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Abstract—Thermal imaging is increasingly employed for
navigation in challenging conditions such as dense smoke or fog.
However, the limited availability of thermal images compared to
RGB data makes training deep learning models, such as
Convolutional Neural Networks (CNNs), significantly more
difficult and often yields unsatisfactory results. Vision-Language
Models (VLMs), due to their ability to perform tasks without
extensive retraining or with only a small number of training
samples, hold the potential to overcome current limitations in
thermal imaging applications. This paper introduces a method
leveraging VLMs to reduce the impact of reflections in thermal
images on object detection accuracy, with a particular focus on
human detection. The proposed approach improves the F1-score
from 0.83 to 0.97 on a dedicated evaluation dataset, outperforming
a baseline solution based solely on the widely used YOLOv11
model. Furthermore, we investigate the effects of quantization on
various open-source VLMs, analyzing their performance,
processing speed, and memory requirements.
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I. INTRODUCTION

HERMAL imaging has become an increasingly important

sensing technology, particularly in scenarios where other
sensors fail. One notable application is in firefighting
operations, where dense smoke severely limits visibility.
Thermal cameras allow firefighters to navigate burning
buildings more effectively, facilitating faster access to
victims [1]. Similarly, search-and-rescue robots are often
equipped with thermal cameras to conduct reconnaissance in
hazardous environments and support emergency operations [2].
Another practical use case is in the automotive domain, where
thermal cameras enhance visibility in dense fog, enabling the
detection of pedestrians or animals on the road and thereby
improving traffic safety [3].

With the rapid advancement of computer vision, machine
learning - especially deep learning approaches such as
Convolutional Neural Networks (CNNs) - has become the
dominant methodology [4]. However, training CNNs typically
requires large-scale annotated datasets. In thermal imaging, the
number of publicly available datasets is significantly smaller
compared to those in the RGB domain, making effective
training a substantial challenge. To overcome this limitation,
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researchers have attempted to synthesize thermal data from
RGB images using Generative Adversarial Networks (GANS)
[5]-[9]. Yet, such augmentation often provides only marginal
improvements in performance compared to models trained on
real thermal imagery.

The introduction of the attention mechanism [10] marked a
turning point in artificial intelligence, leading to the emergence
of Large Language Models (LLMs). These models, powered by
attention, have revolutionized the field by enabling Al to
perform complex tasks such as solving advanced mathematical
problems, analyzing medical documentation, or generating
software code [11]. However, LLMs are inherently limited to
text processing, which restricts their applicability in multimodal
real-world scenarios involving signals such as images or audio.
To address this limitation, multimodal LLMs have been
developed, particularly Vision-Language Models (VLMs) [12],
which combine the strengths of LLMs with Vision
Transformers (ViTs) [13]. By leveraging vast numbers of
parameters and pretraining on large, diverse datasets, VLMs can
generalize effectively to domains where they have not been
explicitly trained. Recent studies [14] demonstrate that VLMs
achieve promising results in thermal image analysis even in
zero-shot settings. This ability highlights their potential for
widespread application in thermal imaging tasks.

In this paper, a hovel VLM-based method for thermal image
preprocessing is introduced, by which the negative influence of
reflections in thermal imaging on object detection performance
is substantially mitigated. Reflections constitute a particularly
challenging phenomenon in thermal imagery, as they often lead
to false positives and hinder the reliable identification of
humans and other critical objects in safety-related scenarios. To
address this issue, a dedicated dataset was constructed to enable
both the training and systematic evaluation of Vision-Language
Model architectures under conditions where reflective artifacts
are present. Within this study, a range of open-source VLMs
with different parameter scales was examined, allowing the
relationship between model size, generalization capability, and
detection performance to be explored in detail. Furthermore, the
effects of model quantization were investigated, with a focus on
identifying trade-offs between accuracy, memory requirements,
and processing efficiency. By combining these analyses, a
comprehensive evaluation framework was established,
highlighting both the opportunities and practical constraints
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associated with deploying VLMs for thermal imaging
applications in real-world, resource-constrained environments.

