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On Some DOA Algorithms for Tri-axial Geophone
Jan Mazur and Zbigniew Świętach

Abstract—In this paper a short study of some basic methods
of DOA of a seismic wave using so called tri-axial geophone has
been presented. The proposed methods exploit the properties
of Rayleigh surface plane wave to find DOA of an incoming
seismic wave using inner products of appropriately filtered
signals recorded by geophones. The advantage of the proposed
method is its simplicity and ease of implementation in small DSP
or application processors still retaining pretty good accuracy.
A number of example results for real data have been given.
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I. INTRODUCTION

THE direction-finding problem has been extensively stud-
ied for many years. It is a common problem formulated

for different types of waves, including acoustic, electromag-
netic as well as seismic waves. To find the right direction of an
incoming wave i.e. direction of arrival (DOA) a great number
of so called “array processing” based methods utilizes an
array of appropriately spaced single sensors e.g. microphones,
antennas or in case of seismic wave vertical or horizontal
geophones [1],[2],[3],[4]. On the other hand specific properties
of seismic waves allow for solving DOA problem using only
a single device called tri-axial geophone, instead of an array of
single geophones, see section II. Various methods have been
developed to find DOA with the use of tri-axial geophone,
though two of them seem to be the most commonly reported in
the literature of the field. The first class of methods utilizes the
properties of the covariance matrix (CMA – covariance matrix
analysis) [5],[6],[7],[8],[9],[10], [11],[12], while the second
class of methods exploits the properties of seismic waves,
especially the properties of the Rayleigh surface plane wave
[13],[7],[8],[10]. In this paper we propose a method that can
be considered as an extension of those proposed in [7],[8],[14].

II. PROBLEM FORMULATION

The problem is how to find (using the so called tri-axial
geophone) the direction from which an unknown object to
be found generates a seismic wave (see Fig. 1). The tri-
axial geophone is a device having 3 single geophones (usually
inductors) mounted orthogonally to each other along the
direction of OX, OY and OZ axes of a local coordinate system,
respectively. The OSVZ coordinate system is the OXYZ
coordinate system rotated by angle θ. Thus, the problem is
to find an angle (see Fig. 1)

θ = fDF (x, y, z) (1)
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where x = x(t) ,y = y(t) and z = z(t) are the signals
measured by each of the single geophone.

In general, the movements of geophone are quite a complex
mixture of incident waves of many different types and modes
[15],[16],[17]. Fortunately, not all of them are of the same
importance to the process of DF (Direction Finding). In this
paper, according to [15],[16],[17], we have made a couple
of assumptions concerning the propagation of seismic waves.
Firstly, according to theory of elasticity seismic waves are
described by ordinary partial differential equations with con-
stant coefficients. Solutions for this kind of equations obey
superposition principle. This approach is widely known in geo-
physics, where only the fundamental harmonic solutions of the
above equations for a given frequency are considered. These
solutions are called body compressional waves (P-wave) and
body shear waves (S-wave). Usually, it can be assumed that the
ground is locally homogenous and isotropic. In such a case the
theory of elasticity makes it possible to simplify the solution
of seismic wave propagation by introducing elastodynamic
potentials. This results in new, simpler harmonic solutions of
seismic wave field described by polarized waves of SH type
and P-SV type. The former is shear horizontal wave and the
latter is a composition of longitudinal compressional wave and
transversal wave polarized in vertical plane. Secondly, in an
elastic environment the waves described above interfere with
each other in a sufficiently large distance from the source
making two types of surface plane waves: Rayleigh wave and
Love wave.

For the latter to form a thin elastic layer is required on top
of ground, which in great majority of real cases is true. This
means that Love wave cannot be omitted in further analysis.

Fig. 1. The reference and rotated coordinate systems. One wave-front of
Rayleigh surface plane wave that has been generated by a moving vehicle.
The axes x, y, z of geophones indicate the right-handed Cartesian coordinates.
The z axis is vertically upward oriented.



68 J. MAZUR, Z. ŚWIĘTACH

Moreover, the considered solutions for Rayleigh and Love
surface plane wave do not imply that the wave-fronts of these
two waves will be parallel to each other, which was one of the
assumptions in [7]. Thirdly, it is estimated [15] that in a typical
ground the energy of Rayleigh wave is about 67% and Love
wave is about 25% of the total energy of the seismic wave
approaching the sensor. The rest of the energy comes with
body waves SH and P-SV randomly approaching the sensor
so that to describe them a model of noise with normal (or
unknown) distribution with zero mean and sufficiently small
variance is applied. Also, we assume that the measurement
point is positioned in a far field of the considered waves so
that the model of a plane wave can be applied. Taking into
account the Rayleigh model of seismic wave propagation we
assumed what follows

s(t) = sR(t) + sN (t) + sL(t) (2)
v(t) = vR(t) + vN (t) + vL(t) (3)
z(t) = zR(t) + zN (t) + zL(t) (4)
vR(t) ≡ 0, zL(t) ≡ 0 (5)

where sR(t), vR(t) and zR(t) are horizontal normal, horizontal
tangential and vertical components of the Rayleigh surface
plane wave, respectively. Similarly, lower index ŚLŠ describes
the same components for Love wave projected onto the OSV Z
coordinate system. Index ŚNŠ describes body waves randomly
approaching the detector. The left equation in (5) comes from
the properties of Rayleigh wave, while the right one comes
from the assumption that the vertical leakage modes of the
Love wave can be neglected, because their contribution to the
energy of Love wave is negligibly small. Functions s(t), v(t)
and z(t) are displacements of the soil along OS, OV and OZ
axes of the rotated coordinate system OSV Z.

The theoretical model of the Rayleigh wave states that
and components are 90 deg phase-shifted to each other and
ellipticity of this wave is approximately equal to 1.5 [18],[19].
Ellipticity is the ratio of the horizontal to vertical axes of the
ellipse in the elliptical motion of Rayleigh wave. However,
in practice significant departures from the theoretical model
are observed [18]. The components mentioned above are only
roughly orthogonal, phase velocity and ellipticity are functions
of frequency (dispersion appears) and consequently retrograde
or prograde motion can be observed [19].

For that reason in methods of DOA estimation only the
property of orthogonality of sR(t) and zR(t) components is
utilized. In case of Love wave, contrary to Rayleigh wave,
there is no explicit relation between its components so that no
analytical relations can be given.

As a consequence if, for a given frequency, the energy of
Love wave is comparable to that of Rayleigh wave, the Love
wave contribution in equations 2 3 cannot be neglected and
hence DOA methods utilizing only one tri-axial geophone are
theoretically useless, because they cannot separate Love and
Rayleigh wave. In [12] the authors undertook an attempt of
such a separation using the array of tri-axial geophones but this
method is not applicable in case of single tri-axial geophone.
Using well known equations describing the rotation of the

coordinate system, the equations (2),(3),(4) becomes

sR(t) + sL(t) + sN (t) = x(t) cos θ − y sin θ (6)
vL(t) + vN (t) = x(t) sin θ + y(t) cos θ (7)

zR(t) + zN (t) = z(t) (8)

where x(t),y(t) and z(t) are pre-processed to be zero mean
signals.

III. CONSIDERED METHODS

Now we introduce the inner product of two real functions
of the continuous variable t

〈x|y〉 =
∫ T

0

x(t)y(t)dt (9)

where T is the time of integration. Also, we define the inner
product of two real sampled function as:

〈x|y〉 =
K−1∑
k=0

x(k)y(k) (10)

where K is the number of samples acquired with the sampling
period TS .

To effectively apply equations (6,7,8) in the direction find-
ing problem we further suppose the noise components have
sufficiently small variances and their mean values are equal
to zero. Otherwise the detected signals have to be properly
smoothed and denoised. The smoothing is rather classical
problem and it can be resolved using lowpass or bandpass
linear filtering. The denoising, in turn, partially removes the
noise located inside the pass-band of the signal considered.
It can be achieved using methods described in [9],[20],[21].
Denoising method proposed in [9] is especially interesting
because it was developed directly for use with seismic signals
generated by footsteps.

From signal theory point of view each noise component is
orthogonal to each non random signal component. It implies
that inner product of any non random signal with random
noise is nearly zero. Hereafter the inner products of every
non random signal with any noise components are neglected.

The inner products in equations (6) and (7) with some
appropriate signals are further considered. Mentioned signals
are firstly properly filtered according to phase relationship be-
tween vertical and horizontal components of Rayleigh surface
plane wave. The obtained results are summarised into four
quite simple and effective methods of finding DOA.

From continuous time Fourier transform (CTFT) point of
view the detected signals can be considered as uncountable
sum of the basic harmonic oscillations. In practice, numerical
approximation of the Fourier integrals consists of finite sum
of isolated harmonic oscillations. Now we consider one of
aforementioned basic harmonic modes with the fixed and
known frequency.

Under the above conditions, inner products of the compo-
nent z(t) and components described in equations (6,7) are
equal to[
〈z|x〉
〈z|y〉

]
=

[
cos θ sin θ
− sin θ cos θ

] [
〈zR|sR〉+ 〈zR|sL〉

〈zR|vL〉

]
(11)
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The square of mutual energy of the signals (11) is equal to

E2
1 = 〈z|x〉2 + 〈z|y〉2 = 〈zR|sL〉2 + 〈zR|vL〉2 (12)

since the inner product 〈zR|sR〉 is close to zero (the signals
are near orthogonal). Let signals Čzshift(t) and ČzRshift(t)
be ±90 deg phase shifted version of signals z(t) and zR(t).
The sign of the phase shift depends on the motion direction
of Rayleigh wave on an ellipse and retrograde as well as
prograde motions are considered [18],[19]. The inner products
of appropriate signals has the form[
〈zshift|x〉
〈zshift|y〉

]
= (13)[

cos θ sin θ
− sin θ cos θ

] [
〈zRshift|sR〉+ 〈zRshift|sL〉

〈zRshift|vL〉

]
The square of mutual energy of the signals (13) is equal to

E2
2 = 〈zshift|x〉2 + 〈zshift|y〉2 ' (14)
{〈zRshift|sR〉+ 〈zRshift|sL〉}2 + 〈zRshift|vL〉2

The DOA estimation is possible if the energy of Love wave
for considered fixed frequency is sufficiently small in relation
to the energy of Rayleigh wave, hence E2

2 � E2
1

〈zRshift|sR〉2 � 〈zRshift|sL〉2
〈zRshift|sR〉2 � 〈zRshift|vL〉2

(15)

Only the first of the above inequalities can be explicitly
verified. It is necessary to make an assumption that other con-
ditions also holds. When DOA angle is derived, the correctness
of the above assumptions is checked comparing the actual
DOA angle with the previous DOA angle. The direction of the
Rayleigh wave cannot change very rapidly if DOA estimations
are based on adjacent time frames. When relations (15) holds
the DOA estimation is derived from equations (13)

− tan θ =
〈zshift|y〉
〈zshift|x〉

(16)

Before doing the above computations the isolated harmonic
oscillations are extracted from detected signals. To do this
the narrow-band filtering is performed. The detected signals
are filtered by a appropriate FIR Hamming filter with the
bandpass width equal to 2 − 3 Hz on the -60 dB gain level.
The middle frequencies of the filters are being found as
the frequencies where the local maximum amplitude in the
CTFT spectrum of the component z(t) are observed. The
local maxima are seek in the amplitude spectrum for each
time frame of detected signal z(t). It is important difference
comparing to results obtained in [13],[5],[7],[8]. Moreover
equation (16) is more general then similar equation given in
[7],[8]. To explicitly derive inner product in equation (16) in-
tegration or differentiation must be performed. Using Rayleigh
formulae [22] concerning inner products and fundamental
properties of the CTFT transform, the above operators are
replaced by simple algebraic manipulations. The mentioned
equation was obtained here using only common properties of
the seismic surface plane waves and basic properties of the
inner products. It is in contradiction to work [7],[8] where
to obtain equation like this in (16) the physical properties

(accelerations and displacements) of inductive geophones are
used. Our investigation is more general since formulae (16) is
independent of the physical nature of detectors and may be
used to signals coming from other types of seismic detectors
e.g. semiconductor accelerometers.

