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HybridGaze: A naturalistic dataset and
multistream model for robust gaze estimation

Michał Chwesiuk, and Piotr Popis

Abstract—Gaze estimation plays a central role in computer
vision and human-computer interaction, enabling applications in
assistive systems, attention modeling, and human-robot collab-
oration. However, existing datasets often rely on infrared-based
hardware, are collected in constrained laboratory environments,
or lack precise synchronization between stimuli and gaze data,
which limits model generalization to real-world conditions.

To address these challenges, we present HybridGaze - an
open-source eye tracking dataset collected using a Tobii tracker
combined with a standard RGB webcam. The recordings are
processed into eye images and facial landmarks, providing
synchronized gaze annotations and facial information across a
variety of visual tasks. By capturing gaze data in naturalistic
settings, the dataset reflects real-world visual behavior and serves
as a valuable benchmark for gaze estimation research.

Furthermore, we introduce GazeModalNet, a multi-stream
neural network that estimates gaze direction from two comple-
mentary sources: eye images and facial landmarks. Together, the
dataset and model establish a strong foundation for developing
robust, multimodal gaze estimation systems beyond laboratory
constraints.

Keywords—eye tracking; appearance-based gaze estimation;
feature-based gaze estimation; eye tracking dataset; Deep learn-
ing; data synchronization

I. INTRODUCTION

GAZE estimation is a key research direction in com-
puter vision and human-computer interaction (HCI),

with applications spanning assistive technologies, attention
analysis [1], and human-robot interaction [2]. Accurate gaze
estimation models rely on large-scale, high-quality datasets
that capture real user behavior under diverse conditions.
However, many existing datasets suffer from limitations: they
are often collected in constrained laboratory environments,
rely on specialized infrared hardware [3], or lack precise
synchronization between visual stimuli and eye movements
[4]. These constraints hinder the development of models that
generalize well to naturalistic, real-world settings.

In this work, we introduce a new dataset designed to bridge
this gap. It was collected using a Tobii eye tracker [5] in
combination with a standard RGB webcam, providing syn-
chronized gaze annotations and facial recordings. Participants
were instructed to fixate on predefined screen targets, enabling
us to establish ground-truth mappings between video frames
and gaze coordinates. This setup addresses a key challenge:
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while most state-of-the-art research leverages expensive in-
frared trackers [3], real-world applications typically operate
with commodity cameras. Our dataset therefore provides a
valuable resource for developing and benchmarking methods
that move closer to practical deployment.

Beyond the dataset itself, we release a modular software
framework for experiment design and data collection. The
framework integrates eye tracking hardware with webcams,
extracts facial landmarks in real time, and supports calibration
routines with live feedback. It is designed to be flexible and
extensible, allowing other researchers to adapt it to diverse
experimental protocols without rebuilding core components
from scratch.

We demonstrate the utility of the dataset through a set
of supervised learning experiments, training gaze estimation
models to regress gaze targets from eye and face images. Our
evaluation covers multiple model architectures and includes
cross-participant experiments, highlighting the dataset’s poten-
tial for calibration-free and person-independent gaze predic-
tion. These results establish strong performance baselines and
illustrate how the dataset supports research beyond controlled
calibration tasks.

To facilitate progress in this field, we are releasing both
the dataset and the collection framework to the research
community. While our benchmark evaluation focuses on the
calibration subset, the full dataset also contains naturalistic
viewing conditions, enabling exploration of new research
directions such as unconstrained gaze tracking and domain
adaptation.

II. RELATED WORKS

Eye tracking research has advanced significantly in recent
years, driven by improved datasets and more robust gaze
estimation models that perform reliably under real-world
conditions. Most approaches fall into two main categories:
appearance-based and feature-based methods. Appearance-
based techniques use raw RGB images of the face or eyes and
employ deep neural networks to directly predict gaze direction.
These methods require large-scale data but benefit from end-
to-end learning without relying on explicit assumptions about
eye geometry. Feature-based methods, in contrast, extract
interpretable geometric or visual features-such as eye corners,
pupils, or facial landmarks-and use these to infer gaze. While
they typically need less data and offer better interpretability,
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they are more susceptible to performance degradation un-
der varying lighting, occlusions, or anatomical differences.
Recently, hybrid approaches that combine image data with
geometric features have shown promising results, particularly
for person-independent gaze estimation.