Il. TECHNICAL BACKGROUND

A. Fundamentals of Thermal Radiation

Every object with a temperature above 0 K emits thermal
radiation. According to the Stefan-Boltzmann law [15], the
radiative power of a body is expressed as:

P =ecT )
where:
€ — emissivity of the object,
o — Stefan—Boltzmann constant,
T — absolute temperature of the object.

Thus, the power emitted by a body is directly proportional
to its emissivity (€) and proportional to the fourth power of its
temperature. A thermal imaging camera records this radiation
within the infrared spectrum and reconstructs it into an image.
Due to the strong dependence on the fourth power of
temperature, humans and other objects whose temperature
differs from the environment can be readily identified.

The emissivity of a material ranges from 0 to 1 and primarily
depends on its physical and chemical nature [16]. For instance,
a polished metallic surface exhibits low emissivity, whereas a
roughened and oxidized metallic surface has a high emissivity.
In temperature measurement applications, this property often
leads to inaccurate readings of the absolute temperature of
objects. However, in applications such as object detection and
navigation, the material-dependent emissivity enables
discrimination between objects, even if they share the same
ambient temperature (e.g., within a room).

Owing to these characteristics of thermal radiation, together
with the fact that modern thermal cameras now provide high
spatial resolution, high sensitivity, and are increasingly
affordable, they are being widely adopted for navigation and
object detection tasks.

Thermal imaging cameras are increasingly employed in
firefighting operations, particularly during fires in which dense
smoke hinders movement inside buildings and complicates
search-and-rescue activities. A typical thermal camera operates
within the long-wavelength infrared (LWIR) band, i.e., between
8 and 15 pm. The diameter of smoke particles typically ranges
from 0.01 pm to 1 pm. Since smoke particles are significantly
smaller than the wavelengths detected by thermal cameras, the
scattering of thermal radiation by smoke is negligible [17]. This
effect is illustrated in Figure 1.

Figure 1 presents images of the same scene captured with a
visible-light camera (a) and a thermal camera (b). In the visible-
light image, dense smoke obscures the people inside, rendering
them invisible. In contrast, the thermal image clearly reveals the
individuals, confirming the theoretical considerations discussed
above.

B. YOLO framework

The You Only Look Once (YOLO) is a one-stage, single-shot
object detection framework that processes an entire image with
a single forward pass of a convolutional neural network (CNN)
to predict object locations and classes. Unlike two-stage
detectors that first propose candidate regions and then classify
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Fig. 1. Images of the same scene recorded in the presence of dense
smoke: (a) visible-light camera, where people are obscured, and (b) thermal
imaging camera, where people can be clearly identified [18].

them, the YOLO formulates detection as a single regression
problem from image pixels to bounding-box coordinates and
class probabilities, which enables very fast, real-time inference.

The schematic in Figure 2 summarizes the typical YOLO
pipeline: an input image is fed into a backbone network that
extracts hierarchical feature maps; these features are optionally
refined and fused by a neck module to provide multi-scale
contextual information; finally, the detection head produces
dense predictions consisting of bounding-box coordinates and
class probabilities. The head outputs are interpreted to form
final detections (boxes with associated class labels) after non-
maximum suppression. YOLO’s single-pass design gives it
strong runtime performance, making it well suited for
applications that require low latency (e.g., robotics, video
analytics, and real-time monitoring). Although different YOLO
versions introduce architectural variations and improvements,
they all preserve this fundamental backbone—neck-head
structure.

C. Performance metrics for object detection

Performance metrics are a key component for evaluating
the accuracy and efficiency of artificial intelligence models
used in object detection. One of the fundamental metrics is
the Intersection over Union (loU), defined as:
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Fig. 2. Schematic representation of the YOLO object detection
framework: the input image is processed by the backbone network, features
are passed through the head, and the final prediction yields bounding boxes

and class labels [19]-[20].

