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Abstract—Thermal imaging is increasingly employed for 

navigation in challenging conditions such as dense smoke or fog. 

However, the limited availability of thermal images compared to 

RGB data makes training deep learning models, such as 

Convolutional Neural Networks (CNNs), significantly more 

difficult and often yields unsatisfactory results. Vision-Language 

Models (VLMs), due to their ability to perform tasks without 

extensive retraining or with only a small number of training 

samples, hold the potential to overcome current limitations in 

thermal imaging applications. This paper introduces a method 

leveraging VLMs to reduce the impact of reflections in thermal 

images on object detection accuracy, with a particular focus on 

human detection. The proposed approach improves the F1-score 

from 0.83 to 0.97 on a dedicated evaluation dataset, outperforming 

a baseline solution based solely on the widely used YOLOv11 

model. Furthermore, we investigate the effects of quantization on 

various open-source VLMs, analyzing their performance, 

processing speed, and memory requirements.  

 

Keywords—Detection accuracy; Convolutional Neural 

Networks; Vision-Language Models 

I. INTRODUCTION 

HERMAL imaging has become an increasingly important 

sensing technology, particularly in scenarios where other 

sensors fail. One notable application is in firefighting 

operations, where dense smoke severely limits visibility. 

Thermal cameras allow firefighters to navigate burning 

buildings more effectively, facilitating faster access to  

victims [1]. Similarly, search-and-rescue robots are often 

equipped with thermal cameras to conduct reconnaissance in 

hazardous environments and support emergency operations [2]. 

Another practical use case is in the automotive domain, where 

thermal cameras enhance visibility in dense fog, enabling the 

detection of pedestrians or animals on the road and thereby 

improving traffic safety [3]. 

With the rapid advancement of computer vision, machine 

learning - especially deep learning approaches such as 

Convolutional Neural Networks (CNNs) - has become the 

dominant methodology [4]. However, training CNNs typically 

requires large-scale annotated datasets. In thermal imaging, the 

number of publicly available datasets is significantly smaller 

compared to those in the RGB domain, making effective 

training a substantial challenge. To overcome this limitation, 
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researchers have attempted to synthesize thermal data from 

RGB images using Generative Adversarial Networks (GANs) 

[5]-[9]. Yet, such augmentation often provides only marginal 

improvements in performance compared to models trained on 

real thermal imagery. 

The introduction of the attention mechanism [10] marked a 

turning point in artificial intelligence, leading to the emergence 

of Large Language Models (LLMs). These models, powered by 

attention, have revolutionized the field by enabling AI to 

perform complex tasks such as solving advanced mathematical 

problems, analyzing medical documentation, or generating 

software code [11]. However, LLMs are inherently limited to 

text processing, which restricts their applicability in multimodal 

real-world scenarios involving signals such as images or audio. 

To address this limitation, multimodal LLMs have been 

developed, particularly Vision-Language Models (VLMs) [12], 

which combine the strengths of LLMs with Vision 

Transformers (ViTs) [13]. By leveraging vast numbers of 

parameters and pretraining on large, diverse datasets, VLMs can 

generalize effectively to domains where they have not been 

explicitly trained. Recent studies [14] demonstrate that VLMs 

achieve promising results in thermal image analysis even in 

zero-shot settings. This ability highlights their potential for 

widespread application in thermal imaging tasks. 

In this paper, a novel VLM-based method for thermal image 

preprocessing is introduced, by which the negative influence of 

reflections in thermal imaging on object detection performance 

is substantially mitigated. Reflections constitute a particularly 

challenging phenomenon in thermal imagery, as they often lead 

to false positives and hinder the reliable identification of 

humans and other critical objects in safety-related scenarios. To 

address this issue, a dedicated dataset was constructed to enable 

both the training and systematic evaluation of Vision-Language 

Model architectures under conditions where reflective artifacts 

are present. Within this study, a range of open-source VLMs 

with different parameter scales was examined, allowing the 

relationship between model size, generalization capability, and 

detection performance to be explored in detail. Furthermore, the 

effects of model quantization were investigated, with a focus on 

identifying trade-offs between accuracy, memory requirements, 

and processing efficiency. By combining these analyses, a 

comprehensive evaluation framework was established, 

highlighting both the opportunities and practical constraints 
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associated with deploying VLMs for thermal imaging 

applications in real-world, resource-constrained environments. 

II.  TECHNICAL BACKGROUND 

A. Fundamentals of Thermal Radiation 

Every object with a temperature above 0 K emits thermal 

radiation. According to the Stefan–Boltzmann law [15], the 

radiative power of a body is expressed as: 

 P = εσT4, (1) 

where: 

ε – emissivity of the object, 

σ – Stefan–Boltzmann constant, 

T – absolute temperature of the object. 

 Thus, the power emitted by a body is directly proportional 

to its emissivity (ε) and proportional to the fourth power of its 

temperature. A thermal imaging camera records this radiation 

within the infrared spectrum and reconstructs it into an image. 

Due to the strong dependence on the fourth power of 

temperature, humans and other objects whose temperature 

differs from the environment can be readily identified. 

 The emissivity of a material ranges from 0 to 1 and primarily 

depends on its physical and chemical nature [16]. For instance, 

a polished metallic surface exhibits low emissivity, whereas a 

roughened and oxidized metallic surface has a high emissivity. 

In temperature measurement applications, this property often 

leads to inaccurate readings of the absolute temperature of 

objects. However, in applications such as object detection and 

navigation, the material-dependent emissivity enables 

discrimination between objects, even if they share the same 

ambient temperature (e.g., within a room). 

 Owing to these characteristics of thermal radiation, together 

with the fact that modern thermal cameras now provide high 

spatial resolution, high sensitivity, and are increasingly 

affordable, they are being widely adopted for navigation and 

object detection tasks. 

Thermal imaging cameras are increasingly employed in 

firefighting operations, particularly during fires in which dense 

smoke hinders movement inside buildings and complicates 

search-and-rescue activities. A typical thermal camera operates 

within the long-wavelength infrared (LWIR) band, i.e., between 

8 and 15 µm. The diameter of smoke particles typically ranges 

from 0.01 µm to 1 µm. Since smoke particles are significantly 

smaller than the wavelengths detected by thermal cameras, the 

scattering of thermal radiation by smoke is negligible [17]. This 

effect is illustrated in Figure 1. 

Figure 1 presents images of the same scene captured with a 

visible-light camera (a) and a thermal camera (b). In the visible-

light image, dense smoke obscures the people inside, rendering 

them invisible. In contrast, the thermal image clearly reveals the 

individuals, confirming the theoretical considerations discussed 

above. 

B. YOLO framework 

The You Only Look Once (YOLO) is a one-stage, single-shot 

object detection framework that processes an entire image with 

a single forward pass of a convolutional neural network (CNN) 

to predict object locations and classes. Unlike two-stage 

detectors that first propose candidate regions and then classify 

them, the YOLO formulates detection as a single regression 

problem from image pixels to bounding-box coordinates and 

class probabilities, which enables very fast, real-time inference. 

The schematic in Figure 2 summarizes the typical YOLO 

pipeline: an input image is fed into a backbone network that 

extracts hierarchical feature maps; these features are optionally 

refined and fused by a neck module to provide multi-scale 

contextual information; finally, the detection head produces 

dense predictions consisting of bounding-box coordinates and 

class probabilities. The head outputs are interpreted to form 

final detections (boxes with associated class labels) after non-

maximum suppression. YOLO’s single-pass design gives it 

strong runtime performance, making it well suited for 

applications that require low latency (e.g., robotics, video 

analytics, and real-time monitoring). Although different YOLO 

versions introduce architectural variations and improvements, 

they all preserve this fundamental backbone–neck–head 

structure. 

C. Performance metrics for object detection 

Performance metrics are a key component for evaluating 

the accuracy and efficiency of artificial intelligence models 

used in object detection. One of the fundamental metrics is 

the Intersection over Union (IoU), defined as: 

 
a) 

 

 
b) 

Fig. 1. Images of the same scene recorded in the presence of dense 

smoke: (a) visible-light camera, where people are obscured, and (b) thermal 

imaging camera, where people can be clearly identified [18]. 
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  𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 . (2) 

IoU measures the degree of overlap between a predicted 

bounding box and the ground truth bounding box. It provides a 

numerical value that quantifies how well the model’s prediction 

aligns with the actual object location. Based on IoU and a 

predefined threshold (in this article set to 50% in all 

experiments), each prediction can be classified into one of the 

following categories: 

• True Positive (TP): the model correctly identifies an 

object, and the IoU with the ground truth bounding box 

exceeds the threshold. 

