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Abstract—Results of analysis of drift influence on operation
and efficiency of optimal analog adaptive communication systems
with feedback and a new approach to drift compensation in
these systems are presented in the paper. The proposed ap-
proach is based on application of the extended multidimensional
adaptive algorithm that estimates simultaneously the value of
a transmitted sample and the value of an unknown drift rate.
The knowledge of the drift rate enables drift compensation and
improves transmission efficiency of systems suffering problems
related to drifts.
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I. INTRODUCTION

T
HE paper presents results of investigations on influence of

drift on operation and transmission efficiency of optimal

analog adaptive feedback communication systems (AFCS) and

a new approach to drift compensation in these systems. The

optimal analog AFCS have been recently considered in works

by A.A. Platonov [1-3] and refer back to earlier investigations

on optimization of transmission in analog AFCS from the

1960s, e.g. [4-7]. The key idea proposed in [1-3], not used

earlier, is the so called statistical fitting condition, which

determines the permissible values of AFCS parameters guaran-

teeing that the probability of overmodulation does not exceed

a given level. This condition enables accurate formulation and

solution of optimization task to find the best parameters of

AFCS in case of the limited range of a transmitter. The main

particularity distinguishing optimal analog AFCS is lack of

digitizing and coding units in the peripheral transmission unit

(TU) (see Fig. 1) which are replaced by the adaptive pulse-

amplitude (PAM) modulator Σ+M1. This enables formulation

and solution of optimization task for AFCS, as well as

determines the optimal values of parameters of both parts of

AFCS: the transmission unit (TU) and the base station (BS),

and their operation ensuring the maximal quality and rate of

data transmission.

This paper extends the investigations on the optimal AFCS

whose results are presented in [1-3] and shows a new method

of optimal drift estimation and compensation. The works [1-

3] describe the fundamentals of analytical design of new

classes of high-efficient low-energy and low cost AFCS for

short-distance communication and data-transmission in such

applications as wireless sensors, RFID, etc.
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Fig. 1. Block diagram of optimal AFCS.

The method, proposed in this paper, robustifies AFCS on

possible drifts occurring in the transmission system, which can

cause abnormal errors and degrade dramatically transmission

in AFCS. Drift-like errors appear in many electronic circuits

and their components. As it is shown below, even small level

of drift-errors in some components of AFCS may be of crucial

importance for transmission efficiency. An especially sensitive

component of AFCS is a sample-and-hold unit (S&H). Its

output voltage may drift (droop) during a time needed to

transmission of a single sample. The output voltage of S&H is

not stable because of a leakage current flowing into or out of

the hold capacitor which is connected with imperfections in

the hold capacitor, switch or S&H output amplifier [8,9]. The

level of drift errors can be reduced by increasing the value

of the hold capacitor, but this increases also acquisition time

and reduces the bandwidth of S&H [8,9] and, in consequence,

AFCS. There are many differential circuit techniques used

to reduce the influence of drifts in S&H circuits, but they

usually cause an increase in sizes and production costs of

transmission units, very often realized as integrated circuits.

In this paper, another method of drift compensation based

on application of the digital signal processing algorithm that

estimates simultaneously the value of a transmitted sample and

the value of an unknown drift rate is proposed. The method is

based on the original approach to optimal estimation of signal

parameters proposed in [10]. A similar method of drift-like

errors compensation was used earlier in analog-to-digital con-

verters [11]. The considerations, whose results are presented

in the paper, were conducted for the simplest model of the

communication channel, i.e. a memoryless stationary channel

with Additive White Gaussian Noise (AWGN channel).

II. OPTIMAL AFCS PRINCIPLES

A. AFCS Operation

A simplified block diagram of optimal AFCS [1-3], which

illustrates the principles of its functioning, is presented in
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Fig. 1. The system consists of two parts: the peripheral

transmission unit (TU) and the base station (BS). The input

signal x(t) is sampled in the sample-and-hold unit (S&H)

of TU. Each sample x(m) = x(mT ) formed by the S&H

unit (m = 1, 2, ... is a sample number and T = 1/2F
is a sampling interval) is transmitted to BS independently

on the previous samples in n = T/∆t0 = F0/F cycles.

∆t0 = 1/2F0 is a duration of a single cycle of transmission,

2F0 is a bandwidth of forward (Ch1) and feedback (Ch2)

channels. Further the superscript (m) is omitted, because

samples x(m) are transmitted independently and analysis of

AFCS can be reduced to the consideration of a single sample

transmission.

