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Abstract—The video streaming industry is growing. There is 

demand for high quality videos. These videos are stream to the 

consumers with a promising quality and low latency. There are 

various methods to measure the video quality of experience (QoE) 

in a streaming environment. The main goal of this paper is to 

provide an overview of methods and techniques to measure the 

QoE in adaptive streaming domain. This paper provide overview 

of metrics and QoE models which asses the video quality in 

streaming. This paper also discusses the dataset exist in video 

streaming. This paper highlights the challenges and future 

strategies that should be considered building models for assessing 

the video quality in adaptive streaming.  
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I. INTRODUCTION 

HE is exponential growth in the use of video streaming 

services.  This trend likely continue to grow in the future. 

A statistical trend [1] show that by year 2026 77 % of the 

streaming applications will be video centric. The HTTP 

Adaptive Streaming (HAS) is the popular industry for the 

delivery of video in streaming environment [2] [3]. There are 

two media delivery format, one is HTTP Live streaming (HAS) 

and the second is Dynamic adaptive streaming over HTTP 

(MPEG-DASH).  In HAS media [4] delivery standard video is 

encoded into the segments. The segment duration varies from 2 

seconds to 15 seconds. The segments are encoded using various 

bitrates and resolutions. These segments are stored on a 

streaming server as shown in (Fig. 1). The client access the 

video segments through adaptive bitrate (ABR) algorithm. 

These ABR algorithm consider technical factors before 

downloading the segments. These are network bandwidth, 

buffer size and latency [5] .  

The video streaming industry is growing which increases the 

demand for video on demand (VOD) and Live streaming [6]. 

This trend also made service providers competition with each 

other, The service providers promised to deliver high quality 

services to the consumer and fulfill their expectations. The 

service providers want o provide services for better quality of 

experience (QoE). Measuring quality of experience is very 

crucial. There is a requirement to build QoE models which are 

based on network factors and asses the user QoE [5][7].  

In Live streaming the video content is effected by latency. It take 

time to record the content using camera and deliver it to the 
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consumer. This delay have potential impact on the user viewing 

experience. In Live streaming environment it is very 

challenging to design ABR algorithms and other techniques to  

minimize the latency [8][4][5]. The buffer capacity also 

important factor to minimize latency. The buffer at client side 

should be minimized which results lower latency. The ABR 

algorithms should perform efficiently and adopt the network 

conditions in efficient manner. 

The article focuses on the overview of experimental procedure 

measuring the video quality in adaptive streaming domain. 

Moreover, the paper explains the cutting-edge methods and 

evaluation strategies. In this work various methods will be 

reviewed and analysed for the aptness of full high-definition 

(FHD) and 4K video resolutions. The study responds on the 

following research questions.  

1) What are the strategies for setting the experiment in 

adaptive streaming domain?  

2) What methods are used to evaluate the video quality in 

adaptive streaming?  

The rest of the article is organized as follows. Section II 

describes the basics concepts of adaptive streaming. Section III 

mention the QoE models in adaptive streaming domain. Section 

IV provides the details about ABR algorithms and its utilization 

in  adaptive streaming. Section V demonstrate the metrics used 

to calculate the QoE in adaptive streaming.  Section VI is 

dedicated to the datasets developed specifically for adaptive 

streaming. Section VII summarize the paper, identifies the 

research gaps, and proposes future research work in the adaptive 

streaming domain.  
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II. BACKGROUND 

In this section, we will discuss the background information on 

the methods evaluating the video quality in adaptive streaming. 

A. Adaptive Streaming Technology 

In adaptive streaming [5][2][9] the video sequence is encoded 

at various quality levels and then further divided into segments. 

The segments can be 2, 4, 8 or 10 seconds long in duration. 

These segments are stored on the streaming server. The 

information about the video content such as codec, bandwidth 

and downloaded URLs, is provided in a file called media 

presentation description (MDP). The client send request to the 

server to download a video segment, and the request depends on 

the bandwidth of the network.  

