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Joint Channel and Carrier Estimation

Using Extended Kalman Filter
Grzegorz Haza

Abstract—In this paper a proposal of joint channel and carrier
estimation using extended Kalman filter (EKF) is presented. For
the proposed algorithm simulations are performed and the results
are compared with the separate channel estimation based on the
Kalman filter (KF) and carrier estimation based on the extended
Kalman filter (EKF).
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I. INTRODUCTION

ESTIMATION and synchronization of communication sig-

nal parameters is an important task in a design of coher-

ent receivers that consume significant attention of engineers.

A common approach for estimation of an impulse response

of a communication channel and a residual carrier frequency

offset is based on a disjoint adaptive Least Mean Squares

(LMS) channel estimation [1]–[4] with frequency synchroniza-

tion based on a phase locked loop (PLL) [1], [2], [5], [6] with

an appropriate phase error detector (PED) [1], [2], [5], [6].

However, this technique suffers from the fact, that both

algorithms are based on a fixed adaptation parameters which,

in case of the LMS channel estimation is represented by

an adaptation step [1], [3], [4] and for the PLL carrier

synchronization, by a loop filter parameters related with the

loop bandwidth [1], [2], [5], [6]. As a result of fixed step–size

adaptation procedure, the algorithms must be preconfigured in

order to provide quick adaptation or small value of estimation

error in the steady state. These both contradictions can not

be met for its best performance at the same time. Since the

adaptation steps do not depend on the actual conditions of the

received signal, it is often a compromise between a maximum

acceptable time of adaptation and a desired steady state error

estimation.

Because of this, more advanced adaptive techniques for the

channel estimation, for instance based on the RLS algorithm

[1], [3], [4] or the Kalman filter [1], [3], [4] and for the phase

estimation and synchronization, techniques based on a vari-

able step PLL [7], on the Kalman filter with an appropriate

phase detector [8] or on the extended Kalman filter [9] were

proposed.

In this paper, a joint channel and carrier estimation based on

the extended Kalman filter (EKF) is proposed. This technique

relies on the concept of applying the EKF for a carrier fre-

quency estimation presented in [9]. However, we use a state–

space nonlinear dynamical model that incorporates both, the

carrier frequency and the finite impulse response (FIR) type
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channel parameters at once in an iterative estimation proce-

dure.

The paper is organized as follows. At the beginning, the

state-space model description for complex signals and then

a representation with separated real and imaginary parts is

provided. Next, the application of the Extended Kalman Filter

for described state-space model is proposed and later on,

simulation results are shown and described. Finally, some

conclusions are given at the end of this paper.

II. MODEL DESCRIPTION

A. State-space Model a Nonlinear Dynamical System

Assume, that the input signal y(t) at the receiver is at

first downconverted to the baseband representation with the

residual carrier frequency offset (CFO), then matched filtered

and sampled with perfect timing information with time step

Ts = 1/fs for one sample per symbol, so the following

discrete time complex representation can be applied [1], [5]:

yn =
L−1
∑

k=0

hkbn−k exp {jω0nTs}+ vn (1)

where h = [h0, . . . , hk, . . . , hL−1]
T

is the finite impulse

response channel type of length L introducing inter–symbol

interference, which is assumed to be complex valued so, that

hk ∈ Z for k = 0, . . . , L− 1. Transmitted symbol bn ∈ Z is

assumed to be independent and identically distributed random

variable (iid RV) with uniformly distributed symbols taken

from m–PSK or m–QAM constellation [1], [2], [5], [6]. The

exponential component exp {jω0nTs} is responsible for the

multiplicative distortion [1] with a frequency offset value

ω0 ∈ R and time–variable phase φn = ω0nTs ∈ R, which can

be caused i.e., by an imperfect carrier frequency of generators

at the sending and receiving end, a Doppler frequency offset or

both [1], [2], [5], [6]. The additive noise term vn is assumed to

be complex valued, zero-mean, white Gaussian noise (Additive

White Gaussian Noise – AWGN).