The adaptive modulator Σ+M1 forms an analog signal

emitted to BS in particular cycles of transmission. In our

consideration, the following model of the double-sideband

suppressed-carrier (DSB-SC) adaptive modulator, which takes

into account possible overmodulation (saturation of the trans-

mitter) during the transmission, is assumed:

st,k=A0

{

Mk(xk−Bk) if Mk|xk−Bk|≤1
sign(xk−Bk) if Mk|xk−Bk|>1

}

cos(2πf0t+φk),

(1)

where st,k is the signal emitted by TU in the k-th (k =
1, 2, ..., n) transmission cycle ((k − 1)∆t0 < t ≤ k∆t0).

A0, f0, φk are parameters of the carrier. Bk and Mk are

the control signals of the adaptive modulator PAM (Bk –

compensation, Mk – gain) in the k-th cycle of the sample

transmission, Bk and Mk are computed in the digital signal

processing unit (DSPU) in BS and delivered to TU through

the feedback channel (Ch2). Signal xk = x+ νk is a sum of

the sample value x and the analog noise νk assumed to be

Additive White Gaussian Noise (AWGN) with the variance

σ2
ν . The noise νk is related to analog noises occurring in TU.

For a non-ideal feedback channel, errors caused by its noise

can be included into this noise as an additional component.

BS demodulates the received signal s̃t,k = (γ/r)st,k + ξt
in the demodulation unit (DM1) and forms the signal:

ỹk = A

{

Mk(xk −Bk) if Mk|x−Bk| ≤ 1

sign(xk −Bk) if Mk|x− B̂k| > 1

}

+ ξk, (2)

where A = A0γ/r, γ is the gain in the channel Ch1, r is

the distance between TU and BS, ξk is assumed to be AWGN

with the variance σ2
ξ = NξF0. The demodulated signal ỹk is

routed to the input of DSPU, which computes iteratively the

estimate x̂k of the input sample x according to the following

relationship:

x̂k = x̂k−1 + Lkỹk, (3)

where Lk is the coefficient which determines the convergence

rate of estimation algorithm.

DSPU also computes new values of the control signals

Bk and Mk that are transmitted to the TU through the

feedback channel T2-Ch2-R2 and the next (k+1)-th cycle of

transmission of the sample begins. Both forward and feedback

channels Ch1, Ch2 are assumed to be memoryless.

B. Optimal AFCS

Optimization of AFCS [1-3] consists in finding the optimal

values of the parameters Bk and Mk (for every cycle k) of the

adaptive modulator and corresponding values of the coefficient

Lk in (3), which minimize the mean square error (MSE) of

the current estimates of the sample:

Pk = E[(x − x̂k)
2]. (4)

Simultaneously, Bk and Mk should satisfy so called statistical

fitting condition [10]:

Proverk = Pr(Mk|xk −Bk| > 1 | ỹk1 , B
k−1
1 ,Mk−1

1 ) < µ. (5)

It means that, for each cycle of transmission, the parameters

Bk and Mk of the modulator should have the values guaran-

teeing that the probability of overmodulation does not exceed

a given small value µ. Parameter µ determines a probability of

abnormal errors and total loss of information about the sample

and should be considered as additional characteristic of AFCS

performance. Typically, the value of µ (specified by designers)

is from the interval 10−12 ≤ µ ≤ 10−4 and depends on the

requirements on a transmission system.

Minimization of the MSE (4) under the condition (5) and

assumption that transmitted samples have a Gaussian distri-

bution, with the known a priori mean value x0 and variance

σ2
0 , gives the optimal values of parameters for adjusting the

transmission unit [1-3]:

Bk = x̂k−1, Mk =
1

α
√

σ2
ν + Pk−1

, (6)

and optimal values of coefficients Lk used in the base station:

Lk =
AMkPk−1

σ2
ξ +A2M2

k (σ
2
ν + Pk−1)

. (7)

MSE Pk in (6) and (7) are calculated according to the

following relationship:

Pk = Pk−1 −
A2M2

kP
2
k−1

σ2
ξ +A2M2

k (σ
2
ν + Pk−1)

. (8)

Saturation factor α in (6) is determined by the permissible

probability µ of overloading. In the Gaussian case, it satisfies

the equation Φ(a) = (1 − µ)/2, where Φ(a) is the tabulated

Gaussian error function. Initial conditions for the whole algo-

rithm of the sample transmission in the optimal AFCS are as

follows: x̂0 = x0, P0 = σ2
0 .