Area of Intersecion
IoU = ——— )
Area of Union

loU measures the degree of overlap between a predicted
bounding box and the ground truth bounding box. It provides a
numerical value that quantifies how well the model’s prediction
aligns with the actual object location. Based on loU and a
predefined threshold (in this article set to 50% in all
experiments), each prediction can be classified into one of the
following categories:

e True Positive (TP): the model correctly identifies an
object, and the loU with the ground truth bounding box
exceeds the threshold.

o False Positive (FP): the model incorrectly predicts an
object that does not exist in the ground truth, or the loU
with the ground truth bounding box is below the
threshold.

e False Negative (FN): the model fails to detect an
object that is present in the ground truth.

e True Negative (TN): generally not applicable in
object detection tasks, since the task typically focuses
on the presence and localization of objects rather than
explicitly confirming their absence.

From TP, FP, and FN, three widely used evaluation metrics
are derived:
TP
TP+FP ' ©)
Precision quantifies the proportion of correctly identified
objects among all detections made by the model. High precision
indicates that false detections are rare.

Precision =

TP
TP+FN ' (4)

Recall measures the proportion of ground truth objects that are

Recall =

correctly detected by the model. High recall indicates that most
objects are successfully found.

F1-Score = Precision - Recall (5)

Precision+ Recall ’

The F1-score is the harmonic mean of precision and recall,
providing a balanced metric that is especially useful when an
application requires both accurate and comprehensive detection.

Together, these metrics offer a comprehensive assessment of
an object detection model, capturing its ability to avoid false
alarms (precision), detect as many objects as possible (recall),
and balance the two aspects (F1-score) [21].

D. Vision Language Model

Vision-Language Models are a class of multimodal artificial
intelligence models designed to jointly process and reason over
visual and textual information. Unlike conventional vision-only
or text-only models, VLMs integrate both modalities, enabling
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Fig. 3. lllustration of how a Vision Language Model (VLM) works.
The model is given a simple drawing of a house together with the question
“What the image shows?” and produces the textual description: “The image
shows a simple drawing of a house.” This demonstrates the model’s ability
to interpret visual input and provide a meaningful natural language
response.

tasks such as image captioning, visual question answering, or
zero-shot object recognition. As illustrated in Figure 3, a VLM
can take a visual input together with a textual query and generate
an appropriate natural language description, demonstrating its
ability to connect visual information with text [22].

A Vision-Language Model (VLM) typically consists of three
main components, as illustrated in Figure 4. The vision encoder
is responsible for processing the image and extracting visual
features in a numerical form. These features are then mapped
into the language space by the projector, which aligns the visual
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Fig. 4. Overview of a vision-language model architecture. The input
image is processed by a vision encoder and a projector to generate image
tokens, which are combined with text tokens from the prompt and passed
to the large language model (LLM) to produce output text.

representation with the format understood by the language
model. Finally, the large language model (LLM) takes the
projected features along with textual input and generates
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a natural language response, enabling tasks such as image
captioning or visual question answering [23].

Due to their pretraining on massive and diverse datasets, Vision-
Language Models (VLMs) demonstrate strong generalization
capabilities, allowing them to effectively solve tasks for which
they were never explicitly trained or were only fine-tuned using
small, high-quality datasets. Consequently, applying VLMs to
the analysis of thermal images may significantly improve the
accuracy and robustness of such analyses, particularly given the
relative scarcity of thermal image datasets compared to those in
the visible spectrum.

E. Quantization

Quantization is one of the most widely used techniques for
reducing the size of neural network models. Modern large
language models (LLMs) can contain hundreds of billions or
even several trillion parameters, resulting in significant
computational overhead and high memory requirements -
particularly for GPU-based inference, where large amounts of
VRAM are needed.

Quantization is a technique that reduces the precision of
weight and activation values. Typically, weights and activations
are stored using 32-bit floating-point precision (FP32) or 16-bit
formats such as FP16 or Brain Float 16 (BF16). Through
quantization, these values can be represented using lower-
precision formats, such as 8-bit floating-point (FP8) or even 4-
bit formats like FP4.