• False Positive (FP): the model incorrectly predicts an 

object that does not exist in the ground truth, or the IoU 

with the ground truth bounding box is below the 

threshold. 

• False Negative (FN): the model fails to detect an 

object that is present in the ground truth. 

• True Negative (TN): generally not applicable in 

object detection tasks, since the task typically focuses 

on the presence and localization of objects rather than 

explicitly confirming their absence. 

 

From TP, FP, and FN, three widely used evaluation metrics 

are derived: 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 . (3) 

Precision quantifies the proportion of correctly identified 

objects among all detections made by the model. High precision 

indicates that false detections are rare. 

  𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 . (4) 

Recall measures the proportion of ground truth objects that are 

correctly detected by the model. High recall indicates that most 

objects are successfully found. 

 F1-Score =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 . (5) 

 

The F1-score is the harmonic mean of precision and recall, 

providing a balanced metric that is especially useful when an 

application requires both accurate and comprehensive detection. 

Together, these metrics offer a comprehensive assessment of 

an object detection model, capturing its ability to avoid false 

alarms (precision), detect as many objects as possible (recall), 

and balance the two aspects (F1-score) [21]. 

D. Vision Language Model 

Vision-Language Models are a class of multimodal artificial 

intelligence models designed to jointly process and reason over 

visual and textual information. Unlike conventional vision-only 

or text-only models, VLMs integrate both modalities, enabling 

tasks such as image captioning, visual question answering, or 

zero-shot object recognition. As illustrated in Figure 3, a VLM 

can take a visual input together with a textual query and generate 

an appropriate natural language description, demonstrating its 

ability to connect visual information with text [22]. 

A Vision-Language Model (VLM) typically consists of three 

main components, as illustrated in Figure 4. The vision encoder 

is responsible for processing the image and extracting visual 

features in a numerical form. These features are then mapped 

into the language space by the projector, which aligns the visual 

representation with the format understood by the language 

model. Finally, the large language model (LLM) takes the 

projected features along with textual input and generates 

 

 

Fig. 2. Schematic representation of the YOLO object detection 
framework: the input image is processed by the backbone network, features 

are passed through the head, and the final prediction yields bounding boxes 

and class labels [19]-[20]. 

Output 
image with 

bounding boxes
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Fig. 3. Illustration of how a Vision Language Model (VLM) works.  
The model is given a simple drawing of a house together with the question 

“What the image shows?” and produces the textual description: “The image 

shows a simple drawing of a house.” This demonstrates the model’s ability 
to interpret visual input and provide a meaningful natural language 

response. 
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Fig. 4. Overview of a vision-language model architecture. The input 

image is processed by a vision encoder and a projector to generate image 

tokens, which are combined with text tokens from the prompt and passed 

to the large language model (LLM) to produce output text. 
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a natural language response, enabling tasks such as image 

captioning or visual question answering [23]. 

Due to their pretraining on massive and diverse datasets, Vision-

Language Models (VLMs) demonstrate strong generalization 

capabilities, allowing them to effectively solve tasks for which 

they were never explicitly trained or were only fine-tuned using 

small, high-quality datasets. Consequently, applying VLMs to 

the analysis of thermal images may significantly improve the 

accuracy and robustness of such analyses, particularly given the 

relative scarcity of thermal image datasets compared to those in 

the visible spectrum. 

E. Quantization 

Quantization is one of the most widely used techniques for 

reducing the size of neural network models. Modern large 

language models (LLMs) can contain hundreds of billions or 

even several trillion parameters, resulting in significant 

computational overhead and high memory requirements -

particularly for GPU-based inference, where large amounts of 

VRAM are needed. 

Quantization is a technique that reduces the precision of 

weight and activation values. Typically, weights and activations 

are stored using 32-bit floating-point precision (FP32) or 16-bit 

formats such as FP16 or Brain Float 16 (BF16). Through 

quantization, these values can be represented using lower-

precision formats, such as 8-bit floating-point (FP8) or even 4-

bit formats like FP4. 