C. Efficiency of Optimal AFCS

The algorithm (1)-(3), (6)-(8) determines the work of the

optimal statistically fitted AFCS which can transmit signals

with minimal MSE (4). In [1-3] it was shown that the bit

rate of data transmission R in the forward channel of the

optimal AFCS attains the channel capacity C during the

definite “threshold” number n⋆ of the initial cycles of sample

transmission. The mean bit rate at AFCS output is determined

by the following relationship [1-3]:

Rn =
I(x; x̂n)

n∆t0
=

F0

n
log2

(

σ2
0

Pn

)

[bit/s], (9)
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where I(x; x̂n) = H(x)−H(x|x̂n) is the amount of informa-

tion in the estimate x̂n about the input sample x, and H(x),
H(x|x̂n) are the prior and posterior entropies.

For 1 ≤ n ≤ n⋆, the bit rate is constant and determined by

equation:

Rn = F0 log2

(

1 +
W sign

Wnoise

)

= F0 log2

(

1 +
W sign

NξF0

)

= C,

(10)

where W sign = (A/α)2 is the mean power of the information

component of the received signal and Wnoise = NξF0 = σ2
ξ

is the power of the noise at the input of BS. For n > n⋆ the

bit-rate diminishes monotonically. The most important result

of research on the optimal AFCS [1-3], being a consequence

of (10), is the fact that the power-bandwidth efficiency of

transmission in the forward channel of the optimal AFCS, for

1 ≤ n ≤ n⋆, attains the Shannon’s capacity boundary [12,13]

(compare Fig. 4) which expresses the ideal power-bandwidth

trade-off in communication systems:

Ebit

Nξ
=

F0

C

(

2C/F0 − 1
)

, (11)

where Ebit is the energy per bit of the signal received by BS.

The threshold point n⋆ determines the optimal number of

cycles of sample transmission and can be assessed as a solution

of the equation Pn⋆ = σ2
ν :

n⋆ =
log2

(

σ2
0/σ

2
ν

)

log2

(

1 +W sign/σ2
ξ

) . (12)

It is worth noticing that for 1 ≤ n ≤ n⋆, MSE (4) decreases

very fast (exponentially) with n according to the relationship:

Pn = σ2
0

(

1 +W sign/σ2
ξ

)

−n
. (13)

After the threshold point n⋆, MSE diminishes more slowly

(hyperbolically).

III. DRIFT COMPENSATION IN OPTIMAL AFCS

Now, let us consider the following model of the signal x̄k

including a drift component (to distinguish the drift case we

use the upper dash over xk, in Sect. II xk = x+ νk):

x̄k = x+ β(k − 1) + νk, (14)

where x is the value of the transmitted sample and β is the

unknown rate (amplitude) of a drift component, which has the

known form, e.g. a linear drift: k − 1, k is the cycle number

(k = 1, 2, , n). The distorted value of the input sample at the

k-th cycle of transmission is a sum of the actual value of the

sample x and the drift component β(k−1). As in Sect. II, νk is

the analog additive noise, assumed to be zero-mean AWGN

with the variance σ2
ν . The sample (14) can be presented in the

form of the regression type model:

x̄k = θTϕk + νk, (15)

where θ = [x, β]T is a vector of two unknown parameters to

be estimated and a vector ϕk = [1, k − 1]T consists of two

known deterministic components.

The proposed method of drift compensation consists in

joint (simultaneous) optimal estimation of two unknown pa-

rameters to form the optimal controls Bk and Mk of the

adaptive modulator (Σ+M1) guaranteeing the minimal MSE

of the current estimates of the sample x and the drift rate

β under the condition (5) related to overmodulation. This

optimization problem, which is equivalent to minimization of

the squared error: Sk = E[(x̄k − ˆ̄xk)
2] = ϕT

kP kϕk, where

P k = E[(θ−θ̂k)(θ−θ̂k)
T ], can be solved using the analytical

approach to optimization of adaptive estimation algorithms

presented in [10]. According to the multidimensional version

of the algorithm of optimal parameters estimation [10], the

optimal value of the compensation signal Bk in the k-th cycle

of sample transmission is calculated on the basis of optimal

estimates θ̂k−1 = [x̂k−1, β̂k−1]
T obtained in the previous

cycle:

Bk = ˆ̄xk,k−1 = θ̂
T

k−1ϕk = x̂k−1 + β̂k−1(k − 1). (16)

The optimal gain of the adaptive modulator in the k-th cycle

is calculated using the formula:

Mk =
1

α
√

σ2
ν +ϕT

kP k−1ϕk

, (17)

where P k is the correlation matrix calculated recursively as

follows:

P k = P k−1 −
A2M2

kP k−1ϕkϕ
T
kP k−1

σ2
ξ +A2M2

k (σ
2
ν +ϕT

kP k−1ϕk)
. (18)

The recursive equation for updating the vector of optimal

estimates has the following form:

θ̂k = θ̂k−1 +Lkỹk, (19)

where Lk = [L
(1)
k , L

(2)
k ]T is the vector of coefficients calcu-

lated according to the formula:

Lk =
AMkP k−1ϕk

σ2
ξ +A2M2

k (σ
2
ν +ϕT

k P k−1ϕk)
. (20)

Initial conditions for the extended two-dimensional algo-

rithm (16)-(20) are: θ̂0 = [x0, β0]
T , P 0 = diag(σ2

0 , σ
2
β),

where β0 and σ2
β are the assumed a priori mean value and

variance of the drift rate β.

IV. RESULTS OF SIMULATION EXPERIMENTS

Theoretical analysis of drifts influence on efficiency of

AFCS is very complicated and limited. Therefore, the sim-

ulation experiments based on mathematical models of the

standard (Sect. II) and modified (Sect. III) AFCS were used in

our research to analyse the drifts influence on AFCS operation

as well as to verify usefulness of the proposed method. In the

first group of experiments (Sect. IV.A), the basic properties

of the optimal AFCS without drifts were investigated. These

results serve as a reference point for the experiments related to

behaviour of AFCS in case of drifts occurrence (Sect. IV.B).
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Fig. 2. MSE for optimal AFCS obtained for different values of SNR =
0, 10, 20, 30, 40 dB (lines from top to bottom, respectively).

A. Optimal AFCS without Drifts

In simulation experiments, input samples transmitted by

AFCS x(m)(m = 1, 2, ...,M,M = 10000) were generated

as sequences of random normally distributed values with the

mean value x0 = 0 V and the variance σ2
0 = 0.25 V2. The

other values of parameters assumed in simulation experiments

were as follows: A=10 mV, α = 4, σ2
ν = 10−8 V2. Figure 2

shows the empirical values of the mean square errors (MSE)

obtained for the optimal standard AFCS for different values

of a number of cycles n = 1, 2, ..., 10 and different values

of signal to noise ratio (SNR) at the input of BS defined as

W sign/Wnoise = (A/α)2/σ2
ξ changing from 0 to 40 dB, SNR

= 0, 10, 20, 30, 40 dB, lines in Fig. 2 from top to bot-tom,

respectively. The empirical values of MSE were calculated

using the following formula:

MSEn =
1

M

M
∑

m=1

[

x(m) − x̂(m)
n

]2

. (21)

The plots in Fig. 2 show how the level of noises influences

on MSE of transmission. Using these results, we can easily

determine experimentally the threshold points n⋆ and compare

with their theoretical assessment (12) for particular values of

SNR.

The next Fig. 3 presents the results of simulation exper-

iments regarding the bit rate at which data are transmitted

by AFCS under the assumption of AWGN channel, i.e. the

trajectories of the bit rate (9) normalized by F0 obtained

for particular values of n = 1, 2, ..., 10 and for SNR =

0, 10, 20, 30, 40 dB (lines in Fig. 3 from bottom to top,

respectively). The values of R̂n/F0 were calculated according

to the following formula:

R̂n

F0
=

1

n
log2

(

σ2
0

MSEn

)

[bps/Hz]. (22)

The last figure in this series of experiments (Fig. 4) shows

the results of simulation assessment of power-bandwidth

efficiency of optimal AFCS in the form of the so called

bandwidth-efficiency diagram [12], i.e. as points (correspond-

ing to system parameters) located in the plane Ebit/Nξ ,
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b

p
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H
z]

n

Standard AFCS

Fig. 3. Transmission bit-rates for optimal AFCS obtained for different values
of SNR = 0, 10, 20, 30, 40 dB (lines from bottom to top, respectively).
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Fig. 4. Experimental power-bandwidth efficiency for optimal AFCS, triangles
relate to SNR from 0 to 40 dB (from bottom to top, respectively).

