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Novel Ideas for Lossless Audio Coding
Grzegorz Ulacha and Ryszard Stasiński

Abstract—Novel ideas for lossless audio coding analyzed in

the paper are linked with forward predictor adaptation, and
concern optimization of predictors on the basis of zero-order

entropy and MMAE criterions, and context sound coding. Direct

use of the former criterion is linked with exponential growth of

optimization procedure, hence, a suboptimal algorithm having

polynomial complexity is proposed. It is shown that on average

the new types of predictors are better than those obtained by
MMSE technique, while two- and three context systems are on

average better than a single predictor one. It also appears that

7-bit PARCOR coefficients in the MPEG-4 ALS standard have

insufficient precision for some predictor length, and that for

very long frames coding results improve with the predictor rank

practically in unlimited way.

Keywords—Lossless audio coding, context coding, LS predic-

tors, MMSE, MMAE, zero-order entropy.

I. INTRODUCTION

LOSSLESS audio coding is used in such applications as

archiving of recordings, distribution of highest quality

music on disks, or by Internet. It is also useful when recording

sound material intended for post-production (advertisements,

radio or TV programs, videography, etc), namely, numerous

lossy decompression-compression cycles gradually deteriorate

it. The most intensive period of research in this domain was

linked with call for proposals for MPEG-4 Audio Lossless

Coding (ALS) standard in years 2002-2006 [1]. They are also

interesting alternative lossless coding systems from that time

e.g. OptimFrog [2], and Monkey’s Audio [3].

Modeling stage of lossless audio coding algorithms is

usually based on predictors [4]–[6], but there exist systems

based on DCT (MPEG-4 SLS [7]), or wavelet transforms.

Prediction methods can be divided into those with forward and

backward predictor adaptation. Good results are obtained when

cascading stages of prediction: two stage forward adaptation

technique can be found in [8], backward adaptation using

cascaded RLS and LMS predictors is presented in [9], in [1]

the number of stages reaches five. Further improvement can be

obtained by exploiting multichannel dependencies. The coding

gain of stereo systems depends on sound characteristics and

varies from 0.5% up to 5% [10].

In the paper fundamental properties of forward adaptation

prediction systems are analyzed. In section IV performance

of non-MMSE optimized predictors is tested. In section V
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context coding is introduced. Devoted to theoretical back-

ground sections II and III contain analyses of predictor length

impact, and its coefficient precision on system performance.

The conclusion is that indeed, there is still a lot of room for

improvement of sound lossless coding systems.

II. THEORETICAL BACKGROUND

In modern lossless coding techniques multimedia signal pro-

cessing begins with data modeling intended for minimization

of mutual information between signal samples. If the mutual

information is completely removed, then the bit rate at the

output of entropy coders may reach the entropy limit [11]. Data

modeling algorithms are usually based on predictors. A linear

predictor of rank r estimates xn sample:

x̂n =
r∑

j=1

bj · x(j) (1)

x(j) are previous sample values, bj are prediction coefficients

[11]. The estimate is used to calculate the prediction error

(rounded up in lossless coding):

en = xn − x̂n (2)

Probability distribution of the error is usually close to

Laplacian, which means that it can be effectively coded by

easy to implement Golomb-Rice coder [11]. It forms a part

of specially constructed for coding of audio signals Gilbert-

Moore code, where it is combined with arithmetic one [12].

Before processing a sound recording is usually divided

into frames. Frame length may vary from a few tens to

several thousand samples. In MPEG-4 ALS the maximum

frame length is bounded by the free access requirement,

namely, audio data set apart by 500 ms should be decoded

independently. This implies 24 000 samples for a 48 kHz

signal. The requirement is important for live transmission, or

when the sound material will undergo post-production. For

other applications even longer frames can be established, and

there are good reasons for that. Namely, for avoiding ill-

condition solution of (4) it is important that the frame length

N is much greater than predictor rank r. In fact, this is

a general property of parametric signal modeling methods,

whenever data sample count is restricted a problem arises

what is “appropriate” rank of a signal model. Note that highly

efficient lossless audio coding methods are based on large

signal models, e.g. total number of parameters in the method

from [1] is almost 400 (5 predictors, the longest consisting of

300 coefficients, weights of predictor outputs), and MPEG-

4 ALS allows predictor ranks up to 1023. Results of our

experiments also indicate that long predictors tend to be better

than short ones, see Fig. 1. MPEG-4 ALS contains also frame
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length optimization procedure: frame may be halved, and

coding results compared to those for the full frame. If the

approach succeeds, one or both subframes can be halved, too,

down to 1/32 part of the initial lengths.

