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Inter-frame Prediction with Fast Weighted Low-rank
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Abstract—In the field of video coding, inter-frame prediction
plays an important role in improving compression efficiency. The
improved efficiency is achieved by finding predictors for video
blocks such that the residual data can be close to zero as much
as possible. For recent video coding standards, motion vectors
are required for a decoder to locate the predictors during video
reconstruction. Block matching algorithms are usually utilized in
the stage of motion estimation to find such motion vectors. For
decoder-side motion derivation, proper templates are defined and
template matching algorithms are used to produce a predictor for
each block such that the overhead of embedding coded motion
vectors in bit-stream can be avoided. However, the conventional
criteria of either block matching or template matching algorithms
may lead to the generation of worse predictors. To enhance
coding efficiency, a fast weighted low-rank matrix approximation
approach to deriving decoder-side motion vectors for inter frame
video coding is proposed in this paper. The proposed method first
finds the dominating block candidates and their corresponding
importance factors. Then, finding a predictor for each block is
treated as a weighted low-rank matrix approximation problem,
which is solved by the proposed column-repetition approach.
Together with mode decision, the coder can switch to a better
mode between the motion compensation by using either block
matching or the proposed template matching scheme.

Keywords—Inter-frame prediction, template matching, block
matching, low-rank matrix approximation, weighted low-rank
matrix approximation.

I. INTRODUCTION

IN the modern video compression standards, a hybrid ap-

proach with block-based coding structures is adopted with

great popularity. Many sophisticated intra- and inter-frame

predictive coding tools, entropy coding tools in a transform

domain, and adaptive filters are integrated to provide good

coding efficiency.

The inter-frame predictive coding is an important technol-

ogy used to remove temporal redundancy among adjacent

frames. In the MPEG-4 Advanced Video Coding standard [1]

and also the new High Efficiency Video Coding standard [2],

motion vectors are coded into bit streams for decoders to

retrieve predictors. In order to find suitable motion vectors

at an encoder side, block matching algorithms are usually

used to search for a similar block in a reference frame with

minimal mean absolute difference. Therefore, the energy of

residual data can be kept small in the hope of better coding

performance.
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Fig. 1. Different partitions of a coding unit to form prediction units in HEVC.

Fig. 2. Template in the shape of an upside-down L.

The block partition in HEVC [2] follows a quadtree struc-

ture. A frame can be partitioned into several largest coding

units, and each coding unit can be further partitioned into

four coding units, recursively. A coding unit is therefore a tree

node of the quadtree. Each coding unit at the leaf nodes of

the quadtree can be further partitioned into several prediction

units. There are 8 kinds of prediction unit partitions, as shown

in Fig. 1. A prediction unit is used as a unit for predictive

coding in both intra-frame and inter-frame prediction. In inter-

frame coding, either one or two motion vectors are coded into

bit-stream for each partition.

In order to further improve coding efficiency by not re-

quiring the overhead of motion vectors, a template matching

prediction algorithm is proposed in [3]. The template for

a block is defined as the upside-down L shape area at the upper

and left sides of the block as shown in Fig. 2. At the encoder

and the decoder, template matching algorithms are used to find

the same block predictor so that the mean absolute difference

of the template area is minimal.

The work in [4] is proposed to improve the coding efficiency

of [3]. The target template in [4] is used to find several similar

templates in the reference frame. For easier discussion, the

template regions searched in the reference frame are referred
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to as the template candidates and the block at the lower and

right sides of a template candidate is a block candidate. The

average of the block candidates is used as the predictor of the

target block in [4]. Instead of plain average, the method in [5]

predicts the target block by performing linear combination of

the chosen block candidates. The weighting coefficients are

determined by using the template candidates and the template

of the target block. Specifically, the weighting coefficients

are determined by finding the linear combination of template

candidates to be close to the target template.