R̂n/F0, where Ebit/Nξ is the signal energy per bit to noise

power spectral density ratio, calculated as follows:

Ebit

Nξ
= 10 log10

W sign/Wnoise

1
n log2

(

σ2

0

MSEn

) [dB]. (23)

The continuous blue line in Fig. 4 relates to the theoretical

Shannon’s capacity boundary [12,13] for which R=C, where

C is the channel capacity. This line corresponds to the ideal

systems with maximal efficiency theoretically achievable. The

capacity boundary divides the plane into the part R ≤ C
achievable for real systems with error-free transmission, and

the part R>C unachievable for real systems with error-free

transmission [12]. Locations of triangles in Fig. 4 relate to

the empirical values of Ebit/Nξ and R̂n/F0 obtained for the

optimal AFCS, calculated for n = n⋆ and for SNR changing

from 0 to 40 dB with the step 2.5 dB. The simulation results

confirm that the power-bandwidth efficiency of the optimal

AFCS attains the Shannon’s capacity boundary.

B. AFCS with Drifts

In the next experiment, it was investigated how the level

of drifts affects AFCS performance and efficiency. Fig-
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Fig. 5. MSE for standard (a) and modified (b) AFCS, for different values
of drift rate σβ = 10−6

, 10−5
, 10−4

, 10−3
, 10−2 V (lines from bottom to

top, respectively) under SNR = 20 dB.

ure 5 presents the behaviour of MSE obtained for the stan-

dard (Fig. 5a) and modified (Fig. 5b) AFCS for different

values of the standard deviation of the drift rate σβ =
10−6, 10−5, 10−4, 10−3, 10−2 V (lines from bottom to top,

respectively). For every input sample x(m) concerned in sim-

ulation experiments, the value of the drift rate was generated

randomly with the Gaussian distribution N(0, σ2
β). In this

experiment, SNR = W sign/Wnoise = 20 dB was assumed.

The results obtained for the standard AFCS (Fig. 5a) show

that the values of MSE increase proportionally to the drift rate,

while the results for the modified AFCS (Fig. 5b) indicate

that the two-dimensional algorithm improves the transmission

quality in the case of drift occurrence in comparison with the

use of one-dimensional algorithm as in the standard AFCS.

Of course, we observe some worsening of the transmission

quality, measured by MSE, for the modified AFCS in presence

of drift compared to the situation when there is no drift

(compare a plot for SNR = 20 dB in Fig. 2).

The next series of simulation experiments is devoted to

analysis of the behaviour of the standard and modified AFCS

for different values of SNR and the constant standard deviation

of the drift rate σβ = 10−3 or σβ = 10−2 V. The experimental

values of MSE for σβ = 10−3 V for both versions of AFCS
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Fig. 6. MSE for standard (a) and modified (b) AFCS, for different values
of SNR = 0, 10, 20, 30, 40 dB (lines from top to bottom, respectively) and
standard deviation of drift rate σβ = 10

−3 V.

are presented in Fig. 6. Figure 6a refers to the standard AFCS

and Fig. 6b to the modified AFCS. The results presented

in Fig. 6a show that, for this level of drift errors, the level

of transmission errors expressed in MSE is very high and

the samples transmission is totally degraded for all values

of SNR analyzed in the experiment. The results obtained in

the same conditions for the modified AFCS (Fig. 6b) indicate

that the modified AFCS can work satisfactorily in the case of

drift occurrence. As in the previous experiment, there is some

worsening of transmission quality in comparison to the case,

where there is no drift in AFCS (compare Fig. 2).

The similar results, but obtained for the standard deviation

of the drift rate σβ = 10−2 V are presented in Fig. 7. In this

case, the effects observed earlier for σβ = 10−3 V are even

more visible. The difference between MSE obtained for the

standard (Fig. 7a) and modified (Fig. 7b) AFCS for particular

SNR is greater. For the standard AFCS, the values of MSE do

not decrease after n = 2, while for the modified AFCS, the

values of MSE continue the further decrease after the short

break in the second cycle.