B. QoE factors  

There are some factors which potentially impact the video 

quality in streaming [10]. The previous research studies 

highlighted on rebuffering which caused inconvenience to the 

user and impact the positive viewing experience [11]. The 

buffer duration and the frequency are the two vital aspects of the 

video streaming. The buffer duration and frequency should be 

minimized by the adaptive streaming algorithms. The switching 

quality is also important factor that impacts the video quality. 

The amplitude of the switching quality seems affects the video 

quality of experience (QoE) [12][13][14]. 

C. Measuring quality in adaptive streaming  

The video quality alters after encoding and streaming to the 

client. It is important to evaluate the video quality in streaming 

in order to provide positive user experience [15][16]. There are 

some metrics which can be used to measure video quality. These 

metrics are grouped into subjective and objective [17]. Both 

subjective and evaluation methods have pros and cons. The 

subjective method is significant in assessing video quality. The 

issue is subjective method is time consuming and expensive. On 

the other hand, objective evaluation is fast and can be deployed 

swiftly [18]. 

III. ADAPTIVE STREAMING QOE MODELS 

There are different QoE models which are parametric, bitstream 

based and hybrid based models. Here the bitstream model will 

be explained in detail [19][20].   

A research article by [21] proposed a QoE model which is based 

on video segment quality, switching quality and streaming 

rebuffering instances. The results demonstrate that the model 

have low complexity and better performance.  

A research work [22] demonstrates the quality assessment by 

combining median with minimum quality in linear 

representation. 

QOverall  =  α Qmedium +   β Qmin (1)  

where α and β are constant values and the Qmedium   and   Qmin       

are the median and minimum of the average obtained quality. 

This model is tested, and the results illustrate the quality of 

composing frequency of the non-periodic QP change video 

session utilized in order to assess the video quality.  

The research [23] presented QoE model by considering the 

encoded video quality and the variation in the quality. The 

quality is modelled as under. 

QOverall  =  ∑ αnFQn

NSQ

n=1

+   ∑ βmF∇Qm

1

m=−M

 (2)  

where αn and βm are the input parameters in the model given by 

equation (2) and 𝑁𝑆𝑄  , FQn and 𝐹𝛻𝑄𝑚  represents segment quality 

bins, frequency of segment quality bins and frequency of quality 

gradient bin in the model.  

The model is tested against the standard parameters. The result 

validates that the model is significant. The testing observation 

shows that the switching has an impact on the QoE.  

The model is extended and presented [24], the initial quality, 

loading delay and rebuffer events taken into consideration. The 

following equation derived which estimate the QoE: 

QoEOverall = IQS − IRB − IILD (3)  

In above equation IQS  is the impairment factor which altered due 

to the switching amplitude and the initial quality value. The IRB  

is the factor when rebuffer event occurred and IILD  is the factor 

inherited due to initial delay. The model is tested and results 

demonstrate that the switching amplitude depends on the 

starting quality. The other important factor is the rebuffer event 

which also have any impact on the overall QoE.  

A model proposed by [25] includes media quality (QLT) and 

quality degradation caused by loading delay (IILD) and rebuffer 

(IRB). The combination of all above parameters calculates: 

MOSAVFinal = QLT − (IILD + IRB) (4)  

A study carried out by [cumulative video 2019], proposes a 

model that asses the cumulative video quality in adaptive 

streaming. The model is tested against the defined parameters. 

The result shows that the minimum window quality, last 

window quality and the average window quality are the three 

significant components of the cumulative quality model. This 

model can be deployed in a real time environment. The model 

can be calculated as follows: 

CQM = w1. WQmi + w2. WQ𝑙 + w3. WQav (5)  

where 𝑤1  , 𝑤2  and 𝑤3  represent the weights of WQmi, WQ𝑙  , 

and WQav.  
 

A model presented by [2], is based on stalling and switching 

quality parameters. This model can be utilized as a foundation 

for improving the ABR algorithms in the adaptive streaming 

environment. 

 

QoE = 5.67 ×
𝑞̅

𝑞𝑚𝑎𝑥

− 6.72 ×
𝑞̂

𝑞𝑚𝑎𝑥

+ 0.17 − 4.95 × 𝐹 (6)  

 

F =
7

8
× max (

ln(𝜙)

6
+ 1.0) +

1

8
× (

min(𝜓, 15)

15
) (7)  

IV. ABR ALGORITHMS AND QOE 

In adaptive streaming ABR algorithms are responsible to adjust 

the video bitrate based on the available network bandwidth. The 

aim of the ABR algorithms are maximize the video quality and 

provide better QoE.  

A study is carried out [25] considering quality adaptation 

strategies. The video segments are tested having various frame 

rate, resolution and compression levels. The results demonstrate 
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that quality adaptation impact the user persuasion and 

potentially influence the QoE.  

In a research work [26] framework is developed in order to 

achieve a optimum quality while optimizing the bitrate and 

encoding complexity. It is evident from the results that the file 

size can be minimized, and the quality level maintained.  

A model [27] is presented based on the heuristics ABR 

algorithm. For validation both subjective and objective 

evaluation performed.  

The work presented in the [28] demonstrate DashReStreamer, 

which creates adaptive streaming video in a real network. A 

dataset is created and tested. In the dataset video clips created 

based on video logs. These video logs gathered from the mobile 

and wireless networks. The videos in the dataset can be utilized 

in subjective evaluation.  

The framework [29] based on the quality switching, loading 

delay and stalls. A set of evaluation carried out to test the 

framework specifically in adaptive streaming.   

The author [5] develop model which can be used to evaluate 

low- latency in the streaming. A variety of test cases created for 

evaluation. These tests are performed using network traces, 

media players and ABR algorithms. The test results reveal that 

that LLL framework perform better as compared to earlier ABR 

algorithms and maintaining high QoE.  

The author [7] presented a model which can be utilized to 

evaluate the latency and its impact on the QoE. The analysis is 

carried out by evaluating ABR algorithms and its relation with 

latency. In this work Dynamic algorithm perform well and 

achieve the best QoE. The other algorithms also better 

performed but caused stalling. The low latency algorithm L2A-

LLperform poor as demonstrated by the results.  

The work [5] reported the evaluation of ABR algorithm Llama 

and see the suitability of this algorithm in low streaming. The 

Llama algorithm is evaluated against the low-latency 

algorithms. The results demonstrated that Llama achieved the 

lowest live Latency by some margin.  The Llama also achieved 

improved MOS which shows the Quality of experience.  

V.  QOE METRICS IN ADAPTIVE STREAMING 

There are various metrics [5][7][30] used to measure video 

quality of experience. The details are provided as follows.  

Playback delay: As the video stream starts, the time between 

first frame loading and displaying at the client end is called 

playback delay. The more time it take to load the initial frame 

its frustrating for the viewers.  

Loss rate: In video streaming video packets could lost in the 

network. The packets may loose in the buffering event. The 

packet loss cause distortion and negatively impact the user 

experience.  

Buffer underflow: The situation when client request for video 

frames and the buffer is empty this is called buffer underflow. 

When buffer underflow occurs, it impact the video quality. The 

rate of buffer underflow is crucial metric for assessing the video 

quality in streaming domain. The ratio of underflow duration 

and playback time is called the underflow time ratio.  

Playout rate: The playout rate should be above threshold so it 

impact the user experience positively. The playout rate is also 

an important metric to be measured.  

Video Quality: This is significant metric to calculate the 

objective video quality. This metric is calculated as the 

arithmetic means of the indices ranges from 0 to 4, of the 

segments quality.  

