided in a file called media
presentation description (MDP). The client send request to the
server to download a video segment, and the request depends on
the bandwidth of the network.

B. QOE factors

There are some factors which potentially impact the video
quality in streaming [10]. The previous research studies
highlighted on rebuffering which caused inconvenience to the
user and impact the positive viewing experience [11]. The
buffer duration and the frequency are the two vital aspects of the
video streaming. The buffer duration and frequency should be
minimized by the adaptive streaming algorithms. The switching
quality is also important factor that impacts the video quality.
The amplitude of the switching quality seems affects the video
quality of experience (QoE) [12][13][14].

C. Measuring quality in adaptive streaming

The video quality alters after encoding and streaming to the
client. It is important to evaluate the video quality in streaming
in order to provide positive user experience [15][16]. There are
some metrics which can be used to measure video quality. These
metrics are grouped into subjective and objective [17]. Both
subjective and evaluation methods have pros and cons. The
subjective method is significant in assessing video quality. The
issue is subjective method is time consuming and expensive. On
the other hand, objective evaluation is fast and can be deployed
swiftly [18].

I1l. ADAPTIVE STREAMING QoE MODELS

There are different QoE models which are parametric, bitstream
based and hybrid based models. Here the bitstream model will
be explained in detail [19][20].

A research article by [21] proposed a QoE model which is based
on video segment quality, switching quality and streaming
rebuffering instances. The results demonstrate that the model
have low complexity and better performance.

A research work [22] demonstrates the quality assessment by

combining median with minimum quality in linear
representation.
Qoveral = & Qmedium T BQmin (1)

where o and B are constant values and the Qmedium and Qmin
are the median and minimum of the average obtained quality.
This model is tested, and the results illustrate the quality of
composing frequency of the non-periodic QP change video
session utilized in order to assess the video quality.

The research [23] presented QoE model by considering the
encoded video quality and the variation in the quality. The
quality is modelled as under.
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where a, and Bm are the input parameters in the model given by
equation (2) and Ngq , Fon and Fy,,, represents segment quality
bins, frequency of segment quality bins and frequency of quality
gradient bin in the model.

The model is tested against the standard parameters. The result
validates that the model is significant. The testing observation
shows that the switching has an impact on the QoE.

The model is extended and presented [24], the initial quality,
loading delay and rebuffer events taken into consideration. The
following equation derived which estimate the QoE:

QoEqyerann = lgs — Irg — liLp 3

In above equation I is the impairment factor which altered due
to the switching amplitude and the initial quality value. The Ixg
is the factor when rebuffer event occurred and I, is the factor
inherited due to initial delay. The model is tested and results
demonstrate that the switching amplitude depends on the
starting quality. The other important factor is the rebuffer event
which also have any impact on the overall QoE.

A model proposed by [25] includes media quality (Qyr) and
quality degradation caused by loading delay (I;,p) and rebuffer
(Igg)- The combination of all above parameters calculates:

MOSAVF;a = Qur — (Iip + Ire) 4)

A study carried out by [cumulative video 2019], proposes a
model that asses the cumulative video quality in adaptive
streaming. The model is tested against the defined parameters.
The result shows that the minimum window quality, last
window quality and the average window quality are the three
significant components of the cumulative quality model. This
model can be deployed in a real time environment. The model
can be calculated as follows:

CQM = Wl-WQmi + Wz-WQ[ + W3-WQaV (5)

where w; ,w, and w represent the weights of WQ ,;, WQ; ,
and WQ,y -

A model presented by [2], is based on stalling and switching
quality parameters. This model can be utilized as a foundation
for improving the ABR algorithms in the adaptive streaming
environment.

~

T _672x—1 4+017-495xF (6)

QoE = 5.67 X
Qmax Qmax
7 In(¢) 1 min(y, 15)
F—gXD’l&X( 6 +1.0)+§X<T (7)

IV. ABR ALGORITHMS AND QOE

In adaptive streaming ABR algorithms are responsible to adjust
the video bitrate based on the available network bandwidth. The
aim of the ABR algorithms are maximize the video quality and
provide better QoE.

A study is carried out [25] considering quality adaptation
strategies. The video segments are tested having various frame
rate, resolution and compression levels. The results demonstrate
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that quality adaptation impact the user persuasion and
potentially influence the QoE.

In a research work [26] framework is developed in order to
achieve a optimum quality while optimizing the bitrate and
encoding complexity. It is evident from the results that the file
size can be minimized, and the quality level maintained.

A model [27] is presented based on the heuristics ABR
algorithm. For validation both subjective and objective
evaluation performed.

The work presented in the [28] demonstrate DashReStreamer,
which creates adaptive streaming video in a real network. A
dataset is created and tested. In the dataset video clips created
based on video logs. These video logs gathered from the mobile
and wireless networks. The videos in the dataset can be utilized
in subjective evaluation.

