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Abstract—Doppler radar-based respiratory monitoring offers 

a non-contact, physiologic assessment of breathing patterns. 

However, the inherent time-variant nature of respiratory signals 

presents challenges in accurate characterisation and classification. 

This study investigates the analysis of time-variant traits in 

respiratory Doppler radar signals using a feature extraction 

framework that integrates statistical features, Hilbert transform, 

discrete wavelet transforms (DWT), and fractal dimension 

analysis. The methodology begins with signal pre-processing to 

remove noise and enhance the signal for clarity. Statistical features, 

including mean, skewness, and kurtosis, are extracted to quantify 

signal variability. The Hilbert transform is employed to analyse 

instantaneous amplitude and phase variations, while DWT is used 

for multi-resolution decomposition to capture respiratory signal 

dynamics across different frequency scales over time. Additionally, 

fractal dimension analysis provides insights into the complexity 

and irregularity of breathing patterns in the time series. Machine 

learning-based classification models are applied to distinguish 

between normal and abnormal respiratory conditions. Results 

demonstrate the effectiveness of the proposed approach in 

enhancing respiratory signal characterisation and classification by 

utilising the Hilbert Transform over a Subspace Discriminant 

model with an accuracy rate of 92.3%. The findings suggest that 

integrating these feature extraction techniques can significantly 

improve non-invasive respiratory monitoring. 
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I. INTRODUCTION 

ESPIRATORY monitoring is a critical component in 

medical diagnostics, sleep studies, and remote health 

monitoring, playing a key role in detecting respiratory disorders 

[1] such as sleep apnea, chronic obstructive pulmonary disease 

(COPD) [2], and abnormal breathing patterns associated with 

neurological conditions. In clinical and occupational 

environments, contact-based methods for monitoring 

respiratory rate are based on measuring sound, airflow, 

temperature, and chest wall motion [3]. Traditional respiratory 

monitoring methods, including spirometry and 

plethysmography [4], as well as wearable chest sensors, often 

require physical contact with the patient, which can be 
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uncomfortable for long-term monitoring and may introduce 

compliance issues [5]. Additionally, contact-based sensors are 

prone to displacement and motion artefacts, reducing the 

reliability of measurements [6],[7]. Contact-based respiratory 

monitoring often results in motion artefacts and user discomfort. 

Despite this, such sensors are commonly used to evaluate 

breathing patterns related to respiratory issues. Detecting 

irregular breathing rhythms is vital for diagnosing diseases and 

monitoring health [8]. Abnormal respiratory patterns can be 

caused by conditions such as heart failure, stroke [9], damage to 

the respiratory center, opioid use, and weakened respiratory 

muscles. Various medical conditions, including trauma and 

metabolic disorders, may also lead to erratic breathing.  

To overcome these limitations, Doppler radar-based 

respiratory monitoring has emerged as a promising non-contact 

alternative that enables continuous tracking of respiratory 

activity without needing physical attachment to the body 

[10][11]. By analysing frequency and phase shifts in reflected 

radar signals caused by chest or abdominal movements, Doppler 

radar provides a real-time and unobtrusive solution for 

respiratory assessment [12],[13]. 

Despite its advantages, the analysis of Doppler radar signals 

for respiratory monitoring presents significant challenges due to 

the time-variant nature of respiratory signals. Multiple factors 

influence breathing patterns, including physiological variations, 

subject motion, environmental disturbances [14], and noise [15] 

in radar measurements. Unlike static signals, respiratory signals 

exhibit temporal fluctuations in frequency, amplitude, and 

phase, making it challenging to extract consistent and 

meaningful features. Traditional signal processing methods, 

such as Fourier transform-based frequency analysis, are often 

insufficient in capturing these dynamic variations. This 

limitation necessitates advanced feature extraction techniques 

that can better characterise respiratory signals' non-stationary 

and non-linear properties, improving classification accuracy and 

predictive modelling for abnormal breathing patterns. 

