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Efficient weapon detection using convolutional and
transformer-based Deep Learning Models

Kamil Gomulka

Abstract—Detecting weapons in public spaces remains a signif-
icant challenge in computer vision and public safety applications.
While deep learning models have achieved great progress in
general object detection, there is still a lack of focused studies
on class-specific detection tasks, in particular those using new
architectures such as transformers. In this work, a compre-
hensive evaluation of the state-of-the-art deep learning object
detection approaches is conducted, including convolution and
transformer-based architectures. Therefore, a dedicated large-
scale dataset that combines images from multiple public sources
is introduced, with a focus on three main weapons categories,
enabling a more targeted evaluation. Furthermore, in the paper,
the effectiveness of the best-performing architecture is further
improved with proposed modifications, including architectural
changes and determining a suitable loss function. Finally, the
obtained detection approach achieves superior detection results,
as evidenced by all performance criteria.

Keywords—weapon detection; object detection; deep learning;
transformers; convolutional neural networks

I. INTRODUCTION

W ITH an increase in the availability of surveillance
systems and emerging public safety concerns, there is

a need for automated and reliable threat detection. Among
potential security threats, the presence of weapons, including
knives, firearms, and explosives, creates an increased risk
in public places. Manual monitoring can be labor-intensive
and result in human error, highlighting the need for reliable
automatic detection systems. Therefore, to ensure their effec-
tiveness, computer vision-based object detection has become
a key component. In recent years, the rapid development of
deep learning models has greatly improved the capabilities of
such systems in a variety of scenarios, including the detection
of handguns and knives in video surveillance images [1].
However, challenges remain in achieving high accuracy in di-
verse environments and lighting conditions, as well as dealing
with difficult object appearances, especially in cases involving
uncommon or partially occluded weapon types. It highlights
the need for continuous refinement of existing models and
exploration of more effective deep learning architectures.

Despite significant progress, current weapon detection ap-
proaches still face several key challenges. Most existing object
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detection models are trained on general-purpose datasets such
as COCO [2] or Open Images [3]. These datasets include
80 classes, yet none are dedicated to specific weapon types.
As a result, models must be fine-tuned to effectively identify
such objects. Achieving high accuracy in challenging scenarios
remains difficult, often leading to unreliable detection results.
In addition, small everyday objects held by people can cause
false positives. Since the quality of training data directly
affects model performance, there is a growing demand for
custom datasets specifically designed for weapon detection.
This paper addresses this by preparing a combined dataset that
includes images of credit cards, wallets, and purses, which
allowed proper model training. Another important aspect is
that, although several studies have explored weapon detection,
the newer transformer-based model RT-DETRv2 has only been
examined in one study, which focused solely on handguns. In
contrast, this work extends the detection task to include three
categories: gun, knife, and grenade. Moreover, while recent
models have improved detection performance, there is still
limited analysis of how architectural choices—such as alterna-
tive backbones beyond those originally proposed—impact the
results. In this paper, two additional backbones are evaluated
and compared with those used in the original implementation.
Finally, specific loss functions are rarely examined in the
context of weapon detection. The experiments carried out
in this study offer a more comprehensive understanding of
how both architectural and training strategies affect overall
performance.

To address the mentioned gaps, in this paper, the detection
of three classes of weapons is examined using convolutional
and transformer-based models. The main contributions of this
paper are:

• a combined dataset with unified annotations for three
weapon categories (knife, gun, and grenade);

• adapting existing object detection models to detect spec-
ified classes not supported by pre-trained versions;

• comparison of multiple deep network architectures;
• successful modification of the best-performing RT-

DETRv2 architecture to further improve the obtained
detection result.
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II. RELATED WORKS

The task of weapon detection has seen a variety of re-
search efforts over the years, initially focusing on classical
machine learning methods and later shifting towards various
deep learning models. Early approaches to weapon detection
were focused on handcrafted feature extraction. For example,
Żywicki et al. proposed a method using Haar-like features to
detect knives while training a cascade classifier [4]. Although
the approach incorporated variations in illumination, back-
ground, and knife types, its detection performance remained
unreliable, which was reflected in a low true positive rate.
Another study by Tiwari and Verma [5] proposed a hybrid
method that combined color-based segmentation with FREAK
descriptors to detect firearms, achieving high initial accuracy.
In subsequent work, the authors incorporated SURF features
in an effort to improve the robustness to scale and orientation
variations, resulting in a noticeable increase in precision.
Despite some promising results, classical approaches have
become less common due to their high computational cost,
limited generalization capabilities, and reliance on domain-
specific feature engineering.