A. Method 1 – Differentiation in Time Domain

This is our first method of direction finding using tri-
axial geophone. It is rather theoretical method, since numer-
ical differentiation emphasizes high frequencies causing the
processed signal more noisy. This method, however, can be
practically applied when number of samples K is sufficiently
high. Large K denoting the discrete time of integration in (10)
is long enough, to make differentiation errors negligible. Inner
product has evidently averaging property which is especially
attractive when signals with additive zero mean random noise
are considered. Differentiation errors just have statistically the
above property. Setting

zshift = z′ = dz/dt (17)

we have

tan θ =
−〈z′|y〉
〈z′|x〉

(18)

The four quadrant arctangent function should be applied to
proper computation of the desired angle. Note, that the minus
has to be put in the numerator of equation (18). Otherwise the
obtained angle is incorrect.

B. Method 2 – Integration in Time Domain

The second method deals with integration in place of differ-
entiation. Doing so, we eliminate the possible differentiation
errors. Strictly, if f(t) = sinωt, then df(t)/dt = ω cosωt
which makes the derivative operator a kind of high-pass filter.
On the contrary, the operator of integral can be considered
as a kind of low-pass filter attenuating signal along ω as∫
f(t)dt = −ω−1 cosωt. In the following method we take

the integral of z(t) instead of its derivative. It is necessary to
show that the constant of integration has no influence on the
result of finding DOA angle . Note, that by definition∫ t

0

z(τ)dτ = Z(t)− Z(t)|t=0 (19)

where
Z(t) =

∫
z(τ)dτ + C (20)

Taking into account (19)(19) the integration of both sides of
(8) gives

Z(t) + C = ZR(t) + ZN (t) (21)

where C is the constant being a sum of all the constants of
(20). From (7) and (20) we have

〈ZR|vL〉+ CL = 〈ZR|x〉 sin θ + 〈ZR|y〉 cos θ (22)

where
L = 〈1|x〉 sin θ + 〈1|y〉 cos θ (23)
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The inner products 〈1|x〉 and 〈1|y〉 are, in fact, zeros, as x(t)
and Y (t) are zero mean signals. Thus, (22) is satisfied for any
given C. As a result, much like in (18)

tan θ =
〈Z|y〉
−〈Z|x〉

(24)

Now, the minus has to be put in the denominator of equation
(23). Otherwise the obtained angle is incorrect.

C. Method 3 – Spectral Equivalence of Differentiation in Time

Using classical properties of CTFT spectrum [22], we have

dz(t)

dt
↔ jωZ(ω) (25)

where Z(ω) = F{z(t)} is CTFT transform of z(t) . The
other signals recorded by geophone have analogous properties.
Moreover, Rayleigh formulae for inner products [22] is applied

〈z|y〉 = 〈Z(ω)|Y ∗(ω)〉, 〈z|x〉 = 〈Z(ω)|X∗(ω)〉, (26)

where asterisks denote complex conjunction. Taking into ac-
count the above expressions, the equation (16) has the form

tan θ =
−〈jωZ(ω)|Y ∗(ω)〉
〈jωZ(ω)|X∗(ω)〉

(27)

D. Method 4 – Spectral Equivalence of Integration in Time

Using fundamental properties of CTFT spectrum [22] one
can show that ∫ t

0

z(τ)dτ ↔ Z(ω)/(jω) (28)

Following the steps made in section C we obtain

tan θ =

〈
Z(ω)

jω
|Y ∗(ω)

〉
/

(
−
〈
Z(ω)

jω
|X∗(ω)

〉)
(29)

IV. RESULTS

The real data has been collected using sensor shown in
Fig. 2 using the scenario shown in Fig. 1. Each of the four
methods presented in the previous chapter has been tested
using real signals. Representative results presented here have
been chosen from more than 30 different experiments that have
been carried out with the use of moving cars as well as groups
of walking and running people. In all the presented tests the
sampling frequency is equal to 2 kHz. The OX axis of the
geophone’s coordinate system points out to 0 deg while the
OY axis points out to 90 deg. The vehicle is moved from
left to right on a dirt track (as it was shown in Fig. 1). The
tested cars were moving along the dirt road with a speed of
about 35 km/h and the CPA (Closest Point of Approach) was
about 10 m and the distance to run for a car to each sides
was about 90 m long (see Fig. 1). The geophone’s X axis
has been accidentally moved counter-clockwise of about 26
deg and thus it was not perpendicular to the road and hence
the plots in Figs. 3–8 are not symmetrical with respect to 0

Fig. 2. The prototype of a seismic-acoustic sensor (with microphones
removed). Three geophones have been mounted at the bottom of the sensor.

deg. Taking all the data concerning the measurement setup the
reference plots were obtained using the following relationship

θ = arctan

(
90

10

(
1− 2

t

tmax

))
− 26 [deg] (30)

t ∈ [0, tmax], tmax ≈ 18 [s]

The reference DOA (see Figs. 3–8) are plotted using the
green line (no 4). The 1sec-long beginnings and endings of
the signals have been removed due to unacceptably low SNR
(signal/noise ratio).

Averaging vehicle position in time causes an error of about
2 deg when 512 samples are used to find the current position.
(blue line in DOA plots – no 1) and about 6 deg when
2048 samples are used (black line in DOA plots – no 2).
These errors should be interpreted as minimal measurements
errors. The consecutive time frames overlap roughly in 5% of
their length. The red line (no 3) in DOA plots denotes least
square polynomial approximation applied to DOA estimation
in case of frames of 512 samples long. The order M of
polynomials has been chosen with help of well known rule
M ≤ (1÷2)

√
(ND), where ND denotes number of computed

DOA angles. In presented tests this number roughly equals to
ND = 68, so M = 9 is chosen.

The least square error between the reference signal and the
signal being the result of polynomial approximation procedure
has been given in captions of Figs. 3–8. As expected, these
errors are greater than those minimal errors mentioned above.

Sharpness of the blue line in the plots depends on the
assumed frame’s length. The choice of this length is a compro-
mise between minimization of two kinds of errors mentioned
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Fig. 3. DOA estimation using Method 1. A car moving from left to right
with a constant velocity equal to 36 km/h. The line no 1 (blue): 512 samples
per frame, the line no 2 (black): 2048 samples per frame. The line no 3 (red):
least squares approximation of the blue line. The last square error is equal to
15 deg. The line no 4 (green) is the reference signal. The last square error
according to the blue line is equal to 21.5 deg.

Fig. 4. DOA estimation using Method 2. The detected signals are the same
signals considered in the previous example. The line no 1 (blue): 512 samples
per frame, the line no 2 (black): 2048 samples per frame. The line no 3 (red):
least squares approximation of the blue line. The last square error is equal to
9.6 deg. The line no 4 (green) is the reference signal. The last square error
according to the blue line is equal to 13.5 deg.

above. The error of the first kind comes from averaging the car
position and it grows with the length of the frame. The error of
the second kind arises from the existence of zero-mean noises
and, on the contrary, it declines with the length of the frame.
Both kinds of errors are the result of the commonly known
’averaging’ or ’smoothing’ property of inner product. On one
hand, it smoothes the estimated DOA curves but, on the other
hand, it reduces the amplitude of unwanted noises.

The detected signals have been processed in two modes.
In one of these modes signals were just stored into a flash
memory of the sensor and later on they were processed using
PC computer. This allowed for the usage of computationally
expensive algorithms that needed powerful resources. The
drawback of this is that computations are not performed in the
real time. In the other mode, a simplified version of the DOA
algorithm was embedded into sensor’s own resources. This, in

Fig. 5. DOA estimation using Method 3. The detected signals are the same
signals considered in the previous example. The line no 1 (blue): 512 samples
per frame, the line no 2 (black): 2048 samples per frame. The line no 3 (red):
least squares approximation of the blue line. The last square error is equal to
11.5 deg. The line no 4 (green) is the reference signal. The last square error
according to the blue line is equal to 17.4 deg.

Fig. 6. DOA estimation using Method 4. The detected signals are the same
signals considered in the previous example. The line no 1 (blue): 512 samples
per frame, the line no 2 (black): 2048 samples per frame. The line no 3 (red):
least squares approximation of the blue line. The last square error is equal to
16 deg. The line no 4 (green) is the reference signal. The last square error
according to the blue line is equal to 39 deg.

turn, allowed for online computations which is very important
feature in many applications. Both modes have been tested
though the results given beneath concern PC computations
only.

Pass-band filtering being a part of the proposed method
described in the previous section is computationally rather
expensive. The STM32-F105 micro-controller with some DSP
capabilities that is the heart of the sensor shown in Fig. 2 is not
able to make all the required computations in real time. To do
this, a more powerful DSP processor would be required, most
likely at the cost of much higher power consumption, which
– in turn – would result in decreasing the time of operation
of such a sensor equipped with the same battery.