Prediction coefficients can be fixed, but much better results

are obtained when predictors are optimized for estimation of

a particular signal. There are two major classes of optimization

procedures, named forward and backward adaptation. In for-

ward adaptation approach predictor coefficients are optimized

after collecting frame samples, other optimized parameters are

frame length, predictor rank, and possibly, number of bits

for coefficients coding. The approach is asymmetric from the

complexity point of view, decoding is much simpler. The term

backward adaptation is used for denoting adaptive predictors

(RLS, LMS). The latter techniques are symmetric (similar

complexities of coder and decoder), on the other hand they

do not require side information accompanying coded data

(mainly coefficient values). Both approaches lead to powerful

algorithms, currently backward adaptation methods seem to be

somewhat more efficient [1].

Predictor coefficients are usually optimized using mini-

mum mean-square error criterion (MMSE), some alternative

approaches will be presented in the next section. MMSE

theoretical formulation leads to two practical approaches to

coefficient optimization: recursive corrections implied by the

gradient of cost function, and least-squares (LS) optimization.

The most widely used algorithm from the first class is LMS

used in backward adaptation algorithms. LS ap-proach can be

both recursive (RLS), or non-recursive, and hence, used both in

backward and forward adaptation techniques. In non-recursive

case it consists in minimization of the sum of squares of the

absolute error values, i.e. not mean but total square error is

minimized:

min
bj

N∑

n=r

|en|
2 (3)

Optimal formulae for calculating vector B of predictor

coefficients are:

B = R−1 · P, (4)

where R is the “experimental” signal autocorrelation matrix:

R(j, i) =

N∑

n=r

x(n − i) · x(n− j), (5)

vector P is:

P(j) =
N∑

n=r

x(n) · x(n− j), (6)

samples x are taken from a frame of size N . To avoid matrix

inversion in (4) it is often assumed that matrix R is Toeplitz

(i.e. it is fully defined by one-dimensional autocorrelation

function), which allows the use of Levinson-Durbin algorithm

for solving (4). Its computational complexity is O(r2), in

contrast to O(r3) for direct approach. Another convenient

solution is to use lattice implementation of the predictor, de-

fined by reflection, or PARCOR coefficients [11]. Its advantage

consists in fact that the lattice predictor implementation is

usually more robust to rounding errors than the direct one,
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Fig. 1. Average coder bit rate (in bits per sample) as a function of predictor

rank: a) for r up to 30, and b) for r from 10 to 600.

additionally, coefficient absolute values, if correctly computed,

never exceed 1. Then, they can be easily coded using short

bit representation, e.g. 7 bits in MPEG-4 ALS. Moreover,

Golomb-Rice coding leads to reduction of this number to

approximately 4 bits per coefficient [13].

III. OPTIMIZATION OF BASIC PREDICTOR PROPERTIES

Considerations presented in the previous section prompted

us to use very long frames in our experiments. More pre-

cisely, whole test recordings were processed, these were 16

sequences from the base [14]. Namely, our experiments aimed

at introduction of some novel ideas to lossless audio coding,

hence, the problem of “appropriate” model rank should not

affect results. Secondly, sequences from [14] contain a rather

homogenous sound material, in contrast to e.g. radio program,

in which music interweaves with speech and “logo” signals,

which fact suggests their statistical homogeneity. Finally, the
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longer the frame the smaller contribution of side information

to coded data, as the formula on the coded data bit rate is:

L = H(S) +
m · r · h

N
, (7)

where m is the number of bits used for coefficient representa-

tion, h is the number of contexts of the algorithm, in sections

preceding section V: h = 1, and H(S) is the measured data

zero-order entropy:

H(S) = −

M∑

i=1

pi log pi, (8)

here pi are probabilities of possible error values, M is their

number. Unless stated otherwise the number of bits was not

optimized, and was set to m = 32, but because of very large

N values this had minimal impact on experiment results.

Occasional instability of Levinson-Durbin algorithm

prompted us to analyze the problem of sufficient number

of bits for coding of defining lattice structure reflection

coefficients, signal processing results were compared to those

for double precision calculations. In experiments LifeShatters

from [4] was excluded, as results for it were clearly outliers.