To address these challenges, this study introduces an 

advanced feature extraction framework that integrates statistical 

features, Hilbert transforms, discrete wavelet transforms 

(DWT), and fractal dimension analysis to enhance time-variant 
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trait analysis in respiratory Doppler radar signals. Statistical  

features, including mean, skewness, and kurtosis, provide 

insights into the overall distribution and variability of the signal. 

While the Hilbert transform is applied to extract instantaneous 

amplitude and phase variations, offering a detailed 

representation of respiratory dynamics over time [16]. The 

discrete wavelet transform (DWT) is also utilised to enable 

multi-resolution decomposition, allowing time-frequency 

analysis at different scales, which is crucial for detecting subtle 

respiratory fluctuations over time [17]. Additionally, fractal 

dimension analysis  is applied to Additionally, fractal 

dimension analysis is applied to quantify the complexity and 

irregularity of breathing patterns, providing a way for 

distinguishing between normal and abnormal respiration [18], 

[19].  

Consequently, there is growing interest in leveraging 

technology to identify respiratory irregularities. Artificial 

intelligence (AI), which requires minimal human input, shows 

significant potential in this area. AI encompasses four main 

types: reinforcement learning, supervised learning, semi-

supervised learning, and unsupervised learning. Among them, 

supervised learning, which includes classification, regression, 

and forecasting, uses labelled data to help machines learn and 

apply functions in machine and deep learning applications. 

Hence, this paper presents the application of feature 

extraction techniques in conjunction with a machine learning-

based classification model to distinguish between various 

respiratory conditions. By exploiting time-variant traits, the 

proposed framework enhances the robustness and accuracy of 

respiratory monitoring. The experimental results demonstrate 

the effectiveness of this approach, highlighting its potential for 

improving non-contact respiratory monitoring and early 

detection of respiratory anomalies. 

The remainder of this paper is organised as follows: The next 

section provides an overview of related work in Doppler radar-

based respiratory monitoring and existing signal processing 

techniques. The methodology section details the proposed 

framework, including signal pre-processing, feature extraction, 

and classification models. The experimental results and 

performance evaluation are then presented, followed by a 

discussion of findings, and future research directions. Finally, 

the conclusion summarises key contributions and highlights 

future improvements for enhancing non-contact respiratory 

monitoring using Doppler radar technology. 

II. METHODOLOGY 

This study presents an advanced feature extraction and 

classification framework for analysing time-variant traits in 

respiratory Doppler radar signals. Figure 1 illustrates the overall 

methodology used to classify human-related radar signals 

combining time-variant trait extraction and machine learning. 

The experimental configuration for acquiring breathing 

signals utilising a XeThru X4M200 radar module [20]. This 

radar module is an ultra-wideband (UWB) single-chip 

transceiver that operates between 6.0 and 8.5 GHz with a low 

power consumption of less than 120 mW [21]. The integration 

of the XeThru X4M200 module with the XeThru Explorer 

acquisition software is achieved via a USB cable. 

The process begins with data acquisition, where a subject is 

placed at a fixed distance from a XeThru X4M200 radar 

module. The radar is positioned approximately one meter in 

front of the person and 0.9 meters above the ground, ensuring 

that it is aligned to capture the desired physiological signals, 

such as subtle chest movements or breathing patterns. 

Once the radar signal is collected, it undergoes signal 

conditioning. This stage involves filtering to remove noise and 

unwanted signals, followed by temporal segmentation, where 

the continuous signal is divided into significant time segments 

of 3,000 sample points each, thereby preventing bias in the 

analysis due to longer signals. These conditioned signals are 

then forwarded to the time-variant signal processing stage, 

where various feature extraction techniques are applied. 

In the time-variant signal processing phase, several 

approaches are used to capture different characteristics of the 

time-domain signal. The first method is statistical feature 

extraction, which captures basic signal properties of mean, 

standard deviation, root mean square (RMS), peak value, 

skewness, kurtosis, crest factor and energy value. 