Neural networks are generally robust to quantization error,
meaning that compression from 32-bit to 4-bit precision often
leads to only a modest degradation in model accuracy. Figure 5
presents a comparison of several numerical formats. The BF16
format shares the same dynamic range as FP32 but with reduced
precision, while FP16 offers a smaller range yet slightly better
precision than BF16. FP8 formats, depending on the specific
variant, typically use 4 exponent bits and 3 mantissa bits (e.g.,
the E4M3 format). FP4, the smallest among these formats, can
represent values approximately in the range of —6.0 to +6.0 [24].
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L

Sign Exponent
(1bi)  (8bits)

I 1 [ 1
Fp32  [Se[e[e[efe[e[e[e[mMMmmlMfmM]M]p]m MMM ]M]oe]

Fraction
(7 bits)
A

Sign Exponent
(1bit) (8 bits)

I 1T 1
BF16  [S[e[e[e[ee[e[ee[MmMMMMMM]

Fraction
(10 bits)
I

Sign Exponent
(1bit) (5 bits)

r | 1
FP16 [S[E[E[E[E[eM]mMmM[mM]m]]v]

Sign Exponent Fraction
(1bit) (4 bits) (3 bits)

th——
FP8 (E4M3)[S[E[E[E[E[MMM]

Sign Exponent Fraction
(1bit) (2bits) (1 bit)

e~
FP4 (E2M1)[S[E[EM]

Fig. 5. Bit-level representation of various floating-point formats used in
neural network quantization. Each format consists of a sign bit (S), exponent
bits (E), and mantissa bits (M). FP32 (IEEE 754 single precision) uses 1 sign
bit, 8 exponent bits, and 23 mantissa bits. FP16 and BF16 both use 16 bits in
total, with BF16 preserving a wider dynamic range and FP16 offering slightly
higher precision. The FP8 format (E4M3) uses 8 bits, providing a balance
between range and precision. FP4 is the most compact format, using only 4
bits for extremely low-precision computations.

R. FEIGLEWICZ, A. KOS

Due to the limited range and precision of such low-bit
representations, scaling is required before performing arithmetic
operations. For example, the NVIDIA FP4 (NVFP4) format
employs a two-level scaling mechanism: first, a coarse per-
tensor scaling factor stored in FP32, followed by fine-grained
scaling at the block level, where each 16-element block is scaled
using an FP8 (E4M3) factor.

These techniques enable minimal degradation of model
accuracy, significant memory savings, and - in hardware
supporting low-precision arithmetic - substantial acceleration of
inference speed.

I1l. PROBLEM DESCRIPTION

In thermal imaging, reflection phenomena occur primarily on
smooth surfaces such as glass, metal, and even polished
concrete [25]. This effect becomes particularly problematic
when a thermal camera is used for navigation purposes - for
example, by a mobile robot - since reflections can lead to
incorrect environmental mapping, thereby hindering or even

a) b)

Fig. 6. Comparison of the same scene captured using a visible-light camera (a)
and a thermal camera (b) processed by the YOLOV11 object detection model. As
shown, the reflection from the glass door labeled No. 2 was incorrectly identified
as a person, whereas it is actually the reflection of the real person labeled No. 1.
The thermal image was captured using a Seek Thermal Nano 300 camera.

preventing reliable navigation in indoor environments.

Figure 6b illustrates the performance of the YOLOv11 model
in detecting humans in a thermal image. Due to a reflection from
a glass door, the region enclosed by bounding box No. 2 was
incorrectly classified as a real person, while in reality, it
represents the reflection of the actual human marked by
bounding box No. 1.

In order to assess the performance of thermal image analysis
methods in the presence of reflections, the authors developed a
publicly accessible dataset [26]. The dataset comprises thermal
images acquired mainly in a shopping mall and a single-family
house, containing various reflections produced by glass,
metallic, and tiled surfaces.

The results obtained using the YOLOv11 model for human
detection on the aforementioned dataset are presented in Figure
7 as a confusion matrix. A total of 403 bounding boxes
corresponding to actual humans were correctly classified as
people (True Positives), while 162 bounding boxes were
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incorrectly classified as humans but were in fact reflections
(False Positives). No real human objects were missed; therefore,
the number of False Negatives is zero. Based on the confusion

matrix results, the calculated F1-score is 0.83, which is not
satisfactory. To improve this value, the number of False
Positives should be reduced without increasing the number of
False Negatives.