Average Live Latency: This metric is calculated as a average 

time between segment generation and the segment is displayed 

at client device. 

VI. DATASETS IN ADAPTIVE STREAMING 

This section provides details about the datasets specifically 

designed for adaptive streaming. The author [31] presented 

dataset for simulation and real-time assessment of DASH 

network. This dataset provides sequences encoded by H.264 and 

H.265 encoders.  

The dataset modeled in [32] provides the complex distorted 

sequences which are generated using mobile phones. The 

dataset contains 208 video sequences recorded using smart 

phones. The subjective evaluation is carried out in this 

experiment and the dataset is evaluated by using several IQA 

and VQA algorithms. 

A dataset is developed by [33] that consists of 20 RAW high-

definition (HD) source video sequences. The database includes 

450 video sequences generated in streaming environment. The 

streaming sessions are created through the ABR algorithms and 

presented based on heuristics ABR algorithms. For the sake of 

validation both subjective and objective evaluation were 

executed. 

The study in [34] demonstrated the dataset based on AVC, 

HEVC, VP9, and AV1 codecs. This multi-codec dataset is 

tested with different network profiles. The evaluation is 

performed to measure the encoding efficiency in the DASH 

streaming.  

The research in [35] presents the high-definition video dataset 

contains 32 source videos and 384 distorted version. The dataset 

is based on High Efficiency Video Coding (HEVC). The 

subjective and objective evaluation are performed for 

validation. 

The author [36] created mobile video quality database 

containing 174 video sequences. The stalling events generated, 

and subjective evaluation is performed on distorted video 

sequences. The results presented showing the impact of factors 

on the video quality of experience.  

A database [37] presents the Ultra High Definition (UHD) video 

sequences.  The encoding was performed using H.264, HEVC 

and VP9. Both subjective and objective evaluation is carried on 

video sequences. The results analyzed to find the tradeoff 

between bitrate, resolution, framerate and content. 

The video dataset [38] developed contains high-definition 

sequences. This dataset consists of 12 source video clips and 96 

processed (PVSs) sequences. The subjective assessment is 

performed to measure the quality of distorted videos.  

The 4K resolutions dataset [39] presented encoded using AVC, 

HEVC, VP9, AVS2 and AV1 codecs. The subjective method is 

used to perform the evaluation on video sequences. Several 

objective models are evaluated and results presented.  

The open Ultra Video Group [40] developed a database 

containing 4K resolution video sequences.  These video 

sequences are stored in RAW YUV format. This dataset is based 

on HEVC and VVC encoding. The objective and subjective 

evaluation is performed for video sequences.  

An MPEG-DASH dataset [41] developed containing 8K video 

content. The video content is encoded using AVC, HEVC, AV1 
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and VVC codecs. The sequence is 322 seconds long and each 

segment is 4 seconds and 8 seconds in duration.  

The dataset [42] created from 4065 video segments of 2 seconds 

duration. The resolution of the dataset is up to 4K (UHD). The 

dataset is based on various metrics acquired from the segments 

encoded with varying compression. The dataset extract 

characteristics to color, space and time from the video segments. 

The dataset contains sequences with 240, 360, 480, 720, 1080, 

1440 and 4K resolutions.  

VII. OPEN CHALLENGES  

In this paper, we presented an overview of methods to evaluate 

the video quality in adaptive streaming environment. The 

assessment methods are analyzed comprehensively. The 

existing QoE assessment models are reviewed and summarized. 

The limitations of these models are also discussed in the sequel.  

The quality switching, stalling and playback rebuffering impact 

the video quality and user experience. A research investigates 

an intelligent DASH approach for the H.264 coding and 

proposes a heuristic QoE-aware adaptation scheme. There is a 

requirement to investigate the impact of content, spatial and 

temporal characteristics on the user’s QoE. The Table I, shows 

the existing studies in video streaming domain.  

The work carried out by [43][4][36] analyzed the impact of 

stalling and quality switching on the user quality of experience. 