To address the limitations of traditional machine learning
methods that rely on handcrafted features, weapon detection
approaches have started adopting deep learning, particularly
convolutional neural networks (CNNs), which have become
a cornerstone in the field of object detection [6]. These
models enable automatic feature extraction directly from the
data, eliminating the need for manual feature engineering and
significantly improving detection accuracy. The first CNN-
based object detection frameworks were two-stage detectors.
In that approach, at first, the model generates region proposals,
which are areas that are likely to contain objects. In the second
stage, the proposed regions are classified into categories and
the bounding boxes are further refined to ensure precise
localization. A well-known example of such an architecture
is Faster R-CNN [7]. In the context of weapon detection
with two-stage detectors, Verma and Dhillon [8] proposed
an automatic handgun detection system based on Faster R-
CNN and a VGG-16 backbone. The approach used transfer
learning and was trained on the Internet Movie Firearms
Database, containing firearms in cluttered scenes. Their model
demonstrated strong performance in scenarios with occlusion
and complex backgrounds. However, reliance on CPU-based
training introduced serious computational limitations. Another
approach was presented by Pérez-Hernández et al. [9] in which
they proposed a hierarchical detection framework using a two-
level CNN architecture composed of binary classifiers. The
system focused on reducing false positives by isolating the
region selection and classification processes.

With the development of more efficient detection pipelines,
one-stage detectors such as YOLO [10] and RetinaNet [11]
gained popularity due to their faster inference times and
simpler architectures. These models combine region proposal
and classification into a single step, enabling strong real-time
performance. In the case of weapon detection, Salido et al.

[1] compared the YOLOv3 and RetinaNet object detectors
to identify pistols in surveillance footage. The study inves-
tigated whether incorporating information on the posture of
individuals holding weapons could reduce false detections.
Although the results were promising, the model still produced
a significant number of false positives and negatives as a result
of the small dataset size and low-resolution input images.
Another study focused on a variety of models, including region
proposal approaches as well as one-stage detectors such as
SSDMobileNetV1, YOLOv3, and YOLOv4. The models were
trained on a custom dataset of real-time surveillance CCTV
weapon detection [12]. In the end, YOLOv4 was identified as
the most effective outperforming other tested options.

Building upon the limitations of convolutional neural net-
work detectors, recent research has explored transformer-based
architectures, which have demonstrated strong performance in
various object detection tasks due to their ability to model
global context and handle complex spatial relationships. Un-
like CNN-based models, transformers process the entire image
as a sequence, enabling them to capture long-range depen-
dencies more effectively. In the domain of weapon detection,
these capabilities have shown promising results. For example,
a study by Rodrguez-Ortiz et al. proposed the use of RT-
DETR [13] for the detection of handguns in surveillance
systems [14]. The model leveraged a hybrid encoder to ensure
both high speed and accuracy when deployed on the Nvidia
Jetson AGX Xavier, demonstrating its suitability for real-
time edge applications. Another work explored the use of
the Swin Transformer in combination with models such as
Mask R-CNN and Cascade Mask R-CNN to detect a variety
of weapons, including pistols, rifles, and knives [15]. Although
there were still some limitations to the data, they determined
that transformer architectures have the potential to perform
better than conventional CNNs and, therefore, to be useful in
complex, limited-resource, or challenging contexts.

III. METHODOLOGY

Weapon detection in the real-world presents a complicated
challenge relating to size, occlusion, background noise, and
the visual similarity of objects such as concealed knives or
firearms to ordinary everyday items. The presented approach
attempts to address the challenges of detection by using
multiple datasets with varying weapon examples, as well as
using convolutional and transformer models to detect weapons.
The aim of this work is to evaluate the usability of state-of-the-
art models and explore possible means of their improvement.

A. Dataset

The dataset used consists of combined weapon-related im-
ages sourced from multiple datasets. Here, Roboflow datasets
were used [16]–[18], as well as the Soha dataset that focuses
on weapons and similar looking objects [19]. Since some
datasets included more specific weapon categories, such as
shotguns, rifles, or knife types, these categories were grouped
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into three main classes: gun, knife, and grenade. The merger
of weapon types used facilitates analysis by focusing on a
limited number of relevant classes. Furthermore, narrowing the
scope helps to reduce complexity during model training and
evaluation and allows for more targeted research. After that,
to ensure that the datasets do not contain duplicate or similar
images, a similarity comparison was performed, discarding
excessive images.

The dataset comprises 20,969 unique images. The gun class
is the largest, reflecting a wider variety of weapon types
compared to the other classes. Images originate from diverse
sources such as surveillance footage, video and movie frames,
and photographic collections, providing varied contexts and
visual conditions, as shown in Fig. 1, including:

• surveillance camera footage - simulating real-time mon-
itoring scenarios;

• video stills and movie frames - both from publicly
available recordings and cinematic scenes;

• photographic images - such as those taken from public
image databases or individual photographs.

Fig. 1. Examples from the combined dataset showing diverse weapons images

The image diversity ensures that the models are exposed to a
wide variety of lighting conditions, viewpoints, and resolutions
that are crucial to training a robust object detection model. To
prepare the dataset for training, it was divided into training,
validation, and testing subsets. Table I provides a detailed
breakdown of the distribution of images and weapon instances
between training, validation, and test splits, highlighting the
number of images, as well as the counts of individual instances
for each weapon class. From the data, it is clear that the
gun class is the most numerous in the dataset in terms of
both the number of instances and the number of images
containing guns. This reflects the greater diversity within this

class, which includes a wide range of firearms such as pistols,
rifles, and shotguns. The knife class, although less numerous
than guns, is still well represented, providing substantial
examples for model training. The distribution is consistent
across the training, validation, and test splits, maintaining a
good balance between classes, which is important for reliable
model evaluation.

TABLE I
DATASET STATISTICS BY SPLIT AND CLASS

Split Total Images Class Images Class Instances

Train 15,217 Gun: 8,765 Gun: 11,587

Knife: 3,579 Knife: 4,035

Grenade: 1,861 Grenade: 3,210

Validation 3,805 Gun: 2,224 Gun: 3,077

Knife: 896 Knife: 1,028

Grenade: 464 Grenade: 685

Test 1,947 Gun: 1,229 Gun: 1,675

Knife: 443 Knife: 482

Grenade: 199 Grenade: 317

Total 20,969 Gun: 12,218 Gun: 16,339
Knife: 4,918 Knife: 5,545

Grenade: 2,524 Grenade: 4,212

B. Detection Models

To effectively address the challenges of weapon detection
under diverse conditions, a set of object detection models rep-
resenting different architectures was evaluated. The selection
includes convolutional neural networks (CNNs), transformer-
based models, and a hybrid approach.

Among CNN-based approaches, models from the YOLO
family were selected due to their proven effectiveness in real-
time object detection tasks. In particular, YOLOv10 [20] and
YOLOv12 [21] were included as state-of-the-art representa-
tives, offering different trade-offs between inference speed and
detection accuracy. Each of them can be further selected based
on model size. During experiments, nano and small variants for
both versions were used. YOLOv10 combines high accuracy
with efficiency through a novel dual-label assignment strategy
during training (one-to-many and one-to-one), while inference
relies solely on one-to-one assignment, eliminating the need
for Non-Maximum Suppression (NMS). Its architecture in-
cludes an enhanced CSPNet backbone and Path Aggregation
Network for multi-scale feature fusion, alongside modules
such as partial self-attention and compact inverted bottlenecks
to improve feature representation and reduce computation.
YOLOv12 advances this design by incorporating an Area
Attention module, efficiently approximating global attention
on segmented feature maps, and residual ELAN connections
to stabilize training and improve gradient flow.

Transformers have also proven to be effective in object
detection tasks. The ability to capture global context and
therefore improve detection accuracy is crucial, especially in
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complex scenarios. The RT-DETR model is an example of
transformer-based architecture specifically designed for real-
time object detection [13]. Unlike CNN-based models, RT-
DETR employs a transformer encoder-decoder structure to
process images. First, the backbone extracts feature maps from
the input image. After that, the encoder processes the said
features, trying to capture contextual relationships, while the
decoder uses this information to predict bounding boxes and
class labels. RT-DETR proves to be effective in capturing the
contextual relationships between different objects within the
image. However, the model is more computationally demand-
ing than its CNN-based counterpart, which can be problematic,
especially for real-time deployment. For the tests performed,
RT-DETRv2 was used [22]. It is an enhanced version that
introduces several improvements. RT-DETRv2 optimizes the
training strategy by incorporating a deformable attention mod-
ule with a specified number of sampling points for different
feature scales. Allows for more efficient multiscale feature
extraction. Additionally, it replaces the original grid sample
operator with an optional discrete sampling operator. As a re-
sult, typical deployment constraints for DETR-based detectors
are removed.

The last chosen model is DETR with YOLO (DEYO), a
hybrid approach that combines the strengths of both convolu-
tional and transformer-based models [23]. DEYO builds upon
the YOLOv8 architecture by integrating a transformer layer
into its detection pipeline. This fusion aims to combine the
speed and efficiency of CNNs with the global context aware-
ness provided by transformers. DEYO employs a modified
YOLO backbone that is enhanced by a transformer decoder,
enabling the model to refine its detection predictions based on
global context rather than relying solely on local features.