The second method involves applying the Hilbert Transform 

(HT), which produces instantaneous amplitude, instantaneous 

phase and instantaneous frequency. The third technique utilises 

the Discrete Wavelet Transform (DWT) to decompose the 

signal into different frequency components, allowing for the 

analysis of localised frequency changes over time. Both HT and 

DWT outputs are applied to statistical feature extraction.  

Incorporating statistical feature extraction after applying the 

HT or DWT helps to simplify and enhance the transformed 

Fig. 1. Block diagram of the proposed respiratory Doppler signal analysis 

Fig. 1. Block diagram of the proposed respiratory Doppler signal analysis 
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signals for better classification. While HT and DWT capture  

rich time-frequency details, their raw outputs are often too 

complex or high-dimensional for direct use. Statistical features 

summarise this information into compact, interpretable values. 

This makes the data more manageable, reduces overfitting, and 

improves the performance and robustness of machine learning 

models. It also allows for easier comparison and combination 

with other feature types. 

Lastly, the final method calculates the Fractal Dimension 

(FD) of the signal to measure its complexity and irregular 

patterns. Three types of FD are used, which are Petrosian, 

Higuchi, and Box-Counting. Petrosian FD provides a fast 

estimate based on signal sign changes, Higuchi FD captures fine 

structural details over time, and Box-Counting FD reflects 

spatial complexity using geometric coverage. Together, these 

features provide a detailed view of the signal's irregularity, 

helping to improve classification by capturing subtle differences 

in respiratory patterns. 

The final stage of the methodology involves the application 

of machine learning. The extracted features are split into two 

datasets, with 80% used for training and 20% used for testing. 

The training data is used to teach the models to recognise 

patterns in the signals, while the testing data evaluates how well 

the trained models perform on new, unseen data. This leads to 

the final step of performance evaluation, where the 

classification accuracy of each model and feature extraction 

technique is measured. 

 

A. Data Acquisition and Preprocessing 

The study has been registered with the National Medical 

Research Register (NMRR) for the record, and subjects 

provided consent to participate in the experiment. A total of 75 

participants, comprising 40 males and 35 females aged 18 to 27 

years, were involved as subjects. Various activities and tasks 

were conducted by participants to provide three groups of 

respiratory patterns, which are normal, high and low. Activities 

for stimulating respiratory conditions are summarised in Table 

I. The number of 225 datasets were collected consists of 33.85% 

normal breathing, 32.82% high breathing, and 33.33% low 

breathing. 

Doppler radar operates by transmitting electromagnetic 

waves toward a target and analysing the reflected signals, where 

frequency shifts correspond to respiratory motion [22],[23]. The 

experimental setup involved a continuous-wave (CW) Doppler 

radar system positioned to face the subject's chest or abdomen 

at a fixed distance. The received signals were recorded over a 

predefined duration under controlled conditions, capturing 

variations in breathing patterns.  

The raw radar signals underwent several pre-processing steps 

to ensure reliability. First, DC removal was applied to eliminate 

baseline drift and static clutter caused by body posture and 

environmental interference. Next, digital bandpass filters were 

implemented to allow frequencies within the radar's operational 

bandwidth while attenuating out-of-band noise and interference. 

These signal conditioning processes were conducted on the 

radar chip. Normalisation was followed to standardise the signal 

amplitude, reducing variations due to subject positioning. The 

signals were segmented into fixed-length windows for further 

feature extraction, ensuring a consistent analysis framework 

across different subjects and conditions. The normalisation 

process utilised MATLAB software. 

B. Feature Extraction 

This study employed a feature extraction approach that 

integrated statistical features, Hilbert Transform, Discrete 

Wavelet Transform (DWT), and fractal dimension analysis to 

capture the time-variant traits in Doppler radar respiratory 

signals. Each technique contributes to a more comprehensive 

understanding of the frequency, amplitude, and complexity of a 

time-domain signal. 