Before the dominance of deep learning, most gaze estima-
tion systems relied on feature-based methods that explicitly
modeled the geometry of the eye. These approaches typically
detect key landmarks of the eye, such as pupil center (PC),
eyelid contours, or the reflection of light on the cornea,
known as the corneal reflection (CR) or glints. Gaze direction
is often inferred through geometric relationships between
these features, most commonly using the pupil-center-corneal-
reflection vector (PC-CR) [6], [7], to reduce the influence
of head movements during gaze estimation. These landmarks
are typically detected using infrared illumination to suppress
ambient light interference and enhance contrast, enabling
more accurate detection of pupil centers and glints. Classic
algorithms such as Starburst and Świrski’s model-based tracker
estimate pupil contours using intensity gradients and ellipse
fitting [8]. Other approaches employ polynomial regression or
3D geometric models of the eyeball-camera system to map
image-space features to screen coordinates [6]. While these
methods are highly interpretable and data-efficient, their per-
formance deteriorates under real-world conditions involving
variable illumination, occlusion, or non-frontal head poses.
To improve robustness, many systems introduced user-specific
calibration procedures that estimate personalized geometric
parameters or use multiple infrared light sources to obtain
more stable glint configurations [9]. Despite their accuracy
under controlled conditions, these systems are typically limited
to fixed setups with constrained head movements, which re-
stricts their applicability in unconstrained or mobile scenarios.
Nevertheless, the precision and interpretability of feature-
based approaches continue to make them valuable for medical,
automotive, and human-computer interaction research, where
controlled environments remain common. This transition from
handcrafted geometric models to data-driven representations
laid the foundation for the appearance-based methods dis-
cussed below and inspired recent hybrid models that combine
both paradigms.

Several studies continue to use MPIIGaze as a benchmark
for appearance-based gaze estimation [10]. It contains over
213,000 RGB images from 15 participants collected over
three months of natural laptop use. During data collection,
participants were periodically prompted to fixate on on-screen
targets, allowing the capture of natural variations in gaze di-
rection, head pose, and lighting conditions. GazeCapture [11]
expanded data diversity through large-scale crowdsourcing
using an iOS application. The resulting dataset-comprising
over 2.4 million frames from 1,474 users-introduced unprece-
dented variability in devices, lighting conditions, and head
poses. It enabled the development of iTracker, a CNN-based
model that combines facial images, eye crops, and a face
grid to predict gaze in real time on mobile devices without
calibration. RT-GENE [12] further advanced gaze estimation
by capturing unstructured, natural viewing behavior using eye
tracking glasses paired with a Kinect v2 camera. Motion

capture markers ensured accurate gaze annotations, and a
GAN-based approach was employed to reconstruct occluded
facial regions. Hybrid and multimodal datasets have since
gained attention for their ability to leverage both geometric and
appearance cues. ETH-XGaze [13] and Gaze360 [14] extended
gaze estimation to large-scale, 3D, and in-the-wild conditions,
enabling models to generalize across wide head-pose ranges.
These efforts underscore a growing shift toward datasets that
combine controlled calibration with naturalistic scenarios-an
approach also adopted in our work.

More recently, CrossGaze [15] improved 3D gaze estimation
using a dual-encoder architecture that processes face and eye
features separately before fusing them via cross-attention.
Trained solely on Gaze360, it achieved a mean angular error
of 9.94° on the challenging Front 180° subset, highlighting
strong cross-domain generalization. AGE-Net [16] explores
differences between left and right eyes using a dual-branch
network that leverages asymmetric features at multiple lev-
els. Zhao et al. [17] focus on domain generalization, using
auxiliary training branches and loss functions to improve
performance without requiring target domain data during
training. Privacy concerns in gaze tracking have also received
attention. PrivatEyes [18] combines federated learning with
secure multiparty computation to protect user privacy during
model training. They show that privacy-preserving methods
can match traditional approaches while preventing informa-
tion leakage. The same authors proposed DualView, a GAN-
based technique for measuring privacy risks in gaze data.
Additionally, Adebayo et al. [19] investigated self-supervised
pretraining for gaze estimation. Their approach leverages
representations learned on AFFECTNet and fine-tunes them on
MPIIFaceGaze and Gaze360, demonstrating improved person-
independent generalization under leave-one-person-out evalu-
ation.