C. Model Fine-tuning

The models were fine-tuned using the dataset introduced
during the experimentation. The fine-tuning process applies
pretrained models that were trained on large-scale datasets
with general object categories, to the unique visual features
of weapons. As a result, the models become more effective
in recognizing these specific classes and can also be extended
to detect entirely new ones. All training was performed on a
system running Ubuntu 22.04, equipped with an AMD Ryzen
Threadripper 3970X, 64 GB of RAM, and a single NVIDIA
RTX 2080 Ti GPU.

The YOLOv10, YOLOv12 and DEYO models were fine-
tuned using the Ultralytics framework with its default training
pipeline. Pre-trained models were trained for weapon-detection
task based on a custom dataset. Training was conducted for 30
epochs with an input image size of 640×640, a batch size of 8,
and a learning rate of 0.001. AdamW was used as an optimizer.
In addition, data augmentation was used with operations such
as mosaic, random translation, scaling, and color jitter. Some
more aggressive augmentations were discarded to preserve the
visual characteristics of the weapons.

The RT-DETRv2 model was trained for 30 epochs with
an input size of 640×640 and an effective batch size of 8.
AdamW optimizer was used with a base learning rate of
0.0001, employing different learning rates for the backbone
and normalization layers to better adapt the training. Mixed
precision training (AMP) and exponential moving average
(EMA) with a decay rate of 0.9999 were used to improve
training stability and convergence. To enhance the model, data
augmentations were applied during training. The data augmen-
tations included photometric distortions, zoom-out, IoU based
cropping, random horizontal flips, and multiscale resizing.

D. Architecture Modifications

Given that RT-DETRv2 achieved the highest performance,
this study aims to explore potential enhancements by altering
its architecture and loss function. This included examining
the effect of the choice of the backbone on the detection
performance. Four different backbones were used and tested.
ResNet-18 and HGNetv2, which are commonly used in re-
lated work and were tested in original RT-DETR paper, as
well as two additional architectures, EfficientNetV2 [24] and
ConvNeXt [25].

In addition to backbone modification, the loss functions used
during training were also adjusted. The original RT-DETR
model uses three main types of loss:

• classification loss – namely the Variational Focal Loss
(VFL), which measures the difference between the prob-
abilities of the predicted class and the true labels;

• box regression loss – quantifies how accurate the
predicted bounding box coordinates were compared to
ground truth, using as default L1 loss;

• IoU-based loss – evaluates the overlap between predicted
and ground truth bounding boxes, by default using Gen-
eralized Intersection over Union (GIoU).

Experiments with various loss functions were conducted to
determine which best balances classification and localization
accuracy. The main goal was to improve the regression of
the bounding box and the overall detection precision. Before
exploring IoU-based losses, some standard regression losses
were evaluated, including:

• L1 loss – penalizes the absolute difference between
predicted and true bounding box coordinates:

LL1 =
1

N

N∑
i=1

|ŷi − yi| , (1)

where ŷi is the predicted value, yi is the ground truth, and N

is the number of coordinates;

• L2 loss – penalizes the squared difference between pre-
dicted and true values, placing more emphasis on larger
errors:

LL2 =
1

N

N∑
i=1

(ŷi − yi)
2
; (2)
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• Huber loss – a loss that behaves like L2 when the error
is small and like L1 when the error is large, making it
less sensitive to outliers:

Lδ(ai) =

{
1
2a

2
i if |ai| ≤ δ

δ
(
|ai| − 1

2δ
)

otherwise,
with ai = ŷi − yi,

(3)
where δ is a threshold parameter, controlling the point where
the loss transitions from quadratic to linear.

Experiments with various loss functions were carried out
to determine which is best suited for training. The main goal
was to improve the regression of the bounding box and the
overall detection precision, especially in challenging scenarios.
Originally, GIoU was used, which is defined as:

LGIoU = 1− IoU +
|C \ (B ∪Bgt)|

|C|
, (4)

where B and Bgt denote the predicted and ground truth bound-
ing boxes, respectively. The term C represents the smallest
enclosing box that contains both B and Bgt, and IoU is the
standard Intersection over Union, calculated as the ratio of the
intersection area to the union area of the two boxes.

Instead of GIoU loss, alternatives were tested. First, DIoU
(Distance Intersection over Union) [26], which refines the
GIoU by taking into consideration the distance between the
centers of the predicted and ground truth bounding boxes. It
penalizes predictions whose centers are far apart, which can
accelerate convergence during training. DIoU is defined as:

DIoU = IoU− d2(c)

r2
, (5)

where d(c) is the Euclidean distance between the centers of
the two boxes, and r is the diagonal length of the smallest
enclosing box covering both predicted and ground truth boxes.

Another option, Efficient Intersection over Union (EIoU)
[27], extends DIoU by using penalties for differences in the
width and height of the bounding boxes. This makes the loss
more sensitive to changes in the shape and size of the box.
The formula for EIoU is as follows:

EIoU = IoU−
(
d2(c)

r2
+

(wp − wgt)
2

w2
en

+
(hp − hgt)

2

h2
en

)
,

(6)
where wp, hp are the width and height of the predicted box,
wgt, hgt are those of the ground truth, and wen, hen represent
the width and height of the enclosing box. By penalizing shape
mismatches, EIoU helps improve bounding box regression
beyond center alignment.

Spatial Intersection over Union (SIoU) [28] enhances lo-
calization loss by combining distance, shape, and angle dif-
ferences between bounding boxes. By introducing an angular
component, it penalizes rotations or skewed predictions rela-
tive to the ground truth, improving the localization of irregular
objects. The loss can be expressed as:

SIoU = IoU−
(
α · d(c)

r
+ β · shape + γ · angle

)
, (7)

where α, β, γ are weighting factors for center distance, shape
difference, and angle difference, respectively. This composite
metric improves both the alignment of position and orientation.

Fused Intersection over Union (FIoU) [29] is an IoU-based
metric designed to improve the regression of the bounding box
by incorporating both the overlap ratio and spatial alignment
between the predicted and ground truth boxes. It integrates
a normalized distance penalty - ℓ2, and the squared diagonal
length of the smallest enclosing box - ρ2, leading to a more
informative similarity measure. The metric is defined as:

FIoU = IoU− ℓ2
ρ2

. (8)

E. Evaluation Metrics

The model accuracy was evaluated using metrics commonly
used in object detection, with the primary one being mean
Average Precision (mAP). The chosen metric measures how
well a model balances precision and recall at different con-
fidence thresholds. Precision can be defined as the ratio of
correctly identified detections in relation to the total number of
detections. Recall, on the other hand, refers to the proportion
of true positive detections identified by the model, as shown
in Equation 9. TP (True Positives) represent the number of
correctly predicted objects, FP (False Positives) the number of
incorrect predictions where no object is present, and FN (False
Negatives) the number of cases where objects were missed.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (9)

The area under the precision recall curve is calculated
to obtain the Average Precision (AP), which represents the
overall precision and recall captured by the model:

AP =

∫ 1

0

Precision(Recall) dRecall. (10)

The AP has several variants depending on the chosen
IoU threshold, which defines how much overlap between the
predicted and ground truth boxes is required to consider a
detection as correct. The first and most commonly used version
is to choose a range of IoU thresholds (between 0.5 and 0.95
with a 0.05 step) and calculate the average. The value of
multiple IoU thresholds works to add additional nuance to
the AP as it evaluates the model through multiple lenses for
IoU overlap in their predicted bounding boxes versus ground
truth boxes. In addition to the overall AP across multiple
IoU thresholds, two specific cases are often reported, AP50
and AP75, specifically to characterize the models’ average
precision at fixed IoU thresholds of IoU equal to 0.5 and 0.75,
respectively. In doing so, context is maintained for the average
precision of the model under moderate restrictions.

The evaluation process can also consider the categories of
object size: small, medium and large—represented by the met-
rics APS, APM, and APL. It is based on weapons detected being
classified by the size of their bounding boxes. By computing
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the AP independently for the object size categories, additional
interpretation of the performance of the model across the
object scale can be provided. This interpretation might be
important to show the model’s strengths and weaknesses in
detection, where weapons were presented at differing sizes
based on the distance of the camera or angle.

Additionally, in multi-class detection scenarios, the overall
mAP is typically obtained by averaging the AP values across
all object classes:

mAP =
1

C

C∑
c=1

APc, (11)

where C is the total number of classes and APc is the
average precision computed for class c.

IV. EXPERIMENTAL RESULTS

A. Detection models

In this section, a comparative evaluation of various
deep learning models for weapon detection is presented.
The models include lightweight convolutional neural net-
works (YOLOv10n, YOLOv10s, YOLOv12n, YOLOv12s),
transformer-based RT-DETRv2, and a hybrid model referred to
as DEYOs and DEYOn, respectively. These models were fine-
tuned on the custom dataset described in the previous sections.

Table II summarizes the performance of each model using
the average precision both for all classes as a mean value
and separately for each weapon category. The results indicate
that RT-DETRv2 consistently outperforms all other models
across all metrics and weapon categories. It achieves the
highest overall mAP of 72.30% and mAP50 of 92.20%, with
particularly strong performance in the grenade class. Among
YOLO-based architectures, YOLOv12s performs best overall,
except the grenade class, where YOLOv12n performs better,
as seen in the AP50 value. DEYOn and DEYOs, while based
on earlier YOLOv8 variants, still deliver competitive results,
especially considering their reduced complexity. Overall, the
most difficult out of all three classes, for most tested models,
proved to be the knife class, especially considering the more
restrictive AP metric.