Confusion Matrix for Object Detection using only the YOLO11 model

FP: 162

Actual Positive

Ground Truth

FN: O

Actual Negative
|

' '
Predicted Positive Predicted Negative

Prediction

Fig. 7. Confusion matrix illustrating the performance of the YOLOv11
model for human detection on the proposed thermal image dataset. The
model correctly detected 403 real human instances (True Positives) and
misclassified 162 reflections as humans (False Positives). No actual human
objects were missed (False Negatives = 0).

IV. PROPOSED METHOD

Since the results obtained using only the YOLOv11 model
were not satisfactory, the authors of this paper developed an
enhanced method to improve human detection performance in
thermal imagery under reflective conditions. To achieve this, an
additional processing stage based on Vision-Language Models
(VLMs) was introduced. The processing pipeline is illustrated
in Figure 8. First, the thermal image is processed by the
YOLOv11l model in a standard manner, producing a set of
bounding boxes corresponding to detected objects. These
bounding boxes are then overlaid on the image and assigned

numerical identifiers. The annotated image is subsequently
passed to the VLM along with a carefully designed prompt
instructing the model to return a list of bounding box numbers
that correspond exclusively to reflections, sorted in ascending
order. By removing these reflection-related bounding boxes, an
image containing only the true human detections is obtained.

To enhance the reliability of this approach, the prompt begins

d
Image with
enumarated
bounding
boxes

YOLO
=P detection
algorithm

Infrared
Image

Infrared Image with
enumarated bounding boxes
(only real people, without
marked reflections)

Vision
Language
Model

Prompt:

You are an expert at understanding thermal
images and generating relevant questions
and answers based on them.
Question: In this thermal imaging photo,
which labeled objects (e.g., 1, 2, 3, 4, etc.) are
reflections on a surface rather than actual
humans? Return only a Python list containing
these objects in ascending order.
Examples: [2, 4] - If objects 2 and 4 are
reflections, [] - if no objects are reflections
Please directly answer the question. Do not
include any additional text.

v

Fig. 8. Processing pipeline for improving human detection in thermal
images using a combined YOLOv11 and Vision Language Model (VLM)
approach. The input infrared image is first processed by the YOLOv11
detection algorithm, which generates and enumerates bounding boxes around
detected objects. The annotated image is then passed to a Vision-Language
Model along with a structured prompt instructing it to identify which
bounding boxes correspond to reflections.

with a statement indicating that the VLM is an expert in thermal
image analysis, followed by the specific task description and
several example responses. Finally, the prompt explicitly
instructs the model to return the output as a Python list
containing only numeric values, without any additional text.
This design ensures consistent output formatting and facilitates
subsequent automated processing. Empirical observations
indicate that such structured prompts yield better results than
prompts containing only a single query.

The comparison of detection accuracy depending on the
VLM is presented in Table I. The evaluated VLMs were not
fine-tuned for reflection-related tasks in thermal imaging. The
best performance was achieved by the closed-source Gemini 2.5
Flash model, which obtained an F1-score above 0.97 -

TABLE |
PERFORMANCE COMPARISON OF YOLOV11 AND COMBINED YOLOV11-VLM APPROACHES
FOR HUMAN DETECTION IN THERMAL IMAGERY WITHOUT FINE-TUNING.

Model Specs Accuracy Metrics Confusion Matrix
Model name Open Number of Parameter Recall Precision F1-score TP FP FN
Source?  Parameters Data Type
Without VLM —
only YOLOv11 N/A N/A N/A 1.0000 0.7133 0.8326 403 162 0
Gemini 2.5 flash X N/A N/A 0.9603 0.9949 0.9773 387 2 16
Qwen2-VL-7B N4 7B BF16 0.6824 0.8514 0.7576 275 48 128
Gemma-3-4B 4 4B BF16 0.3548 0.6976 0.4704 143 62 260
Gemma-3-12B 4 12B BF16 0.7122 0.8777 0.7863 287 40 116
InternVL3-8B 4 8B BF16 0.8437 0.8924 0.8673 340 41 63
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considered an excellent result. Among open-source models,
only InternVL-8B outperformed the baseline YOLOv11-only
approach, though the improvement was marginal. The
remaining models performed worse than YOLOv11 alone in
human detection tasks.

The use of closed-source models requires computation to be
carried out on external servers, which prevents local
deployment. Consequently, applying such models for vehicle
navigation support may be infeasible in certain environments
due to limited internet access. Moreover, network latency
associated with transmitting thermal images to remote servers
may also be prohibitive for real-time applications.

To enhance the performance of open-source models, a small
dataset was prepared for fine-tuning VLMs specifically on
reflection detection in thermal imagery [27]. The dataset was
created using thermal images sourced from several publicly
available datasets in which reflections were visible [28-29]. To
further augment the dataset, in addition to prompts related to
identifying reflections, supplementary questions were
generated to locate real humans and to associate reflections
with their corresponding reflection sources.

For fine-tuning, the popular Low-Rank Adaptation
(LoRA) technique was employed [30], which enables efficient
training by updating only a small subset of low-rank matrices
inserted into the model’s weight structure. This significantly
reduces the number of trainable parameters, memory usage, and
computational cost while preserving the expressive power of the
original model. LoRA is particularly effective for large Vision-
Language Models, as it avoids modifying the full parameter
space and allows training on consumer-grade hardware without
compromising performance.

The fine-tuning process was carried out on a desktop PC
equipped with an Nvidia GeForce RTX 5090 GPU, which
handled all computations. Thanks to LoRA, the hardware
requirements remained modest despite the size of the underlying
VLM.

The accuracy results obtained after fine-tuning are presented
in Table Il. All evaluated models improved their F1-score
compared with their non-fine-tuned counterparts. The highest
performance was achieved by Gemma-3-12B, which exceeded
an F1-score of 0.93. Qwen2-VL-7B and InternVL3-8B achieved
only slightly lower scores, despite being significantly smaller

R. FEIGLEWICZ, A. KOS

models, which may translate into faster inference in practical
deployments. The smallest model, Gemma-3-4B, reached an
F1-score of approximately 0.58, improving from 0.47 without
fine-tuning; however, this value remains lower than the
performance of methods that do not use VLMs at all. The
limited parameter count of such small models restricts their
ability to learn and generalize patterns from a relatively small
number of fine-tuning examples, which explains their reduced
effectiveness.

Since the use of fine-tuning significantly improved the
accuracy of open-source VLMs - making them suitable for
eliminating the influence of reflections in thermal-image human
detection - further optimization was performed to reduce
processing time and VRAM consumption. To achieve this,
model quantization was applied. Two frameworks were used:
Transformers, a universal solution that allows running VLMs on
hardware from various vendors, and TensorRT-LLM, a
specialized library designed for quantizing and deploying
models on NVIDIA GPUs.

The models were quantized to the following formats: Normal
Float 4 (NF4), FP8, and NVFP4. Additionally, the effect of
reducing the input image size from 512x512 to 256x256 on both
processing speed and accuracy was evaluated. The results are
presented in Table I1I.

For the 512x512 input size, the Fl-score for all tested
quantizations remained above 0.9, and in some cases even
exceeded the baseline BF16 model. The best result was obtained
using the InternVVL3-8B model quantized to NF4. However,
NF4 quantization caused a notable increase in inference time -
approximately 30% slower than the BF16 baseline. This
slowdown occurs because NF4 is not natively supported in
hardware, so model parameters must be converted to higher-
precision formats (typically FP16 or BF16) during computation.

For this reason, NVFP4 is generally a better choice when
supported by the GPU: it offers F1-scores comparable to NF4,
similar memory usage, and can be over three times faster in
inference. Both NVFP4 and NF4 reduce memory consumption
by roughly a factor of two, enabling deployment on devices with
limited hardware resources. FP8 provides intermediate
performance in terms of both memory footprint and speed,
making it a reasonable alternative when NVFP4 is not supported
by the GPU architecture.

TABLE Il
PERFORMANCE COMPARISON OF YOLOV11-VLM APPROACHES
FOR HUMAN DETECTION IN THERMAL IMAGERY WITH FINE-TUNED VLM MODELS.