Our goal is to perform an iterative and joint estimation of the

carrier phase φn ∈ R, the carrier frequency offset ωn ∈ R and

the channel impulse response hn of length L where hn[k] ∈ Z
for k = 0, . . . , L− 1, using the extended Kalman filter, which

operates in the state–space model of a nonlinear dynamical

system.

In order to achieve this goal, we assume at first a process

equation of the dynamical system described as below

xn = Axn−1 +wn (2)

where the process equation at time instant n and n− 1
contains consecutively xn = [φn, ωn, hT

n ]
T and
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xn−1 = [φn−1, ωn−1, hT
n−1]

T . A transition matrix of the

process equation is of size L+ 2× L+ 2 and it is described

as follows

A =





1 Ts 01×L

0 1 01×L

0L×1 0L×1 Ah



 (3)

where the channel propagation matrix is defined as

Ah = IL×L. A process noise wn =
[

wφ,n, wω,n,w
T
h,n

]2

is a vector of size L× 1, where wφ,n ∈ R and wω,n ∈ R but,

on the other hand, an additive channel model noise is assumed

to be wh,n[k] ∈ Z for k = 0, . . . , L−1. The process noise wn

is assumed to be additive, zero mean, white and Gaussian [4],

[10]. With the aforementioned representation, both the carrier

frequency offset and the channel characteristic are included

in the vector representation of the process equation of the

dynamical system.

For the EKF purposes, assuming the AWGN measurement

noise vn, a general measurement equation of the nonlinear

state–space dynamical model, which is related to the process

equation xn and the vector bn = [bn, bn−1, . . . , bn−L+1]
T

of size L × 1 with transmitted symbols, can be described by

the following formula [10]

yn = c[xn,bn] + vn (4)

Between the process and measurement equations a nonlin-

earity represented by the multiplicative distortion [1], that

includes the phase φn of the process equation xn is present.

This nonlinearity can be placed into the aforementioned for-

mula by the following complex relation

c [xn,bn] = hT
nbn exp {jφn} (5)

In order to enable state estimation for the nonlinear mea-

surement equation using the Extended Kalman Filter, it is nec-

essary to perform linearisation by expanding the nonlinearity

into the first order Taylor series [4], [10] at the reference point

xn,ref according to the following approximation

c [xn,bn] ≈ c [xn,ref ,bn] +
dc [xn,ref ,bn]

dxT
n,ref

δxn (6)

where δxn,ref is the state perturbation, which can be repre-

sented by

δxn,ref = xn − xn,ref (7)

and the first derivative in (6) is the Jacobian of size 1×L+2,

which can be restated as

C [xn,ref ,bn] = C [xn,bn]|xn=xn,ref

= dc[xn,bn]
dxT

n

∣

∣

∣

xn=xn,ref

(8)

For convenience, the above Jacobian is partitioned into

partial derivatives of the carrier phase φn, the carrier frequency

offset ωn and the channel impulse response hn, so the follow-

ing matrix representation of size 1× L+ 2 is obtained

C[xn,bn] =





Cφ[xn,bn]
Cω [xn,bn]
CT

h
[xn,bn]





T

(9)

The derivative of the nonlinearity c [xn,bn] according to the

phase φn results in a scalar value described by

Cφ[xn,bn] =
dc[xn,bn]

dφn

= hT
nbnj exp {jφn} (10)

at the same moment, the derivative according to the carrier

frequency offset ωn results as follows

Cω[xn,bn] =
dc[xn,bn]

dωn

= 0 (11)

And finally, the partial derivative according to the channel

vector hn returns a following vector of size 1× L

Ch[xn,bn] =
dc[xn,bn]

dhT
n

= bT
n exp {jφn} (12)