Several comprehensive surveys have helped organize this
field. Lei et al. [20] review gaze estimation specifically for
mobile devices, covering the entire pipeline from camera input
to user interaction. They highlight mobile-specific challenges
like lighting variability and device movement, advocating for
lightweight and adaptive solutions. Bozkir et al. [21] provide
a large-scale review of eye tracking in VR and AR, covering
over 1,300 papers. Their survey creates a taxonomy of methods
and discusses privacy concerns, hardware limitations, and the
trade-offs between accuracy and real-time performance. They
emphasize the need for privacy-aware frameworks, especially
in immersive environments.

Recent work has also emphasized multimodal learning
strategies that combine eye, face, and contextual cues to
improve robustness under unconstrained conditions. However,
few datasets provide synchronized multimodal signals col-
lected with both dedicated eye tracking hardware and stan-
dard RGB cameras. HybridGaze aims to address this gap
by enabling the study of gaze estimation models that bridge
controlled and naturalistic scenarios.

III. METHODOLOGY

This chapter presents the complete experimental methodol-
ogy used to develop and evaluate the proposed gaze estimation
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framework. It describes the processes of feature extraction,
neural architecture design, model optimization, and perfor-
mance evaluation. The approach integrates both appearance-
based and geometric modalities to exploit complementary
visual and spatial information. Image features provide fine-
grained details of the eye region, while geometric landmarks
preserve global facial structure and gaze geometry. Together,
these representations form a hybrid learning pipeline designed
to improve accuracy, robustness, and person-independence in
gaze estimation across diverse conditions.

A. Feature Selection and Data Representation

To overcome the limitations of single-modality approaches,
the proposed method integrates both visual and geometric
features. Purely image-based models often degrade under large
head-pose variations or partial occlusions, whereas geometry
alone lacks the fine-grained information needed to capture
subtle eye movements. By combining the two modalities, we
exploit their complementary strengths to achieve more stable
and accurate gaze estimation. We use MediaPipe’s Face Mesh
[22] to extract facial landmarks(Figure 1). From these, we
select a subset of 40 key landmarks from the eyes region
specifically optimized for gaze estimation. This selective ap-
proach reduces computational complexity while retaining the
most gaze-relevant geometric information.

Fig. 1. MediaPipe Face Mesh showing 478 facial landmarks with emphasis
on periocular regions and iris tracking points.

B. Neural Architecture Design

At the core of the proposed framework lies a hybrid
deep learning model, GazeModalNet, specifically designed
to combine appearance-based and geometry-based cues for
gaze estimation. It integrates visual features extracted from eye
images with spatial information derived from facial landmarks,
enabling accurate gaze prediction even under challenging head
poses and illumination conditions. The network follows a mod-
ular, multi-stream design in which each stream specializes in a
distinct data modality, later fused into a unified representation
for final gaze regression.

The architecture of the model comprises three main
branches (Figure 2). The first branch processes the left and

right eye images through two convolutional neural network
(CNN) streams that extract appearance-based features. The
second branch encodes geometric information from selected
facial landmarks using a fully connected network. Finally,
the outputs of all streams are merged in a feature fusion
head that integrates appearance and geometry into a unified
gaze representation. The following sections describe each
component in detail.

Fig. 2. GazeModalNet architecture: binocular CNN streams for eye images, a
fully connected stream for geometric features, and a fusion network for final
gaze prediction.

a) Eye Processing Streams: Two independent CNN
branches process the left and right RGB eye images of size
(3× 224× 224). Both branches share weights and follow an
identical configuration consisting of four convolutional blocks
summarized in Table I. Each block includes a convolution
layer, batch normalization, ReLU activation, max pooling,
and dropout. The final block applies adaptive average pooling
followed by flattening to produce a compact feature represen-
tation for each eye.