The framework [29] based on the quality switching, loading
delay and stalls. A set of evaluation carried out to test the
framework specifically in adaptive streaming.

The author [5] develop model which can be used to evaluate
low- latency in the streaming. A variety of test cases created for
evaluation. These tests are performed using network traces,
media players and ABR algorithms. The test results reveal that
that LLL framework perform better as compared to earlier ABR
algorithms and maintaining high QoE.

The author [7] presented a model which can be utilized to
evaluate the latency and its impact on the QoE. The analysis is
carried out by evaluating ABR algorithms and its relation with
latency. In this work Dynamic algorithm perform well and
achieve the best QoE. The other algorithms also better
performed but caused stalling. The low latency algorithm L2A-
LLperform poor as demonstrated by the results.

The work [5] reported the evaluation of ABR algorithm Llama
and see the suitability of this algorithm in low streaming. The
Llama algorithm is evaluated against the low-latency
algorithms. The results demonstrated that Llama achieved the
lowest live Latency by some margin. The Llama also achieved
improved MOS which shows the Quality of experience.

V. QOE METRICS IN ADAPTIVE STREAMING

There are various metrics [5][7][30] used to measure video
quality of experience. The details are provided as follows.
Playback delay: As the video stream starts, the time between
first frame loading and displaying at the client end is called
playback delay. The more time it take to load the initial frame
its frustrating for the viewers.

Loss rate: In video streaming video packets could lost in the
network. The packets may loose in the buffering event. The
packet loss cause distortion and negatively impact the user
experience.

Buffer underflow: The situation when client request for video
frames and the buffer is empty this is called buffer underflow.
When buffer underflow occurs, it impact the video quality. The
rate of buffer underflow is crucial metric for assessing the video
quality in streaming domain. The ratio of underflow duration
and playback time is called the underflow time ratio.

Playout rate: The playout rate should be above threshold so it
impact the user experience positively. The playout rate is also
an important metric to be measured.

Video Quality: This is significant metric to calculate the
objective video quality. This metric is calculated as the
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arithmetic means of the indices ranges from 0 to 4, of the
segments quality.

Average Live Latency: This metric is calculated as a average
time between segment generation and the segment is displayed
at client device.

VI. DATASETS IN ADAPTIVE STREAMING

This section provides details about the datasets specifically
designed for adaptive streaming. The author [31] presented
dataset for simulation and real-time assessment of DASH
network. This dataset provides sequences encoded by H.264 and
H.265 encoders.

The dataset modeled in [32] provides the complex distorted
sequences which are generated using mobile phones. The
dataset contains 208 video sequences recorded using smart
phones. The subjective evaluation is carried out in this
experiment and the dataset is evaluated by using several IQA
and VQA algorithms.

A dataset is developed by [33] that consists of 20 RAW high-
definition (HD) source video sequences. The database includes
450 video sequences generated in streaming environment. The
streaming sessions are created through the ABR algorithms and
presented based on heuristics ABR algorithms. For the sake of
validation both subjective and objective evaluation were
executed.

The study in [34] demonstrated the dataset based on AVC,
HEVC, VP9, and AV1 codecs. This multi-codec dataset is
tested with different network profiles. The evaluation is
performed to measure the encoding efficiency in the DASH
streaming.

The research in [35] presents the high-definition video dataset
contains 32 source videos and 384 distorted version. The dataset
is based on High Efficiency Video Coding (HEVC). The
subjective and objective evaluation are performed for
validation.

The author [36] created mobile video quality database
containing 174 video sequences. The stalling events generated,
and subjective evaluation is performed on distorted video
sequences. The results presented showing the impact of factors
on the video quality of experience.

A database [37] presents the Ultra High Definition (UHD) video
sequences. The encoding was performed using H.264, HEVC
and VP9. Both subjective and objective evaluation is carried on
video sequences. The results analyzed to find the tradeoff
between bitrate, resolution, framerate and content.

The video dataset [38] developed contains high-definition
sequences. This dataset consists of 12 source video clips and 96
processed (PVSs) sequences. The subjective assessment is
performed to measure the quality of distorted videos.

The 4K resolutions dataset [39] presented encoded using AVC,
HEVC, VP9, AVS2 and AV1 codecs. The subjective method is
used to perform the evaluation on video sequences. Several
objective models are evaluated and results presented.

The open Ultra Video Group [40] developed a database
containing 4K resolution video sequences. These video
sequences are stored in RAW YUV format. This dataset is based
on HEVC and VVC encoding. The objective and subjective
evaluation is performed for video sequences.