Model Specs Accuracy Metrics Confusion Matrix
Model name Open  Number of  Parameter Recall Precision F1-score TP FP FN
Source? Parameters Data Type
Qwen2-VL-7B v 7B BF16 0.9330 0.9261 0.9295 376 30 27
Gemma-3-4B V4 4B BF16 0.5012 0.7014 0.5847 202 86 201
Gemma-3-12B V4 12B BF16 0.9752 0.8932 0.9324 393 47 10
InternVVL3-8B V4 8B BF16 0.9702 0.8947 0.9310 391 46 12
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TABLE Il
PERFORMANCE OF FINE-TUNED VLMS UNDER DIFFERENT QUANTIZATION SETTINGS.

Model Specs Results
Model name Number Framework Parameter F1-score Memory  Processing time [ms]
of Data Type footprint
Parameters Input image size [Gh] Input image size
[pix’] [pix’]

256 512 - 256 512

Qwen2-VL-7B 7B Transformers BF16 0.8810 0.9242 16.897 85.2 127

Qwen2-VL-7B 7B Transformers NF4 0.8747 0.9212 7.168 152 176

Qwen2-VL-7B 7B TensorRT- BF16 0.9077 0.9271 17.549 56.1 83.9
LLM

Qwen2-VL-7B B TensorRT- FP8 0.8968 0.9397 11.606 43.7 68.2
LLM

Qwen2-VL-7B 7B TensorRT- NVFP4 0.9019 0.9121 8.860 37.2 49.7
LLM

Gemma-3-12B 12B Transformers BF16 0.9327 0.9269 24.542 267 265

Gemma-3-12B 12B Transformers NF4 0.9156 0.9069 9.229 365 356

InternVL3-8B 8B Transformers BF16 0.9300 0.9233 16.077 88.2 91.7

InternVL3-8B 8B Transformers NF4 0.9369 0.9406 8.245 119 120

InternVVL3-8B 8B TensorRT- BF16 0.9262 0.9358 16.366 69.8 71.2
LLM

InternVVL3-8B 8B TensorRT- FP8 0.9225 0.9309 10.395 52.1 53.6
LLM

InternVL3-8B 8B TensorRT- NVFP4 0.9252 0.9332 7.647 37.6 39.4
LLM

When reducing the input resolution from 512x512 to
256x256, a decrease in F1l-score was observed for most
configurations. Notably, for Intern\VVL3-8B and Gemma-3-12B,
this reduction in resolution did not provide significant speed
improvements. In contrast, Qwen2-VL-7B exhibited a
processing-time improvement of approximately 50%. This
difference stems from the fact that Qwen2-VL-7B internally
splits the input image into smaller patches, whereas the other
models always rescale the image to a fixed resolution.

Therefore, if increased inference speed is required, using

lower-resolution images is beneficial specifically for Qwen2-
VL-7B, albeit at the cost of reduced accuracy.
In Fig. 9, the processing time per thermal image obtained using
the Qwen2-VL-7B-based algorithm is compared with the
required VRAM for different quantization methods. The
Transformers framework provides memory consumption
comparable to TensorRT-LLM for both 16-bit and 4-bit
guantization schemes. However, TensorRT-LLM achieves
substantially lower inference latency, particularly for 4-bit
quantization, where NVVFP4 is more than three times faster than
NF4.

Comparison of Processing Time and Memory Footprint
00 Across Quantization Methods for Qwen2VL-7B
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Fig. 9 Processing Time vs. Memory Footprint for Qwen2-VL-7B Under
Different Quantization Methods. All results were obtained using 512x512
input images. Quantization to NF4 and FP8 significantly reduces memory
usage compared to BF16, while NVFP4 achieves the best trade-off by
providing both low memory consumption and the fastest inference among the
tested configurations. The increase in processing time for NF4 is attributed to
the need for on-the-fly conversion to higher-precision formats due to lack of
native hardware support.



CONCLUSION

This work demonstrates that Vision-Language Models can be
effectively applied to thermal image analysis, even when only
small task-specific training datasets are available. Current
closed-source models with hundreds of billions of parameters
are capable of achieving high accuracy on thermal imagery
without any additional fine-tuning. In contrast, smaller open-
source VLMs, containing only a few to several billion
parameters, require fine-tuning to reach comparable
performance on the target task; however, even limited fine-
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