TABLE I
OVERVIEW OF THE CNN EYE STREAM ARCHITECTURE SHOWING THE
LAYER CONFIGURATION AND OPERATIONS OF EACH CONVOLUTIONAL
BLOCK USED TO EXTRACT APPEARANCE-BASED FEATURES FROM EYE

IMAGES

Step Block 1 Block 2 Block 3 Block 4
Conv Conv(3 → 32) Conv(32 → 64) Conv(64 → 128) Conv(128 → 256)

BatchNorm BatchNorm2d(32) BatchNorm2d(64) BatchNorm2d(128) BatchNorm2d(256)
Activation ReLU ReLU ReLU ReLU

Pooling MaxPool2d(2) MaxPool2d(2) MaxPool2d(2) AdaptiveAvgPool2d((2,2))
Dropout Dropout2d(0.1) Dropout2d(0.2) Dropout2d(0.3) Flatten

b) Landmark Processing Stream: While MediaPipe pro-
vides 478 facial landmarks, only 40 key points from the
periocular region are selected for gaze estimation. The selected
landmarks are flattened into a 1-D vector of size 80 (40
landmarks × 2 coordinates) and processed through a fully
connected network composed of three dense layers, as shown
in Table II. This stream captures the geometric configuration
of the eyes and surrounding features while maintaining low
computational cost.

c) Feature Fusion Network: The outputs from both CNN
branches (each producing a 1024-dimensional feature vector)
and the 128-dimensional landmark embedding are concate-
nated into a single 2176-dimensional feature representation
(1024 + 1024 + 128). This combined vector is passed through
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TABLE II
STRUCTURE OF THE LANDMARK PROCESSING STREAM. THE FULLY

CONNECTED LAYERS TRANSFORM 2D LANDMARK COORDINATES INTO A
COMPACT EMBEDDING REPRESENTING THE GEOMETRIC CONFIGURATION

OF THE EYE REGION

Layer Linear BatchNorm1d Activation Dropout
Dense 1 Dense(80 → 512) BatchNorm1d ReLU Dropout(0.3)
Dense 2 Dense(512 → 256) BatchNorm1d ReLU Dropout(0.3)
Dense 3 Dense(256 → 128) BatchNorm1d ReLU –

the fusion head detailed in Table III, which performs high-level
integration and final gaze regression. Dropout regularization
and batch normalization are applied at each layer to prevent
overfitting and stabilize convergence.

TABLE III
STRUCTURE OF THE FEATURE FUSION NETWORK. THE CONCATENATED

APPEARANCE AND GEOMETRIC EMBEDDINGS ARE INTEGRATED THROUGH
FULLY CONNECTED LAYERS TO PRODUCE THE FINAL GAZE PREDICTION

Layer Linear BatchNorm1d Activation Dropout / Output
Dense 1 Dense(2176 → 512) BatchNorm1d ReLU Dropout(0.4)
Dense 2 Dense(512 → 256) BatchNorm1d ReLU Dropout(0.4)
Output Dense(256 → 2) – Sigmoid –

C. Training Protocol

The model is optimized using the AdamW optimizer with
an initial learning rate of η0 = 1 × 10−3. The learning rate
is reduced by half whenever validation performance plateaus,
subject to a lower bound:

ηt = max(ηmin, 0.5 · ηt−1), ηmin = 10−6.

To stabilize convergence, gradient clipping with a threshold
of τ = 1.0 is applied:

∇′ = min

(
1,

τ

∥∇∥

)
· ∇.

A hierarchical dropout strategy with rates ranging from 0.1
to 0.4 is employed across network components to improve
generalization. Early stopping is triggered if the validation loss
does not improve for ten consecutive epochs. The evolution of
training loss and learning rate is shown in Figure 3, illustrating
the stable convergence of the proposed model.

Fig. 3. Visualization of train loss and learning rate during model optimization.