B. Separating Real and Imaginary Components

We want to note, that the process equation of the dynamical

system consists of two real valued parameters: φn and ωn

which are related to the residual carrier frequency offset of

the measurement equation and the complex valued channel

impulse response hn. All these parameters in the process equa-

tion distort the transmitted symbols {bn}, which are present in

the measurement equation yn by the transformation c [xn,bn].
Since both, real and complex valued variables are available

at the same process equation of the dynamical system, its

estimation conducted on the aforementioned measures yn can

lead to the complex valued estimates of both φn and ωn carrier

parameters. In this case, the time–variant phase offset becomes

φn = φℜ,n + jφℑ,n with possibly non-zero imaginary part,

which can strictly result in an unwanted additional exponential

amplitude distortion of the measurement equation yn, accord-

ing to the following relation

yn = c [xn,bn] + vn = hT
nbne

jφℜ,ne−φℑ,n + vn (13)

where e−φℑ,n represents the unwanted additional nonlinear

relation between the amplitude of the measurement and the

imaginary part of the parameter φn from the process equation.

Since we want to avoid this situation, we adopt the approach

for the carrier estimation based on the EKF presented in paper

[9] for the joint channel and carrier estimation.

At first, we rewrite the process equation xn using its

new representation xIQ
n , which contains separated real and

imaginary parts of the channel impulse response hn according

to the following vector of size 2L+ 2× 1 representation

xIQ
n =





φn

ωn

hIQ
n



 =









φn

ωn

ℜ{hn}
ℑ {hn}









(14)

where hIQ
n =

[

ℜ
{

hT
n

}

, ℑ
{

hT
n

}]T
is a vector of size 2L×1.

Then, we introduce a new representation of the nonlinearity

c [xn,bn], which is now a vector of size 2 × 1 described by

the relation

cIQ
[

xIQ
n ,bIQ

n

]

=

[

ℜ{c [xn,bn]}
ℑ {c [xn,bn]}

]

(15)
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This enabled us to establish a new vector representation of the

measurement equation of size 2× 1

yIQ
n = cIQ[xIQ

n ,bIQ
n ] + vIQ

n (16)

where yIQ
n is related with yn according to yIQ

n =

[

ℜ{yn}
ℑ {yn}

]

and an additive measurement noise vIQ
n , which is related to

the measurement noise vn according to vIQ
n =

[

ℜ{vn}
ℑ {vn}

]

.

For the new representation of the state and measurement

components, we can introduce now a new Jacobian matrix

CIQ[xIQ
n,ref ,b

IQ
n ] of size 2 × 2L+ 2 by recalculating partial

derivatives of the nonlinearity cIQ
[

xIQ
n ,bIQ

n

]

at the reference

point x
IQ
n,ref according to the following relation

CIQ[xIQ
n,ref ,b

IQ
n ] =

dcIQ[xIQ
n ,bIQ

n ]
(

dxIQ
n

)T

∣

∣

∣

∣

∣

∣

∣

x
IQ
n =x

IQ

n,ref

(17)

As before, we are partitioning the calculation of the derivatives

in order to obtain partial results C
IQ
φ [xIQ

n ,bIQ
n ] for the phase

φn, CIQ
ω [xIQ

n ,bIQ
n ] for the carrier frequency offset ωn and

C
IQ
h

[xIQ
n ,bIQ

n ] for the channel impulse response hIQ
n and we

are relating the results with its complex counterparts obtained

in the previous section.

First, we calculate the derivative of cIQ[xIQ
n ,bIQ

n ] accord-

ing to the phase φn which results as a vector of size 2 × 1
represented by

C
IQ
φ [xIQ

n ,bIQ
n ] =

dcIQ[xIQ
n ,bIQ

n ]
dφn

=

[

dcℜ,φ[xn,bn]
dφn

dcℑ,φ[xn,bn]
dφn

]

(18)

It can be further calculated for the real and imaginary com-

ponents of the above partial derivative consecutively as

dcℜ,φ[xn,bn]
dφn

= − sin (φn)
(

hT
ℜ,nbℜ,n − hT

ℑ,nbℑ,n

)

− cos (φn)
(

hT
ℜ,nbℑ,n + hT

ℑ,nbℜ,n

)

= ℜ{Cφ[xn,bn]}
(19)

and

dcℑ,φ[xn,bn]
dφn

= cos (φn)
(

hT
ℜ,nbℜ,n − hT

ℑ,nbℑ,n

)