B. Visualization of Detected Regions

To investigate the decision-making process of the best-
performing model, Gradient-weighted Class Activation Map-
ping (Grad-CAM) was implemented in the RT-DETRv2 model
[30]. Grad-CAM enables visual interpretation of predictions
by highlighting the most influential regions in the input image
that contribute to a final detection. In this case, the Grad-
CAM visualizations were extracted from the last convolutional
layer of the model’s ResNet-18 backbone after fine-tuning on
the weapon dataset. Fig. 2 presents selected visualizations for
weapon detections made by the RT-DETRv2 model, where
each detected object achieved a confidence score above 0.1.
Subsequent subfigures illustrate the original image containing

multiple weapon instances and Grad-CAM heatmaps corre-
sponding to the detections of a gun, knife, and grenade,
respectively. The overlaid activation maps highlight the image
regions that the model considers most important when making
predictions.

To effectively show how the model makes decisions, three
different images were analyzed. In each image, two examples
of class are presented, one correct and one incorrect detection.
The first three visualizations presented in Figs. 2 (a)–(c) show
examples of gun detection. In the case of correct detection, the
model focuses on the central portion of the weapon, including
the barrel and trigger area, achieving high confidence scores
of 0.91. The example shown next to it is less certain and
results in detection with lower confidence. In that case, the
model incorrectly focuses on the knife blade and makes a
wrong prediction by choosing the wrong object. In the second
row, the images show that the model successfully identifies
the knife, taking into account both the blade and its sheath
positioned above it. However, in the incorrect case, only a
specific region of the sheath is highlighted, which misleads the
model into predicting that area as a knife. Finally, in the last
three subfigures, an example of grenade detection is shown. In
the correct case, the model clearly highlights the full silhouette
of the grenade. But in the incorrect example, although the
grenade is still partially visible in heatmap, the model also
looks at the surrounding elements, parts of a gun, a knife, and
an especially helmet above. The strong influence of the helmet
contributes significantly to the final decision, and in the end
it is the predicted bounding box returned by the model.

C. RT-DETRv2 Modifications Results

To further enhance detection performance, experiments
were conducted with different backbone architectures for the
RT-DETRv2 model. In addition, the effect of freezing the
backbone weights during fine-tuning was evaluated. Table III
presents a comparison of multiple backbone options, including
HGNet, ResNet-18, ConvNeXt, and EfficientNet, with and
without freezing. The results show that the choice of backbone
can affect the final performance. EfficientNet without freezing
yields the best overall performance, achieving the highest
mAP of 74.60%, outperforming other backbones in large and
medium object detection. This suggests that EfficientNet’s
modern architecture and compound scaling enable more pow-
erful feature extraction when allowed to adapt during training.
At the same time, one of the downsides of EfficientNet is
the worse result in small object detection presented by the
mAPs metric, where ResNet-18 outperforms it. This could
be due to ResNet-18’s more balanced feature map resolution
and inductive biases that benefit small object localization.
Experiments also show, that freezing the backbone weights
generally leads to decreased performance, especially evident in
EfficientNet and ConvNeXt. This emphasizes the importance
of the fine-tuning of the backbone of all networks when
incorporating architectures not previously adapted to the task
domain of RT-DETRv2
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TABLE II
COMPARATIVE EVALUATION OF COMPETING DEEP LEARNING MODELS

Model All Gun Knife Grenade
mAP[%] mAP50[%] AP[%] AP50[%] AP[%] AP50[%] AP[%] AP50[%]

DEYOn 61.02 82.41 62.48 86.35 54.78 83.65 65.80 77.22
DEYOs 62.85 85.46 61.75 85.96 56.74 87.59 70.06 82.83
YOLOv10s 66.72 86.37 67.13 88.30 61.29 87.56 71.73 83.26
YOLOv10n 63.43 83.75 64.51 86.68 56.36 83.19 69.42 81.38
YOLOv12n 66.33 87.33 67.33 88.81 58.24 86.98 73.43 86.21
YOLOv12s 67.30 87.42 68.36 89.59 59.54 86.83 74.01 85.86
RT-DETRv2 72.30 92.20 72.20 92.82 64.49 91.43 80.20 92.34

(a) Original image (b) Correct gun detection (c) Wrong gun detection

(d) Original image (e) Correct knife detection (f) Wrong knife detection

(g) Original image (h) Correct grenade detection (i) Wrong grenade detection

Fig. 2. Grad-CAM visualizations from RT-DETRv2 for detected objects.