D. Data Processing and Evaluation

All RGB eye images are resized to a fixed resolution of
224×224 pixels and retained in color format during training.

Facial landmark coordinates are normalized relative to the
screen resolution, while the eye images are normalized only by
scaling pixel values to the [0, 1] range. The dataset is divided
into training, validation, and test subsets.

Fig. 4. Step-by-step visualization of the preprocessing pipeline, including
landmark extraction and eye image cropping.

Unlike conventional eye tracking evaluations that report
angular accuracy and precision in degrees of visual angle,
such metrics cannot be reliably computed in our setup due
to variable participant distance from the laptop screen and
the absence of precise camera calibration parameters. Since
intrinsic and extrinsic parameters of the webcam relative to
the display were not fixed or measured for each session,
converting screen-space predictions into angular measures
would introduce uncontrolled geometric error. Moreover, the
recordings were conducted under heterogeneous real-world
conditions, with variations in lighting, head pose, and device
positioning, further limiting the consistency of angular metrics
across sessions. Therefore, we evaluate performance directly
in the normalized screen coordinate space using distance- and
error-based measures, which provide a stable and reproducible
basis for cross-subject comparison.

Model performance is evaluated using three error-based
metrics that jointly quantify the magnitude and robustness
of prediction errors: mean squared error (MSE), root mean
squared error (RMSE), and mean absolute error (MAE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

MAE =
1

n

n∑
i=1

|yi − ŷi|.

Additionally, the Euclidean distance between predicted and
true gaze coordinates is computed as

di =
√
(xi − x̂i)2 + (yi − ŷi)2,

where (xi, yi) and (x̂i, ŷi) denote the true and predicted
normalized screen positions, respectively.
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To evaluate spatial precision, we report the percentage of
predictions satisfying di < τ for thresholds τ of 1%, 5%,
10%, 15%, and 20% within the normalized screen coordinate
system. In this work, Accuracy@τ represents the proportion of
gaze predictions falling within a circular tolerance region of ra-
dius τ centered at the ground-truth gaze location. For example,
Accuracy@10% denotes the percentage of predictions within
a circle whose radius equals 10% of the normalized screen
dimension. This metric provides an interpretable measure of
spatial precision and directly relates to practical application
requirements.

Together, these preprocessing and evaluation procedures
ensure consistent normalization across samples and provide
a robust quantitative basis for performance comparison.

IV. DATASET ACQUISITION

This chapter describes the process of data acquisition,
recording setup, and statistical properties of the introduced
HybridGaze dataset. The proposed dataset was designed
to provide high-quality, synchronized gaze data that bridges
laboratory precision with real-world applicability. It combines
structured calibration tasks with naturalistic viewing behaviors,
enabling comprehensive training and evaluation of appearance-
based gaze estimation models. The synchronized acquisition
of gaze coordinates and facial video ensures a direct corre-
spondence between visual features and gaze targets.

A. Collection Procedure

Fifteen participants (9 male, 6 female, aged 21-52) took part
in structured recording sessions, each lasting approximately 15
minutes. Participants were seated at a viewing distance of 55-
65 cm from the laptop screen, consistent with standard gaze-
tracking setups.

Each recording session consisted of five consecutive phases
organized into three distinct types of tasks: two calibration
sequences, one smooth-pursuit task, and two natural viewing
segments. This combination of structured and free-viewing
conditions was designed to capture a wide spectrum of gaze
behaviors, ranging from precise fixations to spontaneous,
context-driven eye movements.

Phase 1: Calibration (3x3 grid). Participants fixated sequen-
tially on nine equally spaced targets presented on a 3 × 3
grid to establish an initial mapping between gaze coordinates
and screen positions. Each target was displayed for a fixed
duration while corresponding gaze samples and facial video
frames were recorded.

Phase 2: Free viewing (Movie 1). Participants watched
a five-minute segment of the open-source animated film
Big Buck Bunny (2008) [23], eliciting natural gaze dynamics
in response to motion and scene changes.