Statistical features provide key insights into the distribution 

and variability of the respiratory signal. The extracted measures 

include mean, which represents the average respiratory 

amplitude; Standard deviation, which measures the dispersion 

of the signal around its mean; Root-means-square, which 

represents the effective power or energy of the signal; Peak 

value, represents the maximum absolute value of the signal; 

skewness, which quantifies the asymmetry in the signal 

distribution; and kurtosis, which evaluates the peakedness of the 

signal. These statistical indicators help distinguish between 

normal and abnormal breathing patterns. 

The second approach was the Hilbert transform. It was 

applied to analyse instantaneous respiratory dynamics. It 

extracted features such as the instantaneous amplitude envelope, 

which reflects breathing intensity over time; the instantaneous 

phase shift, which captures phase variations associated with 

different respiratory states; and the instantaneous frequency, 

TABLE I 

TASK ASSIGNED FOR RESPIRATORY STIMULATION 

Respiratory Condition Activities Duration 

Normal The subject is instructed to remain seated and 

engage in spontaneous/ normal, unforced 

breathing. 

Data is collected continuously for a 

period of 15 minutes. 

High The subject engages in light physical activities 

such as jumping or running, followed by a 

seated resting phase. 

A minimum of 5 minutes is allocated 

for the exercise activities, followed by 

an additional 15 minutes dedicated to 

data collection during the resting 

phase. 

Low The subject remains seated and performs deep 

breathing consistently throughout the duration. 

Data is collected continuously for a 

period of 15 minutes. 
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which provides a finer resolution of breathing rate changes. 

These features enhance the temporal resolution of respiratory 

monitoring. 

Next, the discrete wavelet transform (DWT) decomposed the 

respiratory signal into multiple frequency components, enabling 

a detailed time-frequency analysis. This transformation is 

performed using the Daubechies wavelet (db4), which is well-

suited for biomedical signal processing. The wavelet 

decomposition extracts features such as approximation 

coefficients, which represent overall respiratory trends, and 

detail coefficients, which capture finer respiratory fluctuations. 

Energy distribution across wavelet levels is also computed to 

quantify spectral variations in respiratory activity. 

To further analyse the respiratory signal's complexity and 

irregularity, fractal dimension analysis is conducted using the 

Higuchi fractal dimension (HFD) method. This technique 

calculates the signal's self-similarity, with higher values 

indicating increased complexity due to irregular breathing 

patterns. By incorporating fractal analysis, the proposed 

framework improves its ability to differentiate between normal 

and disordered breathing conditions. 

C. Classification Model 

Various machine learning-based classification models were 

applied to distinguish between normal and abnormal respiratory 

patterns based on the extracted features. Various classification 

algorithms are evaluated, including Decision Trees (DT), 

Support Vector Machine (SVM), Random Forest (RF), Naïve 

Bayes (NB) and K-Nearest Neighbour (KNN).  

SVM is known for its effectiveness in handling high-

dimensional feature spaces, especially when employing a radial 

basis function (RBF) kernel, which enables non-linear 

classification by mapping input data into a higher-dimensional 

space. This makes SVM particularly powerful in complex 

pattern recognition problems [24]. While RF classifier is 

commonly employed as an ensemble learning approach to 

enhance classification robustness by aggregating multiple 

decision trees [25], [26]. The DT classifier is known for its 

interpretability and low computational cost, providing a clear 

and intuitive way to understand classification logic through a 

hierarchical structure of decisions [27]. It is well-suited for 

exploring data analysis and real-time decision-making scenarios 

[28]. Additionally, NB is considered due to its simplicity, 

efficiency, and strong performance with relatively small 

training data sets [29]. It works on the principle of conditional 

probability and assumes feature independence, making it highly 

scalable and effective in many text classification and medical 

diagnosis tasks. Finally, KNN algorithms were explored due to 

their widely recognised intuitive simplicity, flexibility in 

adapting to different types of data, and minimal assumptions 

about the underlying data distribution, making them suitable for 

a broad range of classification and regression tasks [30], [31]. 