For that reason, in the embedded (simplified) version of
the proposed method the preprocessing stage, i.e. pass band
filtering described in the previous section has been omitted.
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Fig. 7. DOA estimation using CMA Method. The detected signals are the
same signals considered in the previous example. The line no 1 (blue): 512
samples per frame, the line no 2 (black): 2048 samples per frame. The line no
3 (red): least squares approximation of the blue line. The last square error is
equal to 60 deg. The line no 4 (green) is the reference signal. The last square
error according to the blue line is equal to 113 deg. The above method is
obvious inadequate to DOA estimation of moving vehicles or human walking.

The results obtained are 15%-25% worse than their fully
processed counterparts. We believe that this level of accuracy
would still be acceptable in many important applications (e.g.
surveillance).

The results given in Figs. 3–8 are representative examples
chosen from more than 30 different signals recorded in dif-
ferent scenarios. Based on the results obtained we stated that
method 2 (integration in time) is the most suitable for practical
usage. Note, that method 4 which is spectral version of method
2 is not as effective as method 2. This is most likely the
result of double smoothing: first (implicite)- at the stage of
integration of signal (see eq. (28)) and second (explicite)- at
the stage of computing the appropriate inner products.

The solutions and results presented in this paper have
been compared to classical CMA method – covariance matrix
analysis. To implement this method the SVD (singular value
decomposition) of the appropriate signals has been performed
and the desired DOA angle has been derived from eigen
vectors related to the highest singular value. In fact we have
implemented two different versions of CMA that differ in
the way of computing the values of the covariance matrix.
In the first case the input signals were used directly to
find covariance matrix, while in the other case input signals
were numerically integrated before they were used to find
covariance matrix. In both cases the CMA turned out to be
inappropriate for the class of signals we have recorded. It
confirms a known suggestion [7],[8] that CMA method is
adequate for high energy seismic signals (e.g. earthquakes or
underground explosions). Also, CMA seems to be much more
sensitive to noise when compared to methods presented in this
paper.

The other methods, also partially based on the correlation
analysis [13],[5],[6], seem to be worse than methods proposed
in this paper although the direct comparison is impossible
because of the lack of appropriate results for comparison and

Fig. 8. DOA estimation using CMA Method with integration of the signal
component z(t). The detected signals are the same signals considered in the
previous example. The line no 1 (blue): 512 samples per frame, the line
no 2 (black): 2048 samples per frame. The line no 3 (red): least squares
approximation of the blue line. The last square error is equal to 36 deg. The
line no 4 (green) is the reference signal. The last square error according to
the blue line is equal to 94 deg. The above method is also inadequate to DOA
estimation of moving vehicles or human walking.

the lack of detailed descriptions of the methods presented in
the literature.

V. CONCLUSION

Utilizing the properties of surface Rayleigh wave propa-
gation to find DOA of an seismic event is the core idea
for all the four methods presented in this paper. The idea,
as such, is well known for years though its most common
application concerned long range seismic events with high
energy excitation (mainly earthquakes). In such a case surface
Rayleigh wave is well formed. On the contrary, short distance,
weak sources generate weak and noisy surface Rayleigh wave
with many random waves approaching the detector.

To improve SNR (signal to noise ratio) of recorded signals
we have proposed a preprocessing block of narrow-pass-band
filters with their base frequencies chosen based on some
spectral properties of vertical component, i.e. z(t). Also,
assuming the model of seismic wave described by equations
(6), (7) and (8) we derived inequalities (15). Further, unlike
in [7] and [8] we derived 16 with no assumption on physical
properties of geophones used.

Unfortunately, at this stage of development the proposed
method of signal preprocessing can only be implemented
on PC platforms or on platforms equipped with powerful
DSP processors. On the other hand, a simplified version of
method 2 can be successfully implemented even on small DSP
processors if only the proposed filtering procedure would be
omitted. This results in increasing the error rate to about 20%
but the implementation is very easy and the code can be vary
fast. For example, the code running 72MHz STM F105-family
processor allows for finding 8 DOA angles/sec using frames
of 512 samples long.
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