Based on the result previously analyzed, Table IV focuses
on the impact of different regression loss functions. All exper-
iments were carried out using the same RT-DETRv2 architec-
ture with a ResNet-18 backbone. The Huber loss achieves the
highest overall mAP and mAP75 values. This can be explained
by its hybrid behavior. For small errors it acts quadratically,

enabling fast and stable convergence, while for larger errors
it switches to linear behavior, which reduces the influence of
outliers. This combination allows the model to balance pre-
cise localization and robustness, preventing large errors from
dominating the training process. The L1 loss, which penalizes
errors linearly regardless of their size, shows slightly lower
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TABLE III
INFLUENCE OF DIFFERENT BACKBONES ON THE PERFORMANCE OF RT-DETRV2

Model Backbone Freeze mAP[%] mAP50[%] mAP75[%] mAPS[%] mAPM[%] mAPL[%]

RT-DETRv2 HGNet ✓ 70.50 90.70 77.00 29.80 59.40 75.60
RT-DETRv2 HGNet × 70.20 90.30 76.70 28.40 59.50 75.50
RT-DETRv2 ResNet-18 ✓ 72.31 91.98 78.76 33.31 60.30 77.00
RT-DETRv2 ResNet-18 × 72.30 92.20 78.52 32.70 59.70 76.00
RT-DETRv2 ConvNeXt ✓ 65.02 86.03 70.33 26.99 58.31 69.78
RT-DETRv2 ConvNeXt × 71.40 92.20 77.70 27.00 58.30 77.10
RT-DETRv2 EfficientNet ✓ 26.00 44.09 25.96 10.27 14.98 30.13
RT-DETRv2 EfficientNet × 74.60 93.10 80.90 30.70 62.20 80.20

overall performance but achieves the best AP50 for the gun
class. This suggests that L1 encourages consistent localization
that performs well at looser IoU thresholds, focusing on stable
detection rather than finely tuned bounding boxes. This effect
is noticeable for classes with a larger number of bigger objects
like guns. Such behavior can be beneficial when the object
appearance is relatively large or well-defined. On contrary, the
L2 loss penalizes errors quadratically, strongly emphasizing
larger errors. This sensitivity can lead to aggressive correction
of mislocalized bounding boxes, which can be advantageous
for smaller and more difficult objects, such as grenades. The
higher AP75 scores in this category indicate that L2 loss
pushes the model to refine bounding boxes more precisely
at stricter overlap requirements. However, this can also make
the training more sensitive to noisy labels or outliers.

Table V presents a comparison of different IoU-based loss
functions used for the bounding box regression. The results
show a very similar performance with mAP values around
72.3%. In particular, GIoU achieved the highest AP50 for
the gun class (92.82%), while FIoU achieved the best AP
(72.27%) and AP75 (79.19%) for the same class. For the
knife category, SIoU outperformed other loss functions across
all thresholds. In the case of grenade detection, SIoU again
achieved the best results in AP50, while EIoU obtained the
highest AP (80.31%) and AP75 (84.83%). The DIoU loss
function performed the weakest in this evaluation, with a
global mAP of only 66.08% and significantly lower values
across all object categories. Overall, the results suggest that
IoU-based losses such as SIoU and FIoU can significantly
improve localization accuracy, particularly for challenging
object classes like a knife and a grenade.

Table VI compares different SIoU loss configurations for
the bounding box regression with variations in focal loss
parameters α and γ, and the weighting of the loss components.
The parameters α and γ influence how the model focuses on
difficult examples — a higher γ makes the loss concentrate
more on difficult samples, while α adjusts the balance between
positive and negative examples.

The results indicate that increasing the value of α leads to
the highest observed mAP50 score of 72.52%, although only
by a small margin. This suggests a limited but measurable
influence of the focal loss parameters. Furthermore, assigning

too much weight to the IoU loss component results in a slight
decrease in both the overall mAP and the mAP50 scores.
This highlights the importance of maintaining a balanced
contribution between the two components of the bounding
box regression loss. Overall, while the observed differences
are relatively small, the findings suggest that careful tuning
of loss weights and focal parameters can still offer marginal
improvements in detection accuracy.

V. CONCLUSIONS

The experiments carried out demonstrate that fine-tuned
object detection models can achieve high accuracy in recog-
nizing specific weapon classes. Among the methods evaluated,
the transformer-based detector RT-DETRv2 yielded the most
promising results, surpassing the performance of its convolu-
tional counterparts. This outcome aligns with recent trends
emphasizing the effectiveness of transformer architectures
in complex visual recognition tasks, thanks to their global
attention mechanisms and enhanced feature representation
capabilities.