By leveraging the strengths of these diverse models, the study 

aims to comprehensively assess and compare their effectiveness 

in detecting irregular respiratory patterns, ultimately 

contributing to more reliable and accurate respiratory 

monitoring systems. 

The dataset was divided into training (80%) and testing (20%) 

subsets to ensure model generalisation and 10-fold cross-

validation was used for performance optimisation. This 

approach reduces the risk of overfitting and ensures that the 

model can effectively adapt to new respiratory patterns.  

III. RESULTS 

The classification results presented in Table II reflects the 

performance of various machine learning models using different 

time-variant signal feature extraction techniques, namely 

Statistical Features, Hilbert Transform, Fractal Dimension, and 

Discrete Wavelet Transform. These approaches were evaluated 

to determine their ability to effectively represent radar-derived 

breathing signals and enable accurate classification of 

respiratory patterns. 

Among all the tested feature extraction methods, the Hilbert 

Transform consistently delivered the highest performance 

across multiple classifiers. Notably, the Subspace Discriminant 

model achieved the highest test accuracy of 92.3%, followed 

closely by the Coarse Tree, Bagged Trees, and Linear 

Discriminant, each reaching 84.6%. This finding suggests that 

the Hilbert Transform is highly effective in preserving critical 

time-frequency features, such as instantaneous amplitude and 

phase, which are valuable for distinguishing between different 

breathing states. Similarly, the Linear SVM also showed strong 

performance under the Hilbert Transform, achieving an 

accuracy of 82.1%. However, it is important to note that the 

Quadratic Discriminant model failed under this feature set, 

indicating a limitation in compatibility or numerical stability 

with the Hilbert-transformed data. 

The Fractal Dimension feature set demonstrated reliable and 

moderately high performance across most models, highlighting 

its robustness in capturing the complexity and irregularity of 

breathing signals. Models such as Quadratic SVM and Linear 

Discriminant achieved accuracies of 79.5%, while many others, 

including Subspace Discriminant, Cubic SVM, and various 

neural networks, maintained accuracies in the range of 71.8% to 

74.4%. These results confirmed that fractal features are capable 

of generalising well across different classifier architectures, 

offering a good balance between performance and consistency. 

The Discrete Wavelet Transform presented moderate 

classification performance, with Coarse Gaussian SVM yielding 

the highest accuracy of 56.4% in this category. Several other 

models, such as Linear SVM, Cubic SVM, and Neural 

Networks, performed in the 48% to 51% range. This outcome 

suggests that while wavelet decomposition captures multiscale 

frequency information, it may not provide sufficiently 

distinctive features on its own or may require further post-

processing to enhance classification accuracy. 

In contrast, the Statistical Feature consistently showed the 

lowest classification performance. Most models produced 

accuracies below 45%, with only a few exceptions, such as 

Linear SVM (43.6%), Coarse Tree (38.5%), and Subspace 

Discriminant (38.5%). These results suggest that simple 

statistical descriptors, although easy to compute, may lack the 

depth and sensitivity required to capture meaningful variations 

in radar-based respiratory signals. 

Overall, the analysis highlights the crucial role of feature 

extraction in determining classification accuracy. The Hilbert 

Transform stands out as the most powerful method for 

enhancing model performance, particularly when used with 

discriminant analysis and ensemble models. The Fractal 

Dimension offers a robust alternative with broad model 
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compatibility, while Discrete Wavelet Transform and Statistical 

Features may require further enhancement or hybridisation to 

reach comparable levels of accuracy. These insights can guide 

future work in optimising radar-based respiration monitoring 

systems, especially in selecting the most suitable signal 

processing techniques for real-time or clinical applications. 