The next figures (Figs. 8 and 9) show the transmission bit

rates trajectories calculated according to (22) on the basis of

empirical values of MSE from Figs. 6 and 7, respectively. The
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Fig. 7. MSE for standard (a) and modified (b) AFCS, for different values
of SNR = 0, 10, 20, 30, 40 dB (lines from top to bottom, respectively) and
standard deviation of drift rate σβ = 10

−2 V.

appropriate results obtained for optimal AFCS with no drift are

presented in Fig. 3. In comparison to values of the transmission

bit rates presented in Fig. 3, the bit rates obtained in the case

of drift occurrence are significantly smaller for particular n,

especially for σβ = 10−2 V. It means that the transmission

time of the given information has to be longer in the case of

the standard AFCS. Application of the modified versions of

AFCS causes that the values of transmission bit rates R̂ are

greater and closer to the values obtained in the situation, when

there is no drift (Fig. 3).

As a summary of simulation experiments, the results of

experiments referring to worsening of the power-bandwidth

efficiency of AFSC caused by drift are presented in Fig. 10.

Figure 10 shows the empirical values of parameters Ebit/Nξ

(23) and R̂n/F0 (22) (as coordinates of points) obtained for

the standard and modified AFCS. Triangles in Fig. 10 relate to

the empirical values of Ebit/Nξ and R̂n/F0 obtained for the

standard optimal AFCS working without drift and calculated

for n = n⋆ for different values of SNR changing from 0 to

40 dB with the step 2.5 dB (from bottom to top, respectively).

Red stars and blue diamonds relate to the empirical values of

Ebit/Nξ and R̂n/F0 obtained for the standard and modified

AFCS, respectively, operating with drifts (Figure 10a for the
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Fig. 8. Transmission bit-rates for standard (a) and modified (b) AFCS, for
different values of SNR = 0, 10, 20, 30, 40 dB (lines from bottom to top,
respectively) and σβ = 10

−3 V.

standard deviations of the drift rate: σβ = 10−3 V and Fig. 10b

for σβ = 10−2 V). The values of Ebit/Nξ and R̂n/F0 were

calculated for the same n = n⋆ as in the case of the optimal

standard AFCS operating without drift. The experiments were

performed for relatively high levels of drift in order to show

clearly differences in the Ebit/Nξ, R̂n/F0 plane.

Generally, the communication system is more efficient if

the point Ebit/Nξ, R̂n/F0 corresponding to the system is

closer to the Shannon’s capacity boundary [12] determined

by the equation R = C. The location of points obtained

for the standard and modified AFCS shows that the use of

the two-dimensional algorithm in AFCS operating within the

conditions of drift occurrence moves the points Ebit/Nξ,

R̂n/F0 closer to the capacity boundary in comparison to

the points obtained for the standard AFCS. It proofs the

improvement of power-bandwidth efficiency of the modified

AFCS in comparison with the standard AFCS working in drift

conditions.

V. CONCLUSION

The degradation of transmission efficiency in optimal ana-

log adaptive communication systems with feedback (AFCS)

caused by drift were investigated in the paper. The new
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Fig. 9. Transmission bit-rates for standard (a) and modified (b) AFCS, for
different values of SNR = 0, 10, 20, 30, 40 dB (lines from bottom to top,
respectively) and σβ = 10

−2 V.

approach to drift compensation in these systems, proposed

in the paper, can significantly reduce the influence of drifts

on transmission efficiency in AFCS. The developed method

allows that the modified AFCS may operate satisfactorily even

for the high levels of drifts while the standard AFCS does not

work properly in the same conditions.

Implementation of the proposed method into AFCS consists

only in changes in the algorithm performed by the base

station. The base station uses the two-dimensional estimation

algorithm which estimates simultaneously the value of a trans-

mitted sample and the value of an unknown drift rate. The use

of this algorithm does not cause any change in the architecture

of AFCS.

The developed models of the standard and modified AFCS

as well as the simulation software enable assessment of influ-

ence of the level of drifts, other parameters of AFCS and the

transmission channel on the total AFCS efficiency. The results

of investigations presented in the paper were obtained under

assumption of the Gaussian (AWGN) transmission channel.

Application of other channel models can be a subject of the

further research, extending the obtained results.
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Fig. 10. Experimental power-bandwidth efficiency for standard (red stars)
and modified (blue diamonds) AFCS, for σβ = 10−3 V (a), σβ = 10−2 V
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