Grad-CAM-based analysis provided valuable interpretabil-
ity by highlighting the most influential image regions that con-
tribute to the model predictions. This analysis helped identify
potential sources of incorrect detections, such as confusing
background clutter or the effect of visually similar objects. By
focusing on what the model specifically sees, we could further
enhance its ability to distinguish fine-grained visual details by
incorporating additional training images that help differentiate
commonly mistaken objects, such as helmets misclassified as
grenades. This approach could effectively mitigate some of the
misclassifications.

Further improvements in detection accuracy were achieved
by modifying the best-performing model, specifically by re-
placing the backbone network with more powerful architec-
tures and experimenting with alternative regression loss func-
tions tailored to bounding box prediction. These adjustments
underscore the importance of architectural design choices and
loss function optimization in maximizing detection perfor-
mance.

Future work may involve expanding the dataset to include a
broader range of weapon categories and explicitly addressing
the detection of concealed items. Moreover, enhancing model
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TABLE IV
INFLUENCE OF DIFFERENT LOSS FUNCTIONS ON THE PERFORMANCE OF RT-DETRV2 WITH RESNET-18

Loss Function
All Gun Knife Grenade

mAP[%] mAP50[%] mAP75[%] AP[%] AP50[%] AP75[%] AP[%] AP50[%] AP75[%] AP[%] AP50[%] AP75[%]

L1 Loss 72.30 92.20 78.52 72.20 92.82 78.20 64.49 91.43 73.08 80.20 92.34 84.58
Huber Loss 72.51 92.18 79.29 72.05 92.67 78.84 64.92 91.64 73.73 80.57 92.22 85.31
L2 Loss 72.27 92.39 79.24 71.84 92.74 78.74 64.32 91.67 72.91 80.65 92.75 86.07

TABLE V
INFLUENCE OF DIFFERENT IOU LOSS FUNCTIONS ON THE PERFORMANCE OF RT-DETRV2 WITH RESNET-18

Loss Function
All Gun Knife Grenade

mAP[%] mAP50[%] mAP75[%] AP[%] AP50[%] AP75[%] AP[%] AP50[%] AP75[%] AP[%] AP50[%] AP75[%]

GIoU 72.30 92.20 78.52 72.20 92.82 78.20 64.49 91.43 73.08 80.20 92.34 84.58
DIoU 66.08 89.80 71.72 67.18 91.35 74.20 56.98 88.90 63.19 74.10 89.15 77.77
EIoU 72.01 92.01 78.75 71.67 92.57 78.63 64.03 91.20 72.77 80.31 92.26 84.83
FIoU 72.30 91.17 78.38 72.27 92.14 79.19 64.55 90.23 72.25 80.08 91.14 83.69
SIoU 72.23 92.26 78.67 71.69 92.38 77.69 64.68 91.69 73.59 80.32 92.71 84.76

TABLE VI
INFLUENCE OF DIFFERENT LOSS CONFIGURATIONS FOR SIOU ON THE PERFORMANCE OF RT-DETRV2 WITH RESNET-18

Loss VFL Params Loss Weights All Gun Knife Grenade
α γ wvfl wbbox wsiou mAP[%] mAP50[%] mAP75[%] AP[%] AP50[%] AP75[%] AP[%] AP50[%] AP75[%] AP[%] AP50[%] AP75[%]

0.5 2.0 1 5 2 72.29 92.08 78.62 71.95 92.47 78.24 64.75 91.38 73.39 80.18 92.39 84.23
0.5 3.0 1 5 2 71.96 90.97 77.88 71.97 92.19 78.56 63.56 89.18 70.54 80.34 91.56 84.54
0.9 2.0 1 5 2 72.42 92.08 79.12 72.15 92.86 79.05 64.54 90.90 73.43 80.57 92.48 84.87

0.75 3.0 1 5 2 72.52 91.52 79.54 72.30 92.39 78.89 64.80 90.50 73.01 80.47 91.67 86.73
0.75 2.0 1 5 2 72.23 92.26 78.67 71.69 92.38 77.69 64.68 91.69 73.57 80.32 92.71 84.76
0.75 2.0 1 1 1 72.27 92.46 78.72 71.68 92.55 78.31 64.10 91.43 72.22 81.04 93.42 85.64
0.75 2.0 1 1 5 72.38 91.43 79.85 71.89 92.42 78.97 64.65 90.64 74.41 80.59 91.25 86.18
0.75 2.0 1 2 5 72.31 91.46 79.10 71.90 92.14 78.22 65.14 91.06 74.13 79.87 91.19 84.94
0.75 2.0 1 5 5 72.16 91.34 78.37 72.11 92.20 78.77 64.67 91.34 72.89 79.70 90.47 83.46

robustness against false positives caused by visually similar
everyday objects and integrating complementary information
from multiple backbones or other human detection approaches
represent promising directions for further research.
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