It appeared that 7-bit coding was sufficient for 13 from 15

recordings for predictor rank r = 10, for 7 recordings when

the rank was r = 30, and only for 2 for r = 100. The problem

was solved when numbers of bits were increased to 9, 11,

or 15, respectively. Additionally, in the case of instability

results preceding instable iteration by 3 steps were replacing

the current ones. Longer representations of coefficients

means greater side information, nevertheless, the findings

suggest that results of MPEG-4 ALS can be improved by

optimization of coefficients representation length, especially

for long frames.

Another question that has been investigated was if there

exists the globally optimal predictor length, or equivalently,

if there exists a rank range above which extending predictor

length is not practical. The answer was negative, at least for

predictors of rank up to r = 600, see Fig. 1. This is in

spite of excessive side information, as 32-bit representation of

coefficients was assumed. Nevertheless, manifestation of the

rule of diminishing returns is clearly visible, linear decrease of

bit rate is obtained for exponential increase of predictor length.

Moreover, when observing results for individual sequences it

appears that for half of them the optimal predictor length is

shorter than r = 600, the best results for individual recordings

in Table I are in bold. In this situation a better solution is

to implement shorter predictors matched to local properties

of a signal, individual predictors optimized for collections of

samples having similar properties can be used. This can be

done by defining clusters of frames [15], or by implementing

context coding, initial results showing advantages of the latter

idea can be found in section V.

IV. NON-MMSE OPTIMIZED PREDICTORS

The MMSE optimization (3) leads to linear predictors.

A linear predictor de-correlates a signal to which it is matched,

autocorrelation function of prediction error is the same as
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Fig. 2. Average gain in zero-order entropy when comparing iterative selective

search approach with those based on MMSE.
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Fig. 3. Average coder bit rates (bits per sample) for predictors optimized

using criteria: MMSE (upper curve), MMAE (middle curve), and iterative
selective search (lower curve).

that of white noise, and white noise is a perfect example of

memory-less data source. The idea works, but only partially.

Namely, the consecutive samples of prediction error can be

statistically independent only if a signal is fully described by

second-order statistics. This is often not true. In this section we

are addressing the problem of MMSE criterion sub-optimality

by introducing a technique based on direct minimization of bit

rate generated by a coder. We will also provide some results

for Minimum Mean Absolute Error (MMAE) criterion.

The search for the optimal signal model should be done

by minimization of zero-order entropy of the model error (8).

Namely, this is the lower bound for bit rate generated by an

entropy coder processing that error [11]. Unfortunately, such

model optimization can be done only by exhaustive search

of possible model parameters, hence, its complexity grows

exponentially with the model rank and number of bits used

for its parameters representation.
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Fig. 4. Average coder bit rates (bits per sample) for single predictor (upper
curve), and three contexts approach (lower curve), methods require same

amount of side information.

We propose to reduce drastically the search space by

the Iterative Selective Search algorithm for predictor co-

efficients, which gave surprisingly good results for loss-

less image coding in [16]. We start with coefficient vector

B = [1, 0, . . . , 0], and test optimality of its sum with each

vector ∆B = [∆b1,∆b2, . . . ,∆br], where only two ∆bj are

non-zero integers having opposite values: -1, and 1, r is the

predictor rank. Note that they are only r(r − 1) such vectors,

which implies polynomial complexity of the method. The

process is repeated a few times (in our experiments: 9). Then,

in the next iteration ∆B vectors are divided by 2, added to

optimal B from the previous iteration and the sum tested for

optimality. For iteration i:

B(t+ 1) = B(t) + 2−i ·∆B, (9)

i = 0, 1, 2, . . . ,m−3, where m is the number of bits used for

coefficient representation, as iterations are repeated, in general

t 6= i. We have found that m = 12 is sufficient, which is only

one bit more than for MMSE optimized predictors of rank

r = 30, see previous section. Repetitions of iterations increase

the maximum value of coefficients, here by two bits. Note that

direct implementation of predictors is done.

The averaged difference in bit rate between the iterative

selective search and MMSE-optimized predictors is shown

in Fig. 2 for predictors ranks up to 30. The results have

been obtained for sequences from the base [14], each was

treated as a single frame. It can be seen that the difference

is positive, i.e. on the average the new method is better

than the traditional approach. In Fig. 3 the actual average bit

rates for the methods are presented, additionally, results for

MMAE-optimized predictors are shown. Results for the last

approach lay between those for the preceding ones, similarly,

its computational complexity is smaller than for iterative

selective search, but greater than for MMSE. This means that

MMAE criterion is worth considering when iterative selective

search is too complex for an application.