Phase 3: Smooth pursuit (Lissajous trajectory). A circular
marker followed a Lissajous trajectory defined by sine com-
ponents:

x(t) = 0.8 sin(at) + 0.1,

y(t) = 0.8 sin(bt) + 0.1,

where a = 3.0 and b = 2.0. The motion was remapped from
normalized screen-space to pixel coordinates, resulting in a
continuous and smooth tracking pattern.

Phase 4: Free viewing (Movie 2). A five-minute excerpt
from Sintel (2010) [24] introduced greater visual and emo-
tional diversity.

Phase 5: Calibration (5x5 grid). The session concluded with
25 fixation targets on a 5× 5 grid to refine spatial calibration
and assess session consistency.

All phases were presented in fullscreen mode with syn-
chronized acquisition from a Tobii eye tracker and an RGB
webcam (1280 x 720 px, 30 FPS). Frame timestamps ensured
precise alignment between gaze coordinates and video frames.
The Tobii tracker recorded 2D screen-space gaze points, while
facial data were captured simultaneously and processed with
MediaPipe Face Mesh to extract 478 landmarks per frame
(468 facial and 10 iris). Individual eye regions were cropped
around the outermost periocular landmarks with 10% padding
to preserve eyelid and skin context.

Recordings were performed on a 17.3-inch laptop
(2560 x 1440 px display) equipped with a Tobii eye tracker
and 720p webcam. Although the framework is hardware-
agnostic, all sessions used the same device to ensure consistent
geometry and viewing conditions. The setup was relocated
between participants while preserving identical hardware and
software configurations. Figure 5 shows an example of the
recording setup used during data acquisition.

Fig. 5. Spatial distribution of collected gaze data (left) and target marker
positions (right).

B. Dataset Characteristics

The acquired dataset contains 151,128 samples collected
from 15 participants across five session types. After filtering,
140,424 samples (92.9%) were retained as valid, while 10,704
samples (7.1%) were discarded due to negative coordinates.
An additional 0.8% of samples fall outside screen boundaries
but are not marked as invalid.

The spatial distribution of gaze samples and corresponding
target positions is shown in Figure 6. Participants contributed
comparable amounts of data (Figure 7), confirming balanced
participation across subjects.
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Fig. 6. Spatial distribution of collected gaze data (left) and target marker
positions (right).

Fig. 7. Distribution of collected samples across participants before (blue) and
after (green) filtering.

The varying complexity and duration of the five experimen-
tal phases are reflected in the session-wise statistics shown
in Figure 8. The free-viewing movie sessions (video1 and
video2) contain the largest number of samples due to their
longer duration and the continuous gaze dynamics they elicit.
Calibration phases (3×3 and 5×5) provide precisely annotated
gaze-target correspondences that serve as strong supervised
learning signals, while the smooth-pursuit phase captures
continuous temporal dynamics essential for modeling natural
eye movement trajectories.

Fig. 8. Sample distribution across different session types.

The HybridGaze dataset will be made publicly available
to promote reproducible research and enable benchmarking
across varied viewing conditions. By combining structured cal-
ibration, dynamic tracking, and naturalistic free-viewing data,
it provides a comprehensive foundation for developing and
evaluating hybrid appearance-based gaze estimation models.

V. IMPLEMENTATION

A. Data Collection and Eye Tracking

The eye tracking framework, implemented in Python, uses a
lightweight client-server architecture for synchronized capture
of gaze coordinates and facial imagery. Its core component,

the EyeTracker class, runs a TCP/IP socket server that
continuously receives gaze data in screen-space from the
hardware, ensuring low latency and easy device integration.
In parallel, the software captures RGB video streams from
a standard camera and synchronizes them with the gaze data,
enabling frame-accurate alignment between visual content and
eye movement. MediaPipe Face Mesh was used for real-time
landmark extraction, ensuring compatibility between training
and inference. Eye crops and landmark coordinates were
automatically normalized across screen resolutions and camera
configurations.

Calibration procedures are defined in external configuration
files specifying marker layouts, timing, and collection parame-
ters, providing flexibility while maintaining consistency across
sessions. The recorded gaze data serve both as ground-truth
labels for supervised training and as a reference for comparing
hardware- and model-based gaze estimation.