− sin (φn)
(

hT
ℜ,nbℑ,n + hT

ℑ,nbℜ,n

)

= ℑ{Cφ[xn,bn]}
(20)

Thus, the derivative C
IQ
φ [xIQ

n ,bIQ
n ] =

dcIQ[xIQ
n ,bIQ

n ]
dφn

is related

with the derivative Cφ[xn,bn] =
dc[xn,bn]

dφn
in the following

manner

C
IQ
φ [xIQ

n ,bIQ
n ] =

[

ℜ{Cφ[xn,bn]}
ℑ {Cφ[xn,bn]}

]

(21)

To obtain the derivative of cIQ[xIQ
n ,bIQ

n ] according to

the carrier frequency offset ωn, represented by the vector

CIQ
ω [xIQ

n ,bIQ
n ] of size 2 × 1, we introduce the following

relation

CIQ
ω [xIQ

n ,bIQ
n ] =

dcIQ[xIQ
n ,bIQ

n ]
dωn

= 02×1

=

[

ℜ{Cω [xn,bn]}
ℑ {Cω [xn,bn]}

]

(22)

Finally, in order to calculate the partial derivative of the

nonlinearity cIQ[bIQ
n ,bIQ

n ] according to the new channel

impulse response vector hIQ
n we introduce and then partition

the matrix C
IQ
h

[xIQ
n ,bIQ

n ] of size 2× 2L according to

C
IQ
h

[xIQ
n ,bIQ

n ] =
dcIQ[xIQ

n ,bIQ
n ]

d(hIQ
n )

T

=





dcℜ,h[xn,bn]

dhT
ℜ,n

dcℜ,h[xn,bn]

dhT
ℑ,n

dcℑ,h[xn,bn]

dhT
ℜ,n

dcℑ,h[xn,bn]

dhT
ℑ,n





(23)

Each component from the partitioned matrix C
IQ
h

[xIQ
n ,bIQ

n ]
is calculated as follows

dcℜ,h[xn,bn]

dhT
ℜ,n

= bT
ℜ,n cosφn − bT

ℑ,n sinφn

= ℜ{Ch[xn,bn]}
(24)

dcℜ,h[xn,bn]

dhT
ℑ,n

= −bT
ℑ,n cosφn − bT

ℜ,n sinφn

= −ℑ{Ch[xn,bn]}
(25)

dcℑ,h[xn,bn]

dhT
ℜ,n

= bT
ℑ,n cosφn + bT

ℜ,n sinφn

= ℑ{Ch[xn,bn]}
(26)

dcℑ,h[xn,bn]

dhT
ℑ,n

= bT
ℜ,n cosφn − bT

ℑ,n sinφn

= ℜ{Ch[xn,bn]}
(27)

Applying the above results (24)–(27) into (23), we can restate

the matrix C
IQ
h

[xIQ
n ,bIQ

n ] using its complex counterparts

from the previous section Ch[xn,bn] as

C
IQ
h

[xIQ
n ,bIQ

n ] =

[

ℜ{Ch[xn,bn]} −ℑ{Ch[xn,bn]}
ℑ {Ch[xn,bn]} ℜ {Ch[xn,bn]}

]

(28)

Reassuming, the partial derivative of the nonlinearity which

is represented as the matrix of size 2× 2L+ 2

CIQ[xIQ
n ,bIQ

n ] =





C
IQ,T
φ [xIQ

n ,bIQ
n ]

CIQ,T
ω [xIQ

n ,bIQ
n ]

C
IQ,T
h

[xIQ
n ,bIQ

n ]





T

(29)

can be further restated as follows

CIQ[xIQ
n ,bIQ

n ] =
[

C
IQ
φ [xIQ

n ,bIQ
n ] 02×1 C

IQ
h

[xIQ
n ,bIQ

n ]
]

(30)

III. ALGORITHM DESCRIPTION

The extended Kalman filter is a well known method in

iterative estimation of a state vector in a nonlinear model of

a dynamical system [4], [10]. On the contrary to the Kalman

filtering, which is designed for the linear models, the EKF

can handle nonlinearities thanks to the linearisation procedure

[4], [10], thus it provides an approximation to the optimal

nonlinear estimation [4], [10]. In this section, the application

of the EKF for the joint channel and carrier estimation is

provided.