Table II shows that in fact iterative selective search (ISS)

is not always the best choice for coding of recordings from

[14] (numbers in bold point out better results from the two

approaches). Then, optimum is reached for a hybrid approach,

when data is coded using both methods, and only the results

for the better one are considered, see the last column of

Table II.

V. CONTEXT CODING OF SOUND

Context coding is widely used in image processing [16]. It

consists in implementing independent predictors for disjoint

sets of samples. The predictor used for estimating current

signal sample is chosen on the basis of context, i.e. a property

of the sample neighborhood. The property is usually associated

with a value, or range of values of some parameter. Context

switching results in “missing data” in sample sequences used

for calculating (4) and (5). It appears that due to these gaps

in data the Levinson-Durbin algorithm tends to be unstable.

The most obvious remedy to overcome this phenomenon is

to compute predictor coefficient directly from formula (3),

thus somewhat increasing computational complexity of the

approach. Precision of predictor coefficients has not be op-

timized, 32 bits have been used for their representation.

In the experiments two or three contexts have been defined.

Firstly, averaged differences of samples were computed:

Save =
1

N − 1

N∑

n=2

|x(n)− x(n− 1)| (10)

Contexts were computed from the parameter:

q = max{|x(n−j)−x(n−j−1)|} for j = 1, 2, . . . , 9; (11)

In the case of two contexts q was compared to a threshold

α · Save, α = 2.5. Indeed, the approach resulted in im-

provement of bit rate: for MMSE optimized single predictor

of rank r = 20 and very long frames (whole sequences

from [14]) the average bit rate was 10.82387, while for

two context predictors of rank r = 10 (requiring the same

amount of side information) it reduced to 10.56121. Even

better results were obtained when the best from a set of

thresholds was applied, the set of threshold multipliers was

αi = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. Then, the average bit rate

reduced to 10.52956.

Context approach can be combined with iterative selective

search, which results even in slight reduction of the method

complexity, namely, the number of vectors ∆B is r ·h ·(r−1),
only (and not r · h · (r · h − 1)), where h is the number of

contexts. Table III summarizes results obtained for context

technique and both coefficient optimization algorithms for

predictor ranks r = 4, 10, 30. On the average results for

MMSE criterion are inferior to those for the iterative selective

search (ISS), however, this need not to be true for some

particular recordings (better results are in bold). Then, the table

contains also bit rates for the hybrid approach for r = 30,

in which results are taken always for the better of the two

methods, last column of Table III.

Promising results for two-context coding prompted us to

increase the number of contexts to three. In such a case
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two thresholds should be applied to q value (7), the optimal

pair of Save multipliers was {α1;α2} = {1.5; 4}. This

time much longer predictor ranks have been implemented:

r = 200 for three contexts, and results of their processing

were com-pared to those for two context predictors of rank

300 (the same context threshold as in previous experiments),

and one predictor of rank 600 (note that all three approaches

require the same amount of side information). Obviously,

such big ISS predictors have not been tested, which is due

to their much larger computational complexity. Results from

this stage of experiments are reported in Table IV, as can

be seen, average bit rate for three-context approach was

only 10.413. Further reduction of bit rate has been obtained

when the pair of thresholds has been chosen from the set

obtained by multiplication of Save by multipliers from a set

of pairs: {α1i;α2i} = {{0.5; 4}, {1; 2.5}, {1.5; 4}, {1.5; 5.5},
{1.5; 6}, {1.5; 6.5}, {2; 4}, {2; 5}}, average bit rate dropped

to 10.39632. As can be seen from Table IV, results for three

contexts are generally better than those for two contexts, but

differences are not as big as between those for two contexts

and single predictor.

Finally, efficiency of three-context approach has been tested

for a wide range of predictor ranks, Fig. 4. The results

have been compared to those for a single predictor, its rank

reached value r = 600. Ranks of predictors in three-context

method have been three times smaller than for the single

predictor, in this way the amount of side information for both

techniques was always the same. As previously, the results

were averaged bit rates for 16 recordings from [14], each

treated as a single frame. Higher efficiency of context approach

is clearly demonstrated.

VI. CONCLUSIONS

It has been shown in the paper that a revision of basic tech-

niques used in lossless sound coding leads to improvements.