In addition to the upside-down L-shaped template, seven

different shapes are used in [5], [6]. For each block, template

matching algorithm is performed with 8 different shaped

templates. The predictor of the target block is chosen from

the 8 predictors according to a rate distortion optimization

criterion. However, when the texture of the target template is

flat, the performance of the template matching algorithm is

not promising. In [7], the decimated version of a target block

in flat regions is used for better performance.

In [8], the authors imply that the predictor formed by

combing a number of prediction signals can be better than the

predictor found solely by using the block matching algorithm.

They propose to produce the predictor of a target block

by linearly combining three candidates of prediction signals.

These three candidates are the co-located block of the target

block, the block pointed with the median of nearby motion

vectors, and the block searched by using the block matching

algorithm. The nearby motion vectors are defined as the

motion vectors of the three neighbouring blocks of the target

block: the left, top, and top-right (or top-left if top-right is not

available) blocks. Because the position of the co-located block

and the median of nearby motion vectors can be obtained at

the decoder side, only the motion vector searched by using

the block matching algorithm needs to be encoded in the bit

stream.

The block size in general is rectangular; however, the shape

of an object in the scene is usually irregular, and the block-

based motion estimation can’t predict the objects in a frame

with irregular shape well. The work in [9] adapts the size

and the shape of the motion estimation area to the objects in

the scene to improve the performance of the overall coding

process. Because the reconstruction of the previous frame

is available at the decoder side, the shape of the motion

estimation area is determined according to the previous frame.

Therefore, the shape can be derived at the decoder side

accordingly, and it is not required to be included in the bit

stream.

The approaches of the low-rank approximation have been

applied in many fields, such as recommendation system [10],

face recognition [11], and video denoising [12]. In the field of

video coding, it has been applied in the intra-frame prediction

algorithm by representing image blocks as a low-rank or

approximately low-rank matrix [6].

Since the conventional criteria of either block matching or

template matching algorithms may lead to the generation of

worse predictors, a fast weighted low-rank matrix approxi-

mation used to derive decoder-side motion vectors for inter-

frame video coding is proposed in this paper. Specifically, the

template matching algorithm is used to find several template

candidates and the importance of each candidate is determined,

followed by the fast weighted low-rank approximation ap-

proach to finding the block predictor such that the difference

between the predictor and target block can be as small as

possible.

The structure of the paper is as the following. Section II

is the proposed fast weighted low-rank matrix approximation

for inter-frame predictive coding. The simulation results and

the conclusions are shown in Section III and Section IV,

respectively.

II. THE PROPOSED FAST WEIGHTED LOW-RANK MATRIX

APPROXIMATION BASED INTER-FRAME PREDICTION

The inter-frame predictive coding is one of the important

compression tools for modern video compression standards

where additional information for motion vectors is required

for a decoder to obtain block predictors. Decoder-side motion

vector derivation algorithms, such as template matching algo-

rithms, have been proposed in the literature to eliminate such

overhead. However, since a target block is not yet available

during the decoding process, the residual information is not as

close to zero as the result by using block matching algorithms.

Actually, there are many cases that the residual data produced

by using either block matching or template matching algo-

rithms can be further reduced for better compression efficiency.

The framework of the proposed predictor estimation scheme

is shown in Fig. 3. In the proposed method, template matching

is used to find several template candidates. A template can-

didate and the corresponding block candidate are organized

to form a column vector. The importance of each column

vector is determined according to the projection of the target

template on the template candidates. The predictor can then be

produced through the proposed fast weighted low-rank matrix

approximation. The low-rank matrix approximation problems

have drawn much attention in several areas. In general, it can

be regarded as the optimization problem with the restriction

of rank.

Since the block size in the MPEG-4 AVC standard and the

new HEVC standard can be variable, the template width for

a block size needs to be determined first. Then, we find the

Fig. 3. Framework of the proposed inter-frame predictor estimation scheme.
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Fig. 4. Template matching between target template and template candidates.

template candidates, which are similar with the target template,

by performing template matching. Each region consists of an

upside-down L-shaped template and a block as shown in Fig. 2

and Fig. 4.

For each possible template in the reference frames, the mean

absolute difference (MAD) between the possible template

candidate and target template is computed as shown in (1).

MAD(Tt, Tc) =
1

N

N
∑

i=1

|pi − p′i|, (1)

where Tt stands for the target template and Tc stands for a pos-

sible template candidate. pi and p′i stand for the pixel values

at the same position within Tt and Tc, respectively. N is the

number of pixels within the template. The template candidates

are determined by selecting m1 regions with smaller MAD

values. For each template candidate i and the corresponding

block candidate, their pixels are rearranged to form a column

vector Vi according to the vertical scanning order as shown in

Fig. 5.

Similarly, the pixels of the target block and the target

template can form a target column vector Vs with the same

scanning order shown in Fig. 5. For a conventional low-rank

matrix approximation problem, matrix D is defined as (2).

Because the criterion of selecting those vectors in this paper

is to find the candidates with smaller MAD, there is a good

chance that the matrix D has the property of low rank and the

predictor of target block can be estimated with good accuracy.

One of the solutions to a low-rank matrix approximation

problem can be found in [13].

D = [Vs, V1, V2, · · · , Vm1]. (2)

Fig. 5. Vertical scanning order to form a column vector.

Fig. 6. The selection of dominating template candidates and the correspond-
ing weighting values.

However, the MAD between each template candidate and

the target template is most likely different. The selection of

template candidates and their contribution to form the block

predictor shall be adjusted accordingly, which is described as

follows.

A. Dominating Template Candidates and Corresponding

Weightings

When we produce the matrix D in the low-rank matrix

approximation problem, the number of the regions to construct

the matrix can affect the performance of the prediction. In ref-

erence [5], the template candidates are viewed as the basis and

the orthogonal matching pursuit algorithm [14] is used to find

the coefficients for each basis, so that the linear combination of

the bases is regarded as the predictor of the target template. In

our method, the orthogonal matching pursuit algorithm is also

used. However, the role of the orthogonal matching pursuit

algorithm is to find a suitable set of dominating column vectors

as well as their importance factors. This procedure of selecting

dominating template candidates and weightings is shown in

Fig. 6.

Initially, the matrix D is obtained by constructing Vs and

column vectors Vi as described earlier, for 1 ≤ i ≤ m1. m1 is

Fig. 7. Orthogonal matching pursuit for target template and candidate
template.
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equal to 15 in this paper. Including Vs, there are 16 column

vectors in the matrix D.

In the second step of Fig. 6, the template parts of the

m1 vectors are treated as the initial bases. The orthogonal

matching pursuit algorithm is used to find the coefficients ci
to represent the target template with the choice of vectors. The

schematic diagram is shown in Fig. 7 where each bar stands

for a column vector in the matrix D, and the regions in black

stands for the pixels from template region.

If there are n bases, the orthogonal matching pursuit algo-

rithm needs n iterations to derive the coefficients with respect

to all the bases. For the first iteration, orthogonal matching

pursuit selects the basis having the highest correlation with

the column vector corresponding to the target template. The

coefficient with respect to the selected basis and the residual

are then determined. The residual is derived by subtracting the

vector corresponding to target template from its component on

the selected basis. This component means the quotient of the

selected basis and its coefficient. For the k-th (k > 0) iteration,

the algorithm selects the basis that has the highest correlation

with the residual from the bases not selected in previous

iterations, and then calculates the corresponding coefficient.

Then the orthogonal matching pursuit algorithm updates the

coefficients that have been collected so that the newly derived

residual is orthogonal to not only the immediately selected

basis, but also all the bases selected at previous iterations.

The magnitude of each coefficient is used to represent the

importance of the corresponding template candidate. In the

step of selecting dominating templates, partial normalization

of coefficients is introduced as follows.

For each k that satisfies 1 ≤ k ≤ m1, the sum of the

normalized coefficients in (3) is computed.

c′i,k = |round(ci/ck)|,

sumk =

m1
∑

i=1

c′i,k.
(3)

The task in this step is to find the largest ck such that sumk

is larger than or equal to m1. The dominating templates are

defined as the template candidates whose c′i,k are not 0. The

dominating templates are the selected template candidates that

will be used to produce the predictor.

Based on the choice of dominating templates, the orthogonal

matching pursuit algorithm is applied again to find the coef-

ficients to represent the target template based on the selected

dominating template candidates. The coefficients are then

normalized so that the summation of the integral coefficients

is m1.

B. Fast Weighted Low-Rank Matrix Approximation

Conventionally, the solutions to weighted low-rank matrix

approximation problems require a lot of computation effort.

In the proposed fast weighted low-rank matrix approximation

scheme, a normalized coefficient represents the importance

of the corresponding column vector which will be repeated

for that amount of times to form a new matrix D. Then the

weighted low-rank approximation problem is transformed to

a low-rank approximation problem, which can be solved much

faster.

The definition of the low-rank matrix approximation prob-

lem is shown below.

min rank(A),

subject to Aij = Dij(i, j) ∈ Ω.
(4)

The matrix A is the matrix with unknown samples recov-

ered. Ω is the set of index of known samples inside the matrix

D. The definition of the problem is to find the unknown

samples inside the matrix D such that the rank of the matrix

can be minimized. Furthermore, in [15], the authors showed

that the unknown samples in matrix D could be found by

solving the following problem.

min ||A||∗ subject to Aij = Dij(i, j) ∈ Ω. (5)

Equation (5) means that finding the unknown samples inside

the matrix D such that the nuclear norm of the matrix can

be minimized. The nuclear norm of a matrix is the sum

of the absolute values of the singular values of the matrix.

The formula in (5) can be further expressed as the following

formula:

min ||A||∗ subject to A+ E = D,PΩ(E) = 0. (6)

PΩ is a linear operator that keeps the samples in the set Ω
unchanged and sets those samples outside the set Ω zeros.

The matrix E is the matrix used to compensate the unknown

samples of matrix D, and the unknown samples of the matrix

D are initialized as 128. The problem can then be solved

by using one of the many existing algorithms, such as the

inexact augmented Lagrange multiplier (IALM) method [13].

The augmented Lagrange multiplier method approaches the

approximation problem by minimizing the nuclear norm of

the incomplete matrix, and it is shown to be much faster than

the exact augmented Lagrange multiplier method. The partial

augmented Lagrangian function [16] of (6) is described as

follows.

L(A,E, T, µ) = ||A||∗+ < Y,D−A−E > +
µ

2
||D−A−E||2F .

(7)

Where µ is the parameter of IALM which is defined in [13].

The IALM is described as the following.

The IALM algorithm minimizes the partial augmented La-

grangian function by updating A, E, and Y iteratively. At

the beginning of each iteration, the algorithm updates A by

minimizing the partial augmented Lagrangian function with

respect to A, while Y and E remains fixed. The method to

update A is subtracting a constant from each singular value

of A. This constant is a parameter that can influence the

performance of the algorithm [13]. Then, the IALM algorithm

updates E by setting its elements corresponding to the known

samples as zeros. At last, the amount of violation of the

constraint A+E = D is used to update Y . More details and

parameter selection about the implementation of the IALM

method can be found in [13].
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Fig. 8. Distance between the target column vector and the other column
vectors.

The proposed fast weighted low-rank matrix approximation

is to transform the problem to generic low-rank matrix ap-

proximation through column repetition. To observe the effect

of the column repetition on the predictors, we design a series

of experiment. Supposed that a matrix A1 consists of nine

column vectors, V1 to V9. A1 = [V1 V2 V3 V4 V5 V6 V7 V8

V9] and it is shown in (8).

A1 =

























104 131 151 108 145 135 119 130 146

147 139 126 151 103 142 107 149 141

120 146 148 129 105 151 135 151 112

119 148 116 111 103 127 110 140 x
124 114 149 113 115 149 110 144 x
129 131 111 114 149 104 139 106 x
109 139 138 109 137 127 123 144 x
150 111 151 144 115 116 128 131 x
131 136 119 106 144 150 106 120 x

























(8)

V9 is the target column vector and the samples marked as

x are the unknown samples. After the unknown samples of

matrix A1 are recovered by treating it as a low-rank matrix

approximation problem and applying IALM algorithm, the

transpose of the resulting target column vector is: [146 141 112

109.09 120.49 111.46 131.38 127.65 131.15]. The distance

Fig. 9. Distance between the target column vector and the other column
vectors, where matrix A1 is modified by using column repetition.

Fig. 10. MAD performance with respect to different template sizes.

between the resulting target column vector and the other

column vectors, V1 to V8, is shown in Fig. 8. The value at

the x-axis is the index of the column vector used to calculate

the distance from the resulting target column vector. From

Fig. 8, we can find that for different column vector Vi, where

i is between 1 and 8, their distances are close to each other.

Then, we modify matrix A1 by repeating the column

vector V1 a number of times, and observe the effect of the

repetition of column vector V1 on the resulting target column

vector obtaining by solving the low-rank matrix approximation

problem. The result is shown in Fig. 9 where the value at the

x-axis is the number of repetition times of column vector V1,

and the value at the y-axis is the distance between the column

vector V1 and the resulting target column vector. From Fig. 9,

we can find that the distance decreases when the number of

the repetition times increases.

The decrease of the distance between the column vector V1

and the target column vector means that the unknown samples

in the target column are closer to the corresponding samples

in the vector V1 when the number of repetition times is larger.

Therefore, by repeating the column vectors of the matrix,

we can adjust the degree of similarity between the unknown

samples in the target column vector and the corresponding

samples in the other column vectors.

The size of a column vector is determined by the size of

block and also the size of template. The size of the template

can affect the performance of a template-matching algorithm

and the accuracy of predictors. In order to study for a proper

template size, the following experiment is designed.

The generic low-rank matrix approximation based inter-

frame predictive coding is used to encode the video sequence

suzie. The results of the mean absolute difference (MAD)

between the target block and its predictor with respect to

different template sizes are shown in Fig. 10. Two different

block sizes, 4x4 and 8x8, are simulated. The template sizes

are adjusted by changing the width of template illustrated in

Fig. 2. From the experiment results, we find that the MAD is

smaller when the pixel number of a template is about 5 times

of the pixel number of a block.

When we solve the low rank matrix approximation problem

to predict the target block, the performance shall be better with
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Fig. 11. MAD performance with respect to different gini values of singular
values of the matrix D.

lower rank of the matrix. In addition, if the rank of the matrix

is lower, the singular values of the matrix are more centralized.

We design another experiment to see the relation between

the degree of concentration of the singular values of the matrix

D and the performance of the algorithm. We use the value of

gini index [17] to quantify the degree of the concentration of

the singular values of the matrix D. Given a ordered vector

f = [f(1), f(2), . . . , f(N)], |f(1)| ≤ |f(2)| ≤ · · · < |f(N)|,
the calculation of gini index is shown in (9).

GI(f) = 1− 2

N
∑

k=1

f(k)

|(f)|1

(N − k + 1

2

N

)

, (9)

where |(f)|1 is the norm 1 of f . The value of gini index is nor-

malized, and its range is from 0 to 1. If the value of gini index

is larger, it means that the data set (f(1), f(2), . . . , f(N)) is

sparser. The video sequence in this experiment is mobile and

the search range is +-15. From the results shown in Fig. 11,

we can find that the MAD decreases when the degree of the

concentration of singular values of matrix D increases.