Data acquisition and processing ran in real time on a
laptop with an AMD Ryzen 7 5800H CPU, 32 GB RAM,
and an NVIDIA GeForce RTX 3070 GPU. This setup enabled
simultaneous 720p video recording, Tobii gaze capture, and
online landmark extraction with real-time feedback. The same
hardware was used for model inference, ensuring consistent
capture and evaluation conditions. Overall, the system supports
continuous acquisition and prediction at interactive frame
rates, suitable for both laboratory and portable use.

B. Experiment Tracking and Workflow Management
To manage the complexity of training multiple model con-

figurations and hyperparameter combinations, MLflow [25]
was integrated for experiment tracking. MLflow automatically
logs all training metrics, model parameters, and system details
for each training run. This functionality proved particularly
useful for monitoring gradient behavior and learning rate
schedules, enabling early detection and mitigation of training
instabilities. The built-in visualization tools further facilitated
cross-experiment comparison, helping to identify performance
trends and optimal configurations.

Fig. 9. MLflow experiment tracking interface displaying training metrics and
parameter evolution.

For data preprocessing orchestration, Prefect [26] was em-
ployed to coordinate different preprocessing configurations.
Rather than relying on multi-step pipelines, Prefect manages
the execution of various preprocessing tasks defined in YAML
configuration files. This approach streamlined experimentation
with alternative data preparation strategies while ensuring
reliable task scheduling and monitoring. The workflow or-
chestration provided by Prefect ensured consistency across
experimental runs and simplified scaling to larger datasets.
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Fig. 10. Prefect dashboard visualizing preprocessing workflow execution and
task monitoring.

VI. RESULTS

All experiments presented in this section were conducted
on a curated subset of the collected dataset, focusing ex-
clusively on samples from the 3 × 3 and 5 × 5 calibration
grids. Video-based data were excluded to ensure controlled
experimental conditions and computational efficiency. The
evaluation employs complementary metrics to assess model
performance from multiple perspectives. Distance-based mea-
sures include Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean Distance,
and Median Distance, which quantify prediction accuracy in
coordinate space. Accuracy metrics report the percentage of
predictions falling within circular tolerance regions at thresh-
olds of 1%, 5%, 10%, 15%, and 20% of screen dimensions,
as defined in Section III.

A. Resubstitution Performance

Resubstitution evaluation measures model performance on
the same data used for training, providing an upper-bound
estimate of achievable accuracy and indicating the degree of
potential overfitting. While not suitable for assessing gener-
alization, this analysis establishes a theoretical performance
ceiling under ideal conditions.

TABLE IV
RESUBSTITUTION PERFORMANCE: ERROR METRICS (TRAINING = TEST

SET)

Metric MSE RMSE MAE Mean Dist. Median Dist.
Value 0.0020 0.0444 0.0265 0.0430 0.0311

TABLE V
RESUBSTITUTION PERFORMANCE: QUANTITATIVE ERROR METRICS

CALCULATED ON THE TRAINING DATA. THESE VALUES REPRESENT THE
UPPER PERFORMANCE BOUND OF THE PROPOSED GAZE ESTIMATION

MODEL UNDER IDEAL (NON-GENERALIZED) CONDITIONS

Accuracy Threshold 1% 5% 10% 15% 20%
Value 12.09% 72.12% 94.15% 97.48% 98.58%

The resubstitution results demonstrate near-optimal perfor-
mance with high accuracy across all tolerance thresholds. As
shown in Table IV, the error metrics indicate precise and
low-variance predictions. Accuracy values (Table V) confirm
that over 94% of gaze estimates fall within 10% of screen
space, highlighting the model’s theoretical upper bound when
evaluated on training data.

B. Group-Based K-Fold Cross-Validation

Group-based K-fold cross-validation provides robust statis-
tical estimates of model performance through systematic data
partitioning while maintaining subject independence. Our 5-
fold validation divides the 15 subjects into 5 groups, ensuring
that each subject’s data appears in exactly one fold. This ap-
proach prevents data leakage between training and validation
sets while assessing model stability across different subject
groups within our dataset. To ensure computational efficiency
and fair comparison across folds, each model was trained for
a maximum of 20 epochs during cross-validation experiments.