The result was further analysed in terms of the confusion 

matrix. Figure 2 illustrates the classification performance of the 

Subspace Discriminant model using features extracted through 

the Hilbert Transform, which previously achieved the highest 

overall accuracy. The model was evaluated on three respiratory 

classes, which are high, low, and normal breathing. The 

diagonal elements of the matrix indicate correctly classified 

instances, with 30.77% of high breathing cases, 35.90% of low 

breathing cases, and 25.64% of normal breathing cases 

accurately identified by the model. These results demonstrate 

that the classifier is most effective at recognising the low 

breathing pattern, which achieved the highest true positive rate 

among the three classes. 

Misclassifications are reflected in the off-diagonal values. 

For example, 5.13% of normal breathing instances were 

incorrectly predicted as high, while 2.56% are misclassified as 

low. This strong class separation highlights the discriminative 

strength of the Hilbert Transform features when used with a 

Subspace Discriminant classifier. Overall, the confusion matrix 

confirms that this combination provides reliable classification 

performance, particularly in distinguishing subtle variations in 

respiratory patterns captured through Doppler radar signals. 

 

 

TABLE II 

THE CLASSIFICATION PERFORMANCE OF TIME-VARIANT ANALYSIS 

Model Statistical Feature Hilbert Transform Fractal Dimension 
Discrete Wavelet 

Transform 

Fine Tree 28.2 79.5 64.1 46.2 

Medium Tree 30.8 79.5 64.1 46.2 

Coarse Tree 38.5 84.6 66.7 51.3 

Linear Discriminant 41.0 84.6 79.5 48.7 

Quadratic 

Discriminant 
41.0 Failed 74.4 41.0 

Gaussian Naïve Bayes 33.3 51.3 69.2 53.8 

Kernel Naïve Bayes 33.3 59.0 71.8 48.7 

Linear SVM 43.6 82.1 74.4 48.7 

Quadratic SVM 41.0 76.9 79.5 46.2 

Cubic SVM 33.3 66.7 71.8 51.3 

Fine Gaussian SVM 41.0 41.0 74.4 41.0 

Medium Gaussian 

SVM 
41.0 76.9 74.4 53.8 

Coarse Gaussian SVM 33.3 61.5 74.4 56.4 

Fine KNN 33.3 53.8 71.8 38.5 

Medium KNN 35.9 56.4 69.2 51.3 

Coarse KNN 41.0 41.0 74.4 43.6 

Cosine KNN 33.3 56.4 66.7 59.0 

Cubic KNN 41.0 51.3 69.2 48.7 

Weighted KNN 35.9 56.4 69.2 46.2 

Boosted Trees 28.2 74.4 66.7 30.8 

Bagged Trees 35.9 84.6 66.7 43.6 

Subspace Discriminant 38.5 92.3* 79.5 53.8 

Subspace KNN 30.8 33.3 64.1 46.2 

RUS Boosted Trees 30.8 74.4 64.1 30.8 

Narrow Neural 

Network 
41.0 64.1 74.4 48.7 

Medium Neural 

Network 
41.0 74.4 74.4 46.2 

Wide Neural Network 43.6 71.8 66.7 51.3 

Bilayered Neural 

Network 
33.3 71.8 74.4 48.7 

Trilayered Neural 

Network 
38.5 79.5 74.4 48.7 

SVM Kernel 46.2 38.5 71.8 43.6 

Logistic Regression 

Kernel 
38.5 43.6 69.2 41.0 
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Fig. 2. Confusion Matrix of Subspace Discriminant 

CONCLUSION 

In conclusion, this study demonstrates that time-variant feature 

representation is critical for accurate Doppler radar–based 

respiratory classification. Among all evaluated methods, Hilbert 

Transform features achieved the highest discriminative power, 

with the Subspace Discriminant classifier reaching an accuracy 

of 92.3%, supported by strong class separability in the confusion 

matrix. Fractal dimension features showed consistent, moderate 

performance across classifiers, while Discrete Wavelet 

Transform and statistical features were less effective. These 

findings confirm the superiority of instantaneous signal 

descriptors for non-contact respiratory monitoring applications. 
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