Because the template matching is to search for the most

similar template candidates in the reference frame to the
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Fig. 12. The MAD performance comparison for the video sequence mobile.
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Fig. 13. The MAD performance comparison for the video sequence suzie.

template around the target block, the MAD performance

of the decoder-side template matching may not be always

better than the performance of block matching. Therefore, for

each block, template matching with the fast weighted low-

rank matrix approximation and block matching algorithm are

considered at the same time. If the fast weighted low-rank

matrix approximation is turned off for a block, motion vectors

are imbedded into bit-stream. Otherwise, if the fast weighted

low-rank matrix approximation-based template matching is

used, the overhead of motion vectors is not required. The

rate-distortion optimization according to the Lagrangian cost

function J in (10) can be used to choose a better mode M to

operate at the encoder side.

min
M

{J = Dc + λ · R}, (10)

where α is the Lagrange multiplier. Dc and R in (10) are

video distortion and bit-rate, respectively.

28 30 32 34 36 38 40
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Fig. 14. The MAD performance comparison for the video coastguard.
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Fig. 15. The ratio of block numbers used by using template matching for
the video sequence mobile.

III. SIMULATION RESULTS

In this section, the coding performance in terms of mean ab-

solute difference of the target blocks is presented. Three video

sequences (mobile, suzie, and coastguard) at QCIF resolution

are coded by the proposed method: the fast weighted low-

rank matrix approximation-based template matching (weighted

LRMA-based template matching). Switching mechanism be-

tween the template matching and the block matching is also

used, where the value of α is zero in this simulation. It

means that only the distortion is considered. If the method is

implemented on the HEVC reference software, the developed

method shares the same Lagrange multiplier with the RDO-

based block mode decision.

Two other methods are simulated as well for compari-

son. One is the generic low-rank matrix approximation-based

template matching with switching mechanism; another is the

traditional encoder-side block matching algorithm. The MAD

values of the three methods at different quantization parame-

ters (QPs) are shown from Fig. 12 to Fig. 14. From the results,

the MAD performance of the proposed weighted LRMA-based

template matching with switching mechanism is better than the

Fig. 16. The ratio of block numbers used by using template matching for
the video sequence suzie.

Fig. 17. The ratio of block numbers used by using template matching for
the video sequence coastguard.

other two approaches clearly. The ratio of the number of blocks

predicted by the proposed method and the number of total

blocks at different quantization parameters (QPs) are shown

from Fig. 15 to Fig. 17.

For the proposed method, the switching mechanism by

the rate-distortion optimization is operated at the encoder

side. This one-bit overhead for mode decision is needed. The

template-matching approaches do not need the overhead of

motion vectors, when compared with the traditional motion

compensation predictive coding by using the block matching

algorithm. When the QP is smaller, the percentage of choosing

the fast weighted LRMA-based template matching is higher,

and the MAD reduction is more significant.

IV. CONCLUSION

The conventional criteria of either block matching or tem-

plate matching algorithms are used to find a matched predic-

tor. However, the predictors found by such approaches still

leave much room for improvement. A fast weighted low-

rank matrix approximation approach to deriving decoder-side

motion vectors for inter frame video coding is proposed in

this paper by identifying dominating block candidates first.

The importance of each candidate is determined by using the

orthogonal matching pursuit algorithm. The template-matching

problem is formulated as the weighted low-rank approximation

problem. Through the technique of repeating column vectors,

the predictors can be found by using the inexact augmented

Lagrange multiplier method in the literature, which is shown

to be computationally efficient. The results have shown the

advantages of the proposed method by reducing the MAD

consistently. As a future work, further investigation has been

conducted to see if the mode decision can be made at the

decoder side as well, so as to remove the overhead and

therefore improve the coding efficiency.
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