As evident from the results the models need to be extended 

incorporating additional parameters, video sequences and 

switching patterns.  

The research work in [44][45][12][5][7] measuring the impact 

of low-latency ABR algorithms on the user quality of 

experience. The research has limitations and there is a need to 

carry it out for further evaluation by considering the ABR 

algorithms and incorporate the QoE metrics. In the low-latency  

streaming domain further investigation is required to improve 

the ABR algorithms.  This study extendable to find the optimum 

latency measurement.  

There are articles by [36][43][14], [45][11] on switching 

quality, rebuffering and playback interruptions and its impact on 

the user quality of experience. Further analysis are required by 

considering long and short stalls and the frequency of stalling 

event in a streaming session. The impact of playback 

interruption on the user perception also needs to be investigated 

in detail. The ABR algorithms should be modified to minimize 

stalling and balance latency and quality. Strategies should be 

developed to investigate the impact of buffering on QoE in 

various network conditions.  

The work presented in [5][7][30] mention the video quality 

metrics to measure the video quality of experience. Research is 

needed that build models by combining the contextual and 

subjective factors. The methods require to be developed in order 

to assess   QoE in live streaming environment. The existing 

subjective assessment method should be improved to effectively 

collect the data in streaming network.  The   model can be 

developed to quantify QoE of stalling, switching, starting delay 

and playback interruption.  

The datasets developed and presented [31][36][33][34][41] 

specifically for streaming domain. The existing datasets have 

limitations in term of content, resolution and segments duration. 

Various segments are needed. The different encoding are also 

required.  

The scalable video coding of H.264 and H.265 to be created. 

The   QoE models can be created and tested using the existing 

datasets. The existing datasets can be extended to incorporate 

the latest codecs such as AV2 and LCEVC codecs. The HDR 

and higher frame rates (60FPS) should be incorporated in 

existing datasets.  As there is high demand for ultra-low-latency 

streaming, existing datasets lacks metrics relevant to low-

latency streaming. 

 

Table I 
VIDEO  STREAMING STUDIES

Reference QoE parameter  Subjective/objective 
Methodology 

Metrics Resolutions Focus of the study 

[46] Adaptation 

frequence, stalling  

Subjective, 

crowdsource 

Bitrate, 

MOS 

720p The paper focuses on quality adaptations and strategies.  

[47] Quality switch, 

stalling  

Subjective MOS Up to 720p This work focuses on assessing impact of adaptation on the QoE 

[48] Bitrate switching, 
stalling 

Subjective MOS Up to 
1080p 

The research focuses on impairment functions and its impact on 
QoE 

[49] Stalling Switching Subjective MOS Up to 

1080p 

This paper presents evaluation of trade-off between stalling and 

initial video quality.  
[50] Buffering, 

switching, 

interruption 

Subjective objective  Bitrate, 

MOS 

480P This work present video quality metric for DASH streaming.  

[51] Quality switching, 

initial delay, 

Interruption  

Subjective 

objective  

MOS 720p This research shown a QoE model for HTTP adaptive streaming. 

The QoE model is based on initial delay, quality switching and 

interruptions.   
[52] Quality switching  

Resolution  

Subjective MOS Up to 

1080p 

This work focuses on resolution switching and its impact on the 

QoE.  This study presents that video content and resolution have 

an impact on the user perception.  
[53] Stalling  Subjective, 

Crowdsource  

MOS 720p The study focuses on the subjective video quality assessment. In 

this work the crowdsource subjective studies are described 

[54] Quality Switching Subjective  MOS Up to 
1080p 

This research work compares the constant bitrate (CBR) and 
Constrained Constant Rate Factor (CRF) strategies. This work 

assesses the impact of CBR and CRF on the video resolution.  

[55] Buffering  Subjective  MOS 720p This work investigates the impact of synchronization and 
buffering under a specific bandwidth profile.  
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