Neural networks are generally robust to quantization error, 

meaning that compression from 32-bit to 4-bit precision often 

leads to only a modest degradation in model accuracy. Figure 5 

presents a comparison of several numerical formats. The BF16 

format shares the same dynamic range as FP32 but with reduced 

precision, while FP16 offers a smaller range yet slightly better 

precision than BF16. FP8 formats, depending on the specific 

variant, typically use 4 exponent bits and 3 mantissa bits (e.g., 

the E4M3 format). FP4, the smallest among these formats, can 

represent values approximately in the range of –6.0 to +6.0 [24]. 

Due to the limited range and precision of such low-bit 

representations, scaling is required before performing arithmetic 

operations. For example, the NVIDIA FP4 (NVFP4) format 

employs a two-level scaling mechanism: first, a coarse per-

tensor scaling factor stored in FP32, followed by fine-grained 

scaling at the block level, where each 16-element block is scaled 

using an FP8 (E4M3) factor. 

These techniques enable minimal degradation of model 

accuracy, significant memory savings, and - in hardware 

supporting low-precision arithmetic - substantial acceleration of 

inference speed. 

III. PROBLEM DESCRIPTION 

In thermal imaging, reflection phenomena occur primarily on 

smooth surfaces such as glass, metal, and even polished 

concrete [25]. This effect becomes particularly problematic 

when a thermal camera is used for navigation purposes - for 

example, by a mobile robot - since reflections can lead to 

incorrect environmental mapping, thereby hindering or even 

preventing reliable navigation in indoor environments. 

 

Figure 6b illustrates the performance of the YOLOv11 model 

in detecting humans in a thermal image. Due to a reflection from 

a glass door, the region enclosed by bounding box No. 2 was 

incorrectly classified as a real person, while in reality, it 

represents the reflection of the actual human marked by 

bounding box No. 1. 

 

 In order to assess the performance of thermal image analysis 

methods in the presence of reflections, the authors developed a 

publicly accessible dataset [26]. The dataset comprises thermal 

images acquired mainly in a shopping mall and a single-family 

house, containing various reflections produced by glass, 

metallic, and tiled surfaces.  

 The results obtained using the YOLOv11 model for human 

detection on the aforementioned dataset are presented in Figure 

7 as a confusion matrix. A total of 403 bounding boxes 

corresponding to actual humans were correctly classified as 

people (True Positives), while 162 bounding boxes were 

 

Fig. 5. Bit-level representation of various floating-point formats used in 

neural network quantization. Each format consists of a sign bit (S), exponent 

bits (E), and mantissa bits (M). FP32 (IEEE 754 single precision) uses 1 sign 
bit, 8 exponent bits, and 23 mantissa bits. FP16 and BF16 both use 16 bits in 

total, with BF16 preserving a wider dynamic range and FP16 offering slightly 

higher precision. The FP8 format (E4M3) uses 8 bits, providing a balance 
between range and precision. FP4 is the most compact format, using only 4 

bits for extremely low-precision computations. 
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a)                                                         b) 

Fig. 6. Comparison of the same scene captured using a visible-light camera (a) 

and a thermal camera (b) processed by the YOLOv11 object detection model. As 
shown, the reflection from the glass door labeled No. 2 was incorrectly identified 

as a person, whereas it is actually the reflection of the real person labeled No. 1. 

The thermal image was captured using a Seek Thermal Nano 300 camera. 
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incorrectly classified as humans but were in fact reflections 

(False Positives). No real human objects were missed; therefore, 

the number of False Negatives is zero. Based on the confusion  

matrix results, the calculated F1-score is 0.83, which is not 

satisfactory. To improve this value, the number of False 

Positives should be reduced without increasing the number of 

False Negatives. 

IV. PROPOSED METHOD 

Since the results obtained using only the YOLOv11 model 

were not satisfactory, the authors of this paper developed an 

enhanced method to improve human detection performance in 

thermal imagery under reflective conditions. To achieve this, an 

additional processing stage based on Vision-Language Models 

(VLMs) was introduced. The processing pipeline is illustrated 

in Figure 8. First, the thermal image is processed by the 

YOLOv11 model in a standard manner, producing a set of 

bounding boxes corresponding to detected objects. These 

bounding boxes are then overlaid on the image and assigned 

numerical identifiers. The annotated image is subsequently 

passed to the VLM along with a carefully designed prompt 

instructing the model to return a list of bounding box numbers 

that correspond exclusively to reflections, sorted in ascending 

order. By removing these reflection-related bounding boxes, an 

image containing only the true human detections is obtained. 