Prediction of the process equation of the dynamics at time

instant n is described by the vector of size 2L+ 2× 1

x̂
IQ

n|n−1 = AIQx̂
IQ

n−1|n−1 (31)
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Fig. 1. Block diagram of the channel and carrier estimator based on the EKF

where the transition matrix AIQ of size 2L + 2 × 2L + 2 is

related with the transition matrix A of size L+ 2×L+2 by

the following relation

AIQ =

[

A 0L+2×L

0L×L+2 Ah

]

(32)

where the channel model is assumed Ah = IL×L.

The error of the a priori estimate of the process equation

x
IQ

n|n−1 according to the true state xIQ
n is defined by

ε
IQ

n|n−1 = xIQ
n − x

IQ

n|n−1 (33)

In the Extended Kalman Filter it is assumed [4], [10], that

the reference point is equal to the a priori estimate of the

process equation

xn,ref = xn|n−1 (34)

From (15), the nonlinear relation cIQ[x̂IQ

n|n−1,b
IQ
n ] between

the a priori estimate of the process equation and the a priori

estimate of the measurement y
IQ

n|n−1 can be defined by the

vector of size 2× 1 of the form

cIQ[x̂IQ

n|n−1,b
IQ
n ] =

[

ℜ
{

c[x̂n|n−1,bn]
}

ℑ
{

c[x̂n|n−1,bn]
}

]

(35)

where c[x̂n|n−1,bn] = hT
n|n−1bn exp

{

jφn|n−1

}

. Thus, the

a priori measurement equation is defined as follows

y
IQ

n|n−1 = cIQ
[

x̂
IQ

n|n−1,b
IQ
n

]

(36)

In order to linearise the nonlinear relation between the state

and the measurement equation, the following Jacobian matrix

followed from (17) and (30) under the assumption (34) is used:

CIQ[xIQ

n|n−1,b
IQ
n ] =







C
IQ
φ [xIQ

n|n−1,b
IQ
n ]T

01×2

C
IQ
h

[xIQ

n|n−1,b
IQ
n ]T







T

(37)

The error covariance matrix of size 2L + 2 × 2L + 2 of the

a priori estimator error for the EKF is then

P
IQ

n|n−1 = AIQP
IQ

n−1|n−1(A
IQ)T +Q

IQ
−1 (38)

The Kalman gain at time instant n is described by the matrix

of size 2L+ 2× 2 of the following form

GIQ
n = P

IQ

n|n−1C
IQ,T [x̂IQ

n|n−1,b
IQ
n ]×

(

CIQ[x̂IQ

n|n−1,b
IQ
n ]PIQ

n|n−1C
IQ,T
φ [x̂IQ

n|n−1,b
IQ
n ]

+R
IQ
−1

)−1

(39)

The a priori estimation error of the measurement equation

y
IQ

n|n−1 according to the true measure yIQ
n is described by

the following difference

e
IQ

n|n−1 = yIQ
n − y

IQ

n|n−1 (40)

Now, the a posteriori estimate of the process equation x̂
IQ

n|n is

the vector of size 2L+ 2× 1 of the following form

x̂
IQ

n|n = x̂
IQ

n|n−1 +GIQ
n

(

yIQ
n − cIQ[x̂IQ

n|n−1,b
IQ
n ]

)

(41)

The error covariance matrix of size 2L + 2 × 2L + 2 of the

a posteriori state estimate at time instant n is described by

P
IQ

n|n =
(

I2L+2 −GIQ
n CIQ[x̂IQ

n|n−1,b
IQ
n ]

)

P
IQ

n|n−1 (42)

Thus, all the equations for the joint carrier and channel

estimation using the EKF are presented above.

1) Initialization: For the initialization purposes, at time

instant n = 0 the state noise covariance matