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Abstract—Doppler radar-based respiratory monitoring offers
a non-contact, physiologic assessment of breathing patterns.
However, the inherent time-variant nature of respiratory signals
presents challenges in accurate characterisation and classification.
This study investigates the analysis of time-variant traits in
respiratory Doppler radar signals using a feature extraction
framework that integrates statistical features, Hilbert transform,
discrete wavelet transforms (DWT), and fractal dimension
analysis. The methodology begins with signal pre-processing to
remove noise and enhance the signal for clarity. Statistical features,
including mean, skewness, and kurtosis, are extracted to quantify
signal variability. The Hilbert transform is employed to analyse
instantaneous amplitude and phase variations, while DWT is used
for multi-resolution decomposition to capture respiratory signal
dynamics across different frequency scales over time. Additionally,
fractal dimension analysis provides insights into the complexity
and irregularity of breathing patterns in the time series. Machine
learning-based classification models are applied to distinguish
between normal and abnormal respiratory conditions. Results
demonstrate the effectiveness of the proposed approach in
enhancing respiratory signal characterisation and classification by
utilising the Hilbert Transform over a Subspace Discriminant
model with an accuracy rate of 92.3%. The findings suggest that
integrating these feature extraction techniques can significantly
improve non-invasive respiratory monitoring.
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I. INTRODUCTION

ESPIRATORY monitoring is a critical component in

medical diagnostics, sleep studies, and remote health
monitoring, playing a key role in detecting respiratory disorders
[1] such as sleep apnea, chronic obstructive pulmonary disease
(COPD) [2], and abnormal breathing patterns associated with
neurological conditions. In clinical and occupational
environments, contact-based methods for monitoring
respiratory rate are based on measuring sound, airflow,
temperature, and chest wall motion [3]. Traditional respiratory
monitoring methods, including spirometry and
plethysmography [4], as well as wearable chest sensors, often
require physical contact with the patient, which can be
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uncomfortable for long-term monitoring and may introduce
compliance issues [5]. Additionally, contact-based sensors are
prone to displacement and motion artefacts, reducing the
reliability of measurements [6],[7]. Contact-based respiratory
monitoring often results in motion artefacts and user discomfort.
Despite this, such sensors are commonly used to evaluate
breathing patterns related to respiratory issues. Detecting
irregular breathing rhythms is vital for diagnosing diseases and
monitoring health [8]. Abnormal respiratory patterns can be
caused by conditions such as heart failure, stroke [9], damage to
the respiratory center, opioid use, and weakened respiratory
muscles. Various medical conditions, including trauma and
metabolic disorders, may also lead to erratic breathing.

To overcome these limitations, Doppler radar-based
respiratory monitoring has emerged as a promising non-contact
alternative that enables continuous tracking of respiratory
activity without needing physical attachment to the body
[10][11]. By analysing frequency and phase shifts in reflected
radar signals caused by chest or abdominal movements, Doppler
radar provides a real-time and unobtrusive solution for
respiratory assessment [12],[13].

Despite its advantages, the analysis of Doppler radar signals
for respiratory monitoring presents significant challenges due to
the time-variant nature of respiratory signals. Multiple factors
influence breathing patterns, including physiological variations,
subject motion, environmental disturbances [14], and noise [15]
in radar measurements. Unlike static signals, respiratory signals
exhibit temporal fluctuations in frequency, amplitude, and
phase, making it challenging to extract consistent and
meaningful features. Traditional signal processing methods,
such as Fourier transform-based frequency analysis, are often
insufficient in capturing these dynamic variations. This
limitation necessitates advanced feature extraction techniques
that can better characterise respiratory signals' non-stationary
and non-linear properties, improving classification accuracy and
predictive modelling for abnormal breathing patterns.

To address these challenges, this study introduces an
advanced feature extraction framework that integrates statistical
features, Hilbert transforms, discrete wavelet transforms
(DWT), and fractal dimension analysis to enhance time-variant
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Fig. 1. Block diagram of the proposed respiratory Doppler signal analysis

trait analysis in respiratory Doppler radar signals. Statistical
features, including mean, skewness, and Kkurtosis, provide
insights into the overall distribution and variability of the signal.
While the Hilbert transform is applied to extract instantaneous
amplitude and phase variations, offering a detailed
representation of respiratory dynamics over time [16]. The
discrete wavelet transform (DWT) is also utilised to enable
multi-resolution  decomposition, allowing time-frequency
analysis at different scales, which is crucial for detecting subtle
respiratory fluctuations over time [17]. Additionally, fractal
dimension analysis is applied to Additionally, fractal
dimension analysis is applied to quantify the complexity and
irregularity of breathing patterns, providing a way for
distinguishing between normal and abnormal respiration [18],
[19].

Consequently, there is growing interest in leveraging
technology to identify respiratory irregularities. Aurtificial
intelligence (Al), which requires minimal human input, shows
significant potential in this area. Al encompasses four main
types: reinforcement learning, supervised learning, semi-
supervised learning, and unsupervised learning. Among them,
supervised learning, which includes classification, regression,
and forecasting, uses labelled data to help machines learn and
apply functions in machine and deep learning applications.

Hence, this paper presents the application of feature
extraction techniques in conjunction with a machine learning-
based classification model to distinguish between various
respiratory conditions. By exploiting time-variant traits, the
proposed framework enhances the robustness and accuracy of
respiratory monitoring. The experimental results demonstrate
the effectiveness of this approach, highlighting its potential for
improving non-contact respiratory monitoring and early
detection of respiratory anomalies.

The remainder of this paper is organised as follows: The next
section provides an overview of related work in Doppler radar-
based respiratory monitoring and existing signal processing
techniques. The methodology section details the proposed
framework, including signal pre-processing, feature extraction,
and classification models. The experimental results and
performance evaluation are then presented, followed by a
discussion of findings, and future research directions. Finally,
the conclusion summarises key contributions and highlights
future improvements for enhancing non-contact respiratory
monitoring using Doppler radar technology.

Il. METHODOLOGY

This study presents an advanced feature extraction and
classification framework for analysing time-variant traits in
respiratory Doppler radar signals. Figure 1 illustrates the overall
methodology used to classify human-related radar signals
combining time-variant trait extraction and machine learning.

The experimental configuration for acquiring breathing
signals utilising a XeThru X4M200 radar module [20]. This
radar module is an ultra-wideband (UWB) single-chip
transceiver that operates between 6.0 and 8.5 GHz with a low
power consumption of less than 120 mW [21]. The integration
of the XeThru X4M200 module with the XeThru Explorer
acquisition software is achieved via a USB cable.

The process begins with data acquisition, where a subject is
placed at a fixed distance from a XeThru X4M200 radar
module. The radar is positioned approximately one meter in
front of the person and 0.9 meters above the ground, ensuring
that it is aligned to capture the desired physiological signals,
such as subtle chest movements or breathing patterns.

Once the radar signal is collected, it undergoes signal
conditioning. This stage involves filtering to remove noise and
unwanted signals, followed by temporal segmentation, where
the continuous signal is divided into significant time segments
of 3,000 sample points each, thereby preventing bias in the
analysis due to longer signals. These conditioned signals are
then forwarded to the time-variant signal processing stage,
where various feature extraction techniques are applied.

In the time-variant signal processing phase, several
approaches are used to capture different characteristics of the
time-domain signal. The first method is statistical feature
extraction, which captures basic signal properties of mean,
standard deviation, root mean square (RMS), peak value,
skewness, kurtosis, crest factor and energy value.

The second method involves applying the Hilbert Transform
(HT), which produces instantaneous amplitude, instantaneous
phase and instantaneous frequency. The third technique utilises
the Discrete Wavelet Transform (DWT) to decompose the
signal into different frequency components, allowing for the
analysis of localised frequency changes over time. Both HT and
DWT outputs are applied to statistical feature extraction.

Incorporating statistical feature extraction after applying the
HT or DWT helps to simplify and enhance the transformed
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TABLE |
TASK ASSIGNED FOR RESPIRATORY STIMULATION

Respiratory Condition

Activities

Duration

Data is collected continuously for a
period of 15 minutes.

A minimum of 5 minutes is allocated
for the exercise activities, followed by
an additional 15 minutes dedicated to
data collection during the resting
phase.

Normal The subject is instructed to remain seated and
engage in spontaneous/ normal, unforced
breathing.
High The subject engages in light physical activities
such as jumping or running, followed by a
seated resting phase.
Low

The subject remains seated and performs deep
breathing consistently throughout the duration.

Data is collected continuously for a
period of 15 minutes.

signals for better classification. While HT and DWT capture
rich time-frequency details, their raw outputs are often too
complex or high-dimensional for direct use. Statistical features
summarise this information into compact, interpretable values.
This makes the data more manageable, reduces overfitting, and
improves the performance and robustness of machine learning
models. It also allows for easier comparison and combination
with other feature types.

Lastly, the final method calculates the Fractal Dimension
(FD) of the signal to measure its complexity and irregular
patterns. Three types of FD are used, which are Petrosian,
Higuchi, and Box-Counting. Petrosian FD provides a fast
estimate based on signal sign changes, Higuchi FD captures fine
structural details over time, and Box-Counting FD reflects
spatial complexity using geometric coverage. Together, these
features provide a detailed view of the signal's irregularity,
helping to improve classification by capturing subtle differences
in respiratory patterns.

The final stage of the methodology involves the application
of machine learning. The extracted features are split into two
datasets, with 80% used for training and 20% used for testing.
The training data is used to teach the models to recognise
patterns in the signals, while the testing data evaluates how well
the trained models perform on new, unseen data. This leads to
the final step of performance evaluation, where the
classification accuracy of each model and feature extraction
technique is measured.

A. Data Acquisition and Preprocessing

The study has been registered with the National Medical
Research Register (NMRR) for the record, and subjects
provided consent to participate in the experiment. A total of 75
participants, comprising 40 males and 35 females aged 18 to 27
years, were involved as subjects. Various activities and tasks
were conducted by participants to provide three groups of
respiratory patterns, which are normal, high and low. Activities
for stimulating respiratory conditions are summarised in Table
I. The number of 225 datasets were collected consists of 33.85%
normal breathing, 32.82% high breathing, and 33.33% low
breathing.

Doppler radar operates by transmitting electromagnetic
waves toward a target and analysing the reflected signals, where
frequency shifts correspond to respiratory motion [22],[23]. The

experimental setup involved a continuous-wave (CW) Doppler
radar system positioned to face the subject's chest or abdomen
at a fixed distance. The received signals were recorded over a
predefined duration under controlled conditions, capturing
variations in breathing patterns.

The raw radar signals underwent several pre-processing steps
to ensure reliability. First, DC removal was applied to eliminate
baseline drift and static clutter caused by body posture and
environmental interference. Next, digital bandpass filters were
implemented to allow frequencies within the radar's operational
bandwidth while attenuating out-of-band noise and interference.
These signal conditioning processes were conducted on the
radar chip. Normalisation was followed to standardise the signal
amplitude, reducing variations due to subject positioning. The
signals were segmented into fixed-length windows for further
feature extraction, ensuring a consistent analysis framework
across different subjects and conditions. The normalisation
process utilised MATLAB software.

B. Feature Extraction

This study employed a feature extraction approach that
integrated statistical features, Hilbert Transform, Discrete
Wavelet Transform (DWT), and fractal dimension analysis to
capture the time-variant traits in Doppler radar respiratory
signals. Each technique contributes to a more comprehensive
understanding of the frequency, amplitude, and complexity of a
time-domain signal.

Statistical features provide key insights into the distribution
and variability of the respiratory signal. The extracted measures
include mean, which represents the average respiratory
amplitude; Standard deviation, which measures the dispersion
of the signal around its mean; Root-means-square, which
represents the effective power or energy of the signal; Peak
value, represents the maximum absolute value of the signal;
skewness, which quantifies the asymmetry in the signal
distribution; and kurtosis, which evaluates the peakedness of the
signal. These statistical indicators help distinguish between
normal and abnormal breathing patterns.

The second approach was the Hilbert transform. It was
applied to analyse instantaneous respiratory dynamics. It
extracted features such as the instantaneous amplitude envelope,
which reflects breathing intensity over time; the instantaneous
phase shift, which captures phase variations associated with
different respiratory states; and the instantaneous frequency,
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which provides a finer resolution of breathing rate changes.
These features enhance the temporal resolution of respiratory
monitoring.

Next, the discrete wavelet transform (DWT) decomposed the
respiratory signal into multiple frequency components, enabling
a detailed time-frequency analysis. This transformation is
performed using the Daubechies wavelet (db4), which is well-
suited for biomedical signal processing. The wavelet
decomposition extracts features such as approximation
coefficients, which represent overall respiratory trends, and
detail coefficients, which capture finer respiratory fluctuations.
Energy distribution across wavelet levels is also computed to
quantify spectral variations in respiratory activity.

To further analyse the respiratory signal's complexity and
irregularity, fractal dimension analysis is conducted using the
Higuchi fractal dimension (HFD) method. This technique
calculates the signal's self-similarity, with higher values
indicating increased complexity due to irregular breathing
patterns. By incorporating fractal analysis, the proposed
framework improves its ability to differentiate between normal
and disordered breathing conditions.

C. Classification Model

Various machine learning-based classification models were
applied to distinguish between normal and abnormal respiratory
patterns based on the extracted features. Various classification
algorithms are evaluated, including Decision Trees (DT),
Support Vector Machine (SVM), Random Forest (RF), Naive
Bayes (NB) and K-Nearest Neighbour (KNN).

SVM is known for its effectiveness in handling high-
dimensional feature spaces, especially when employing a radial
basis function (RBF) kernel, which enables non-linear
classification by mapping input data into a higher-dimensional
space. This makes SVM particularly powerful in complex
pattern recognition problems [24]. While RF classifier is
commonly employed as an ensemble learning approach to
enhance classification robustness by aggregating multiple
decision trees [25], [26]. The DT classifier is known for its
interpretability and low computational cost, providing a clear
and intuitive way to understand classification logic through a
hierarchical structure of decisions [27]. It is well-suited for
exploring data analysis and real-time decision-making scenarios
[28]. Additionally, NB is considered due to its simplicity,
efficiency, and strong performance with relatively small
training data sets [29]. It works on the principle of conditional
probability and assumes feature independence, making it highly
scalable and effective in many text classification and medical
diagnosis tasks. Finally, KNN algorithms were explored due to
their widely recognised intuitive simplicity, flexibility in
adapting to different types of data, and minimal assumptions
about the underlying data distribution, making them suitable for
a broad range of classification and regression tasks [30], [31].
By leveraging the strengths of these diverse models, the study
aims to comprehensively assess and compare their effectiveness
in detecting irregular respiratory patterns, ultimately
contributing to more reliable and accurate respiratory
monitoring systems.

The dataset was divided into training (80%) and testing (20%)
subsets to ensure model generalisation and 10-fold cross-
validation was used for performance optimisation. This
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approach reduces the risk of overfitting and ensures that the
model can effectively adapt to new respiratory patterns.

1. RESULTS

The classification results presented in Table Il reflects the
performance of various machine learning models using different
time-variant signal feature extraction techniques, namely
Statistical Features, Hilbert Transform, Fractal Dimension, and
Discrete Wavelet Transform. These approaches were evaluated
to determine their ability to effectively represent radar-derived
breathing signals and enable accurate classification of
respiratory patterns.

Among all the tested feature extraction methods, the Hilbert
Transform consistently delivered the highest performance
across multiple classifiers. Notably, the Subspace Discriminant
model achieved the highest test accuracy of 92.3%, followed
closely by the Coarse Tree, Bagged Trees, and Linear
Discriminant, each reaching 84.6%. This finding suggests that
the Hilbert Transform is highly effective in preserving critical
time-frequency features, such as instantaneous amplitude and
phase, which are valuable for distinguishing between different
breathing states. Similarly, the Linear SVM also showed strong
performance under the Hilbert Transform, achieving an
accuracy of 82.1%. However, it is important to note that the
Quadratic Discriminant model failed under this feature set,
indicating a limitation in compatibility or numerical stability
with the Hilbert-transformed data.

The Fractal Dimension feature set demonstrated reliable and
moderately high performance across most models, highlighting
its robustness in capturing the complexity and irregularity of
breathing signals. Models such as Quadratic SVM and Linear
Discriminant achieved accuracies of 79.5%, while many others,
including Subspace Discriminant, Cubic SVM, and various
neural networks, maintained accuracies in the range of 71.8% to
74.4%. These results confirmed that fractal features are capable
of generalising well across different classifier architectures,
offering a good balance between performance and consistency.

The Discrete Wavelet Transform presented moderate
classification performance, with Coarse Gaussian SVM yielding
the highest accuracy of 56.4% in this category. Several other
models, such as Linear SVM, Cubic SVM, and Neural
Networks, performed in the 48% to 51% range. This outcome
suggests that while wavelet decomposition captures multiscale
frequency information, it may not provide sufficiently
distinctive features on its own or may require further post-
processing to enhance classification accuracy.

In contrast, the Statistical Feature consistently showed the
lowest classification performance. Most models produced
accuracies below 45%, with only a few exceptions, such as
Linear SVM (43.6%), Coarse Tree (38.5%), and Subspace
Discriminant (38.5%). These results suggest that simple
statistical descriptors, although easy to compute, may lack the
depth and sensitivity required to capture meaningful variations
in radar-based respiratory signals.

Overall, the analysis highlights the crucial role of feature
extraction in determining classification accuracy. The Hilbert
Transform stands out as the most powerful method for
enhancing model performance, particularly when used with
discriminant analysis and ensemble models. The Fractal
Dimension offers a robust alternative with broad model
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compatibility, while Discrete Wavelet Transform and Statistical
Features may require further enhancement or hybridisation to
reach comparable levels of accuracy. These insights can guide
future work in optimising radar-based respiration monitoring
systems, especially in selecting the most suitable signal
processing techniques for real-time or clinical applications.
The result was further analysed in terms of the confusion
matrix. Figure 2 illustrates the classification performance of the
Subspace Discriminant model using features extracted through
the Hilbert Transform, which previously achieved the highest
overall accuracy. The model was evaluated on three respiratory
classes, which are high, low, and normal breathing. The
diagonal elements of the matrix indicate correctly classified
instances, with 30.77% of high breathing cases, 35.90% of low
breathing cases, and 25.64% of normal breathing cases

5

accurately identified by the model. These results demonstrate
that the classifier is most effective at recognising the low
breathing pattern, which achieved the highest true positive rate
among the three classes.

Misclassifications are reflected in the off-diagonal values.
For example, 5.13% of normal breathing instances were
incorrectly predicted as high, while 2.56% are misclassified as
low. This strong class separation highlights the discriminative
strength of the Hilbert Transform features when used with a
Subspace Discriminant classifier. Overall, the confusion matrix
confirms that this combination provides reliable classification
performance, particularly in distinguishing subtle variations in
respiratory patterns captured through Doppler radar signals.

TABLE Il
THE CLASSIFICATION PERFORMANCE OF TIME-VARIANT ANALYSIS

Discrete Wavelet

Model Statistical Feature Hilbert Transform Fractal Dimension
Transform
Fine Tree 28.2 79.5 64.1 46.2
Medium Tree 30.8 79.5 64.1 46.2
Coarse Tree 38.5 84.6 66.7 51.3
Linear Discriminant 41.0 84.6 79.5 48.7
Quadratic 41.0 Failed 74.4 41.0
Discriminant
Gaussian Naive Bayes 33.3 51.3 69.2 53.8
Kernel Naive Bayes 33.3 59.0 71.8 48.7
Linear SVM 43.6 82.1 74.4 48.7
Quadratic SVM 41.0 76.9 79.5 46.2
Cubic SVM 33.3 66.7 71.8 51.3
Fine Gaussian SVM 41.0 41.0 74.4 41.0
Medium Gaussian
SVM 41.0 76.9 74.4 53.8
Coarse Gaussian SVM 33.3 61.5 74.4 56.4
Fine KNN 33.3 53.8 71.8 38.5
Medium KNN 35.9 56.4 69.2 51.3
Coarse KNN 41.0 41.0 74.4 43.6
Cosine KNN 33.3 56.4 66.7 59.0
Cubic KNN 41.0 51.3 69.2 48.7
Weighted KNN 35.9 56.4 69.2 46.2
Boosted Trees 28.2 74.4 66.7 30.8
Bagged Trees 35.9 84.6 66.7 43.6
Subspace Discriminant 38.5 92.3* 79.5 53.8
Subspace KNN 30.8 33.3 64.1 46.2
RUS Boosted Trees 30.8 74.4 64.1 30.8
Narrow Neural 41.0 64.1 74.4 487
Network
Medium Neural 41.0 74.4 74.4 46.2
Network
Wide Neural Network 43.6 71.8 66.7 51.3
Bilayered Neural 333 71.8 74.4 487
Network
Trilayered Neural 38.5 79.5 74.4 487
Network
SVM Kernel 46.2 38.5 71.8 43.6
Logistic Regression 38.5 436 69.2 41.0

Kernel
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Fig. 2. Confusion Matrix of Subspace Discriminant

CONCLUSION

In conclusion, this study demonstrates that time-variant feature
representation is critical for accurate Doppler radar—based
respiratory classification. Among all evaluated methods, Hilbert
Transform features achieved the highest discriminative power,
with the Subspace Discriminant classifier reaching an accuracy
of 92.3%, supported by strong class separability in the confusion
matrix. Fractal dimension features showed consistent, moderate
performance across classifiers, while Discrete Wavelet
Transform and statistical features were less effective. These
findings confirm the superiority of instantaneous signal
descriptors for non-contact respiratory monitoring applications.
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