TABLE VI
FIVE-FOLD GROUP-BASED CROSS-VALIDATION PERFORMANCE SUMMARY

Value MSE RMSE MAE Acc@5% Acc@10% Acc@20%
Mean 0.0545 0.2331 0.1674 4.72% 53.43% 76.43%
Std Dev 0.0067 0.0141 0.0179 2.50% 7.32% 9.70%

The cross-validation results show consistent model perfor-
mance across folds, with low standard deviation across error
and accuracy metrics. Moderate inter-fold variability reflects
natural differences between participant groups but indicates
overall model stability. As shown in Table VI, the model main-
tains robust performance at practical accuracy thresholds (10-
20%), while precision decreases for stricter criteria, reflecting
the inherent noise in gaze and landmark measurements.

Fig. 11. Cross-validation performance heatmap showing metric variance
across folds.

Fig. 12. Accuracy threshold analysis demonstrating model performance across
tolerance levels.

C. Leave-One-Subject-Out Evaluation

The Leave-One-Subject-Out (LOSO) protocol provides a
rigorous assessment of person-independent generalization. For
each of 15 participants, the model was trained on data from 14
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and tested on the remaining one, ensuring every subject served
once as the test case. This setup closely simulates real-world
conditions where the system must generalize to unseen users.

TABLE VII
LOSO EVALUATION: ERROR METRICS AVERAGED ACROSS FOLDS,

REPRESENTING PERSON-INDEPENDENT MODEL PERFORMANCE

Metric MSE RMSE MAE Mean Dist. Median Dist.
Value 0.0679 0.2606 0.0940 0.1412 0.0613

TABLE VIII
LOSO EVALUATION: ACCURACY AT MULTIPLE TOLERANCE THRESHOLDS

Threshold 1% 5% 10% 15% 20%
Accuracy 5.54% 48.12% 74.58% 82.80% 92.92%

LOSO results show a moderate increase in prediction
error compared to intra-subject and cross-validation setups,
as expected for person-independent testing. Still, the model
achieves over 74% accuracy within a 10% tolerance, con-
firming strong generalization to unseen users. Overall, the
proposed hybrid model demonstrates consistent performance
across all validation protocols, combining high accuracy with
practical generalization suitable for real-world deployment.

VII. CONCLUSION

This work introduced a new HybridGaze dataset for eye
tracking research and a hybrid deep learning model for
gaze estimation. The dataset combines structured calibration
sequences with smooth pursuit and natural viewing phases,
providing a comprehensive foundation for training and eval-
uating appearance-based and geometry-aware gaze predic-
tion approaches. Building on this dataset, the proposed hy-
brid architecture GazeModalNet integrates image-based and
geometry-based representations to predict gaze positions with
high precision. Experimental results demonstrated robust and
consistent performance across multiple validation protocols,
including cross-subject and LOSO evaluations, confirming the
model’s generalization ability.

Future work will expand the dataset to include more partici-
pants and environmental variability, enabling evaluation under
broader gaze behaviors. Enhancements such as head-pose
estimation can improve gaze estimation in real-life scenarios,
and real-time optimization through model compression will
further improve applicability to interactive systems.
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“Privateyes: appearance-based gaze estimation using federated secure
multi-party computation,” Proceedings of the ACM on Human-Computer
Interaction, vol. 8, no. ETRA, pp. 1–23, 2024.

[19] S. Adebayo, J. C. Dessing, and S. McLoone, “Slyklatent: A learning
framework for gaze estimation using deep facial feature learning,”
2024. [Online]. Available: https://arxiv.org/abs/2402.01555

[20] Y. Lei, S. He, M. Khamis, and J. Ye, “An end-to-end review of gaze
estimation and its interactive applications on handheld mobile devices,”
ACM Computing Surveys, vol. 56, no. 2, pp. 1–38, Sep. 2023. [Online].
Available: http://dx.doi.org/10.1145/3606947
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