An MPEG-DASH dataset [41] developed containing 8K video
content. The video content is encoded using AVC, HEVC, AV1
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and VVC codecs. The sequence is 322 seconds long and each
segment is 4 seconds and 8 seconds in duration.

The dataset [42] created from 4065 video segments of 2 seconds
duration. The resolution of the dataset is up to 4K (UHD). The
dataset is based on various metrics acquired from the segments
encoded with varying compression. The dataset extract
characteristics to color, space and time from the video segments.
The dataset contains sequences with 240, 360, 480, 720, 1080,
1440 and 4K resolutions.

VII. OPEN CHALLENGES

In this paper, we presented an overview of methods to evaluate
the video quality in adaptive streaming environment. The
assessment methods are analyzed comprehensively. The
existing QoE assessment models are reviewed and summarized.
The limitations of these models are also discussed in the sequel.
The quality switching, stalling and playback rebuffering impact
the video quality and user experience. A research investigates
an intelligent DASH approach for the H.264 coding and
proposes a heuristic QoE-aware adaptation scheme. There is a
requirement to investigate the impact of content, spatial and
temporal characteristics on the user’s QoE. The Table I, shows
the existing studies in video streaming domain.

The work carried out by [43][4][36] analyzed the impact of
stalling and quality switching on the user quality of experience.
As evident from the results the models need to be extended
incorporating additional parameters, video sequences and
switching patterns.

The research work in [44][45][12][5][7] measuring the impact
of low-latency ABR algorithms on the user quality of
experience. The research has limitations and there is a need to
carry it out for further evaluation by considering the ABR
algorithms and incorporate the QOE metrics. In the low-latency
streaming domain further investigation is required to improve
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the ABR algorithms. This study extendable to find the optimum
latency measurement.

There are articles by [36][43][14], [45][11] on switching
quality, rebuffering and playback interruptions and its impact on
the user quality of experience. Further analysis are required by
considering long and short stalls and the frequency of stalling
event in a streaming session. The impact of playback
interruption on the user perception also needs to be investigated
in detail. The ABR algorithms should be modified to minimize
stalling and balance latency and quality. Strategies should be
developed to investigate the impact of buffering on QOE in
various network conditions.

The work presented in [5][7][30] mention the video quality
metrics to measure the video quality of experience. Research is
needed that build models by combining the contextual and
subjective factors. The methods require to be developed in order
to assess QOE in live streaming environment. The existing
subjective assessment method should be improved to effectively
collect the data in streaming network. The model can be
developed to quantify QoE of stalling, switching, starting delay
and playback interruption.

The datasets developed and presented [31][36][33][34][41]
specifically for streaming domain. The existing datasets have
limitations in term of content, resolution and segments duration.
Various segments are needed. The different encoding are also
required.

The scalable video coding of H.264 and H.265 to be created.
The QoE models can be created and tested using the existing
datasets. The existing datasets can be extended to incorporate
the latest codecs such as AV2 and LCEVC codecs. The HDR
and higher frame rates (60FPS) should be incorporated in
existing datasets. As there is high demand for ultra-low-latency
streaming, existing datasets lacks metrics relevant to low-
latency streaming.

Table |
VIDEO STREAMING STUDIES
Reference QoE parameter Subjective/objective Metrics  Resolutions Focus of the study
Methodology

[46] Adaptation Subjective, Bitrate, 720p The paper focuses on quality adaptations and strategies.
frequence, stalling crowdsource MOS

[47] Quality switch, Subjective MOS Upto720p  This work focuses on assessing impact of adaptation on the QoE
stalling

[48] Bitrate switching, Subjective MOS Up to The research focuses on impairment functions and its impact on
stalling 1080p QoE

[49] Stalling Switching Subjective MOS Up to This paper presents evaluation of trade-off between stalling and

1080p initial video quality.

[50] Buffering, Subjective objective Bitrate, 480P This work present video quality metric for DASH streaming.
switching, MOS
interruption

[51] Quality switching, Subjective MOS 720p This research shown a QoE model for HTTP adaptive streaming.
initial delay, objective The QoE model is based on initial delay, quality switching and
Interruption interruptions.

[52] Quality switching Subjective MOS Up to This work focuses on resolution switching and its impact on the
Resolution 1080p QOE. This study presents that video content and resolution have

an impact on the user perception.
[53] Stalling Subjective, MOS 720p The study focuses on the subjective video quality assessment. In
Crowdsource this work the crowdsource subjective studies are described
[54] Quality Switching Subjective MOS Up to This research work compares the constant bitrate (CBR) and
1080p Constrained Constant Rate Factor (CRF) strategies. This work
assesses the impact of CBR and CRF on the video resolution.
[55] Buffering Subjective MOS 720p This work investigates the impact of synchronization and

buffering under a specific bandwidth profile.
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