To enhance the reliability of this approach, the prompt begins 

with a statement indicating that the VLM is an expert in thermal 

image analysis, followed by the specific task description and 

several example responses. Finally, the prompt explicitly 

instructs the model to return the output as a Python list 

containing only numeric values, without any additional text. 

This design ensures consistent output formatting and facilitates 

subsequent automated processing. Empirical observations 

indicate that such structured prompts yield better results than 

prompts containing only a single query. 

The comparison of detection accuracy depending on the 

VLM is presented in Table I. The evaluated VLMs were not 

fine-tuned for reflection-related tasks in thermal imaging. The 

best performance was achieved by the closed-source Gemini 2.5 

Flash model, which obtained an F1-score above 0.97 -

 

Fig. 7. Confusion matrix illustrating the performance of the YOLOv11 
model for human detection on the proposed thermal image dataset. The 

model correctly detected 403 real human instances (True Positives) and 

misclassified 162 reflections as humans (False Positives). No actual human 

objects were missed (False Negatives = 0).  

TABLE I 

PERFORMANCE COMPARISON OF YOLOV11 AND COMBINED YOLOV11-VLM APPROACHES  

FOR HUMAN DETECTION IN THERMAL IMAGERY WITHOUT FINE-TUNING. 

Model Specs Accuracy Metrics Confusion Matrix 

Model name Open 

Source? 

Number of 

Parameters 

Parameter 

Data Type 

Recall Precision F1-score TP FP FN 

Without VLM – 

only YOLOv11 

 

 

N/A 

 

N/A 

 

N/A 

 

1.0000 

 

 

0.7133 

 

 

0.8326 

 

 

403 

 

 

162 

 

 

0 

 

Gemini 2.5 flash ✕ N/A N/A 0.9603 

 

0.9949 

 

0.9773 

 

387 2 16 

Qwen2-VL-7B ✓ 7B BF16 0.6824 

 

0.8514 

 

0.7576 

 

275 

 

48 128 

Gemma-3-4B ✓ 4B BF16 0.3548 

 

0.6976 

 

0.4704 

 

143 

 

62 

 

260 

 

Gemma-3-12B ✓ 12B BF16 0.7122 

 

0.8777 

 

0.7863 

 

287 

 

40 

 

116 

 

InternVL3-8B ✓ 8B BF16 0.8437 

 

0.8924 0.8673 340 41 63 

 

 

Fig. 8. Processing pipeline for improving human detection in thermal 

images using a combined YOLOv11 and Vision Language Model (VLM) 

approach. The input infrared image is first processed by the YOLOv11 
detection algorithm, which generates and enumerates bounding boxes around 

detected objects. The annotated image is then passed to a Vision-Language 

Model along with a structured prompt instructing it to identify which 

bounding boxes correspond to reflections. 
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Examples: [2, 4] - If objects 2 and 4 are 
reflections, [] - if no objects are reflections

Please directly answer the question. Do not 
include any additional text.
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(only real people, without 
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considered an excellent result. Among open-source models, 

only InternVL-8B outperformed the baseline YOLOv11-only 

approach, though the improvement was marginal. The 

remaining models performed worse than YOLOv11 alone in 

human detection tasks.  

 

 The use of closed-source models requires computation to be 

carried out on external servers, which prevents local 

deployment. Consequently, applying such models for vehicle 

navigation support may be infeasible in certain environments 

due to limited internet access. Moreover, network latency 

associated with transmitting thermal images to remote servers 

may also be prohibitive for real-time applications. 

 To enhance the performance of open-source models, a small 

dataset was prepared for fine-tuning VLMs specifically on 

reflection detection in thermal imagery [27]. The dataset was 

created using thermal images sourced from several publicly 

available datasets in which reflections were visible [28–29]. To 

further augment the dataset, in addition to prompts related to 

identifying reflections, supplementary questions were 

generated to locate real humans and to associate reflections 

with their corresponding reflection sources. 

 For fine-tuning, the popular Low-Rank Adaptation 

(LoRA) technique was employed [30], which enables efficient 

training by updating only a small subset of low-rank matrices 

inserted into the model’s weight structure. This significantly 

reduces the number of trainable parameters, memory usage, and 

computational cost while preserving the expressive power of the 

original model. LoRA is particularly effective for large Vision-

Language Models, as it avoids modifying the full parameter 

space and allows training on consumer-grade hardware without 

compromising performance. 

The fine-tuning process was carried out on a desktop PC 

equipped with an Nvidia GeForce RTX 5090 GPU, which 

handled all computations. Thanks to LoRA, the hardware 

requirements remained modest despite the size of the underlying 

VLM.  

The accuracy results obtained after fine-tuning are presented 

in Table II. All evaluated models improved their F1-score 

compared with their non-fine-tuned counterparts. The highest 

performance was achieved by Gemma-3-12B, which exceeded 

an F1-score of 0.93. Qwen2-VL-7B and InternVL3-8B achieved 

only slightly lower scores, despite being significantly smaller 

models, which may translate into faster inference in practical 

deployments. The smallest model, Gemma-3-4B, reached an 

F1-score of approximately 0.58, improving from 0.47 without 

fine-tuning; however, this value remains lower than the 

performance of methods that do not use VLMs at all. The 

limited parameter count of such small models restricts their 

ability to learn and generalize patterns from a relatively small 

number of fine-tuning examples, which explains their reduced 

effectiveness. 

Since the use of fine-tuning significantly improved the 

accuracy of open-source VLMs - making them suitable for 

eliminating the influence of reflections in thermal-image human 

detection - further optimization was performed to reduce 

processing time and VRAM consumption. To achieve this, 

model quantization was applied. Two frameworks were used: 

Transformers, a universal solution that allows running VLMs on 

hardware from various vendors, and TensorRT-LLM, a 

specialized library designed for quantizing and deploying 

models on NVIDIA GPUs. 

The models were quantized to the following formats: Normal 

Float 4 (NF4), FP8, and NVFP4. Additionally, the effect of 

reducing the input image size from 512×512 to 256×256 on both 

processing speed and accuracy was evaluated. The results are 

presented in Table III. 

 For the 512×512 input size, the F1-score for all tested 

quantizations remained above 0.9, and in some cases even 

exceeded the baseline BF16 model. The best result was obtained 

using the InternVL3-8B model quantized to NF4. However, 

NF4 quantization caused a notable increase in inference time -

approximately 30% slower than the BF16 baseline. This 

slowdown occurs because NF4 is not natively supported in 

hardware, so model parameters must be converted to higher-

precision formats (typically FP16 or BF16) during computation. 

 For this reason, NVFP4 is generally a better choice when 

supported by the GPU: it offers F1-scores comparable to NF4, 

similar memory usage, and can be over three times faster in 

inference. Both NVFP4 and NF4 reduce memory consumption 

by roughly a factor of two, enabling deployment on devices with 

limited hardware resources. FP8 provides intermediate 

performance in terms of both memory footprint and speed, 

making it a reasonable alternative when NVFP4 is not supported 

by the GPU architecture. 

TABLE II 
PERFORMANCE COMPARISON OF YOLOV11-VLM APPROACHES  

FOR HUMAN DETECTION IN THERMAL IMAGERY WITH FINE-TUNED VLM MODELS. 

Model Specs Accuracy Metrics Confusion Matrix 

Model name Open 

Source? 

Number of 

Parameters 

Parameter 

Data Type 

Recall Precision F1-score TP FP FN 

Qwen2-VL-7B ✓ 7B BF16 0.9330 

 

0.9261 0.9295 376 30 27 

Gemma-3-4B ✓ 4B BF16 0.5012 0.7014 0.5847 

 

202 86 201 

Gemma-3-12B ✓ 12B BF16 0.9752 

 

0.8932 

 

0.9324 393 47 10 

InternVL3-8B ✓ 8B BF16 0.9702 

 

0.8947 0.9310 391 46 12 
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When reducing the input resolution from 512×512 to 

256×256, a decrease in F1-score was observed for most 

configurations. Notably, for InternVL3-8B and Gemma-3-12B, 

this reduction in resolution did not provide significant speed 

improvements. In contrast, Qwen2-VL-7B exhibited a 

processing-time improvement of approximately 50%. This 

difference stems from the fact that Qwen2-VL-7B internally 

splits the input image into smaller patches, whereas the other 

models always rescale the image to a fixed resolution.  

 

Therefore, if increased inference speed is required, using 

lower-resolution images is beneficial specifically for Qwen2-

VL-7B, albeit at the cost of reduced accuracy. 

In Fig. 9, the processing time per thermal image obtained using 

the Qwen2-VL-7B–based algorithm is compared with the 

required VRAM for different quantization methods. The 

Transformers framework provides memory consumption 

comparable to TensorRT-LLM for both 16-bit and 4-bit 

quantization schemes. However, TensorRT-LLM achieves 

substantially lower inference latency, particularly for 4-bit 

quantization, where NVFP4 is more than three times faster than 

NF4. 

TABLE III 

PERFORMANCE OF FINE-TUNED VLMS UNDER DIFFERENT QUANTIZATION SETTINGS. 

Model Specs  Results  

Model name Number  

of 

Parameters 

Framework Parameter 

Data Type 

F1-score 

 

Input image size 

[pix2] 

Memory 

footprint 

[Gb] 

Processing time [ms] 

 

Input image size  

[pix2] 

    256 512 - 256 512 

Qwen2-VL-7B 7B Transformers BF16 0.8810 

 

0.9242 

 

16.897 85.2 127 

Qwen2-VL-7B 7B Transformers NF4 0.8747 0.9212 7.168 152 176 

         

Qwen2-VL-7B 7B TensorRT-

LLM 

 

BF16 0.9077 0.9271 17.549 56.1 83.9 

Qwen2-VL-7B 7B TensorRT-

LLM 

FP8 0.8968 0.9397 11.606 43.7 68.2 

         

Qwen2-VL-7B 7B TensorRT-

LLM 

NVFP4 0.9019 0.9121 8.860 37.2 49.7 

         

Gemma-3-12B 12B Transformers BF16 0.9327 0.9269 24.542 267 265 

         

Gemma-3-12B 12B Transformers NF4 0.9156 0.9069 9.229 365 356 

         

InternVL3-8B 8B Transformers BF16 0.9300 0.9233 16.077 88.2 91.7 

         

InternVL3-8B 8B Transformers NF4 0.9369 0.9406 8.245 119 120 

         

InternVL3-8B 8B TensorRT-

LLM 

BF16 0.9262 0.9358 16.366 69.8 71.2 

         

InternVL3-8B 8B TensorRT-

LLM 

FP8 0.9225 0.9309 10.395 52.1 53.6 

         

InternVL3-8B 8B TensorRT-

LLM 

NVFP4 0.9252 

 

0.9332 7.647 37.6 39.4 

 

 

Fig. 9 Processing Time vs. Memory Footprint for Qwen2-VL-7B Under 

Different Quantization Methods. All results were obtained using 512×512 

input images. Quantization to NF4 and FP8 significantly reduces memory 
usage compared to BF16, while NVFP4 achieves the best trade-off by 

providing both low memory consumption and the fastest inference among the 

tested configurations. The increase in processing time for NF4 is attributed to 
the need for on-the-fly conversion to higher-precision formats due to lack of 

native hardware support. 
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CONCLUSION 

This work demonstrates that Vision-Language Models can be 

effectively applied to thermal image analysis, even when only 

small task-specific training datasets are available. Current 

closed-source models with hundreds of billions of parameters 

are capable of achieving high accuracy on thermal imagery 

without any additional fine-tuning. In contrast, smaller open-

source VLMs, containing only a few to several billion 

parameters, require fine-tuning to reach comparable 

performance on the target task; however, even limited fine-

tuning on a modest dataset is sufficient to close most of the 

performance gap. 

Furthermore, applying quantization significantly reduces 

memory requirements and can substantially accelerate 

inference, making VLMs more suitable for deployment in 

resource-constrained environments. These results highlight the 

need for continued development of hardware and inference 

frameworks optimized for running large multimodal models 

directly on edge devices, such as mobile robots, where on-

device thermal image interpretation is required.
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