Firstly, it is shown that MMSE criterion need not lead to the

best predictors, better ones can be obtained on the basis of

MMAE, or suboptimal implementation of coder zero-order

entropy minimization. Secondly, it appears that the widely

used in image coding context approach works also in the audio

coding domain. Finally it is suggested to optimize predictor

coefficient precision, as their 7-bit representation in MPEG-4

ALS may be too short. An interesting observation is also the

fact that for very long frames coder bit rate decreases with

increase of predictor rank even for its extremely large values.

The new proposals can be implemented in more advanced

lossless audio coding systems, like multistage one described

in the paper [8]. Moreover, context coding is also well suited

for backward adaptation systems, the fact is widely exploited

in image coding techniques [16].
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TABLE I
BITRATES FOR CODING OF TEST RECORDINGS USING MMSE PREDICTORS OF LENGHT R

Recordings \ r 80 100 120 160 200 300 400 500 600

ATrain 8.58021 8.57512 8.57503 8.56941 8.55971 8.53921 8.50841 8.48984 8.47830

BeautySlept 10.57049 10.53579 10.50733 10.46563 10.44068 10.31403 10.17328 10.10902 10.04539

chanchan 10.77669 10.78131 10.78346 10.78483 10.78852 10.79015 10.79518 10.79539 10.79826

death2 10.52375 10.45621 10.44463 10.45730 10.44889 10.46112 10.45999 10.47365 10.47433
experiencia 12.28065 12.28066 12.27852 12.27799 12.27611 12.27028 12.26758 12.26846 12.26870

female speech 9.08764 9.09377 9.09704 9.11020 9.10818 9.11621 9.10295 9.12900 9.13827
FloorEssence 11.92437 11.92742 11.92380 11.92494 11.88216 11.86746 11.75648 11.73160 11.67929

ItCouldBeSweet 11.42029 11.42218 11.41209 11.40981 11.40558 11.40119 11.40129 11.39997 11.40019
Layla 11.28738 11.28295 11.27728 11.27071 11.26597 11.23992 11.22720 11.21460 11.20194

LifeShatters 11.35815 11.35620 11.35448 11.35194 11.35246 11.35316 11.35417 11.35607 11.35826
macabre 10.24626 10.22200 10.19925 10.16446 10.15247 10.11746 10.09494 10.08009 10.06908

male speech 8.15885 8.15828 8.16103 8.16608 8.17045 8.16955 8.16503 8.17429 8.18880

SinceAlways 12.50596 12.50201 12.49724 12.48784 12.48117 12.47340 12.47063 12.46921 12.46821

thear1 12.15020 12.14384 12.14101 12.13624 12.13088 12.11980 12.11313 12.11025 12.10544

TomsDiner 9.83005 9.81760 9.82232 9.82881 9.82958 9.83003 9.83119 9.82829 9.83010
velvet 11.63510 11.63116 11.62351 11.61391 11.60931 11.59395 11.58246 11.57626 11.57260

Mean 10.77100 10.76166 10.75613 10.75126 10.74388 10.72856 10.70649 10.70037 10.69232

TABLE II

BITRATES FOR CODING OF TEST RECORDINGS BY LOSSLESS CODING ALGORITHMS BASED ON MMSE ANDD ZERO-ORDER ENTROPY CRITERIA

Recordings r = 4 MMSE r = 4 ISS r = 10 MMSE r = 10 ISS r = 30 MMSE r = 30 ISS r = 30 hybrid

ATrain 8.91167 8.79620 8.76946 8.65652 8.63126 8.60030 8.60030
BeautySlept 10.77671 10.77771 10.65276 10.77799 10.61465 10.77892 10.61465

chanchan 10.83554 10.75549 10.78105 10.69354 10.77273 10.67699 10.67699
death2 10.65435 7.67246 10.76663 7.62757 10.50570 7.61280 7.61280

experiencia 12.43585 12.39013 12.36401 12.30981 12.29114 12.27914 12.27914
female speech 9.17665 8.40976 9.10551 8.39996 9.12055 8.38485 8.38485

FloorEssence 11.93834 11.71944 11.93762 11.69006 11.93354 11.67771 11.67771
ItCouldBeSweet 11.57115 11.53639 11.43563 11.39748 11.42475 11.38397 11.38397

Layla 11.53873 11.12507 11.46153 11.05162 11.35873 11.01863 11.01863

LifeShatters 11.74715 11.77339 11.49690 11.60983 11.40618 11.58364 11.40618
macabre 10.59138 10.55426 10.48036 10.44517 10.36933 10.36095 10.36095

male speech 8.21611 8.05836 8.19195 8.02602 8.16954 7.99309 7.99309
SinceAlways 12.68133 12.54488 12.56598 12.43454 12.53041 12.39162 12.39162

thear1 12.31405 12.32544 12.18869 12.20509 12.16881 12.19133 12.16881
TomsDiner 10.03412 10.01663 9.96577 9.93011 9.85311 9.85813 9.85311

velvet 11.81099 11.73434 11.72198 11.62428 11.71904 11.55450 11.55450

Mean 10.95213 10.63687 10.86787 10.55497 10.80434 10.52166 10.49858
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TABLE III

BITRATES FOR CODING OF TEST RECORDINGS BY CONTEXT LOSSLESS CODING ALGORITHMS DESCRIBED IN THE PAPER

Recordings r = 4 MMSE r = 4 ISS r = 10 MMSE r = 10 ISS r = 30 MMSE r = 30 ISS r = 30 hybrid

ATrain 8.80231 8.78217 8.63898 8.62292 8.49718 8.59164 8.49718
BeautySlept 10.75315 10.77411 10.62730 10.69497 10.58834 10.67810 10.58834

chanchan 10.76229 10.75030 10.70422 10.68329 10.69596 10.66451 10.66451
death2 7.93517 7.58073 7.86730 7.50807 7.88867 7.49779 7.49779

experiencia 12.36798 12.37780 12.29399 12.29208 12.21996 12.27190 12.21996
female speech 8.41155 8.33839 8.36915 8.30661 8.33745 8.28207 8.28207
FloorEssence 11.78775 11.69423 11.76905 11.64805 11.76125 11.63595 11.63595

ItCouldBeSweet 11.53763 11.52886 11.38934 11.38531 11.37762 11.37288 11.37288
Layla 11.11172 11.07128 11.03172 10.98918 10.92846 10.96726 10.92846

LifeShatters 11.73243 11.77542 11.48833 11.59230 11.39835 11.58469 11.39835
macabre 10.56913 10.54993 10.45326 10.44257 10.32636 10.37267 10.32636

male speech 8.08683 8.02902 8.04872 8.01347 8.01976 8.00076 8.00076
SinceAlways 12.50905 12.43729 12.39446 12.31305 12.35412 12.30428 12.30428

thear1 12.29912 12.31615 12.16994 12.19706 12.15053 12.18588 12.15053
TomsDiner 10.01650 10.00734 9.91345 9.91728 9.78393 9.85293 9.78393

velvet 11.98682 11.69222 11.82014 11.59635 11.70327 11.56743 11.56743

Mean 10.66684 10.60658 10.56121 10.51266 10.50195 10.48942 10.45117

TABLE IV
BITRATES FOR CODING OF TEST RECORDINGS BY CONTEXT LOSSLESS CODING ALGORITHMS DESCRIBED IN THE PAPER

r = 600 r = 300 r = 300 r = 200 r = 200

Recordings no context 2 contexts, 2 contexts, 3 contexts, 3 contexts,
1 threshold 1 of 8 thresholds 1 threshold pair 1 of 8 threshold pairs

ATrain 8.47830 8.40454 8.39622 8.40549 8.39570

BeautySlept 10.04539 10.27163 10.26925 10.41231 10.40850
chanchan 10.79826 10.72185 10.70160 10.68729 10.67666

death2 10.47433 7.92506 7.69276 7.65953 7.65932

experiencia 12.26870 12.21207 12.20447 12.20256 12.19955
female speech 9.13827 8.31041 8.29872 8.22219 8.21096

FloorEssence 11.67929 11.66518 11.65198 11.62388 11.62388
ItCouldBeSweet 11.40019 11.34135 11.33980 11.33286 11.32874

Layla 11.20194 10.83219 10.82088 10.79939 10.79495
LifeShatters 11.35826 11.35419 11.35343 11.35632 11.35483

macabre 10.06908 10.03100 9.96025 9.99353 9.99334
male speech 8.18880 8.02271 8.01902 7.98155 7.96473

SinceAlways 12.46821 12.31252 12.30736 12.30567 12.28545
thear1 12.10544 12.11046 12.11046 12.12290 12.11858

TomsDiner 9.83010 9.74519 9.74135 9.70890 9.69194
velvet 11.57260 11.64013 11.57596 11.79359 11.63399

Mean 10.69232 10.43128 10.40272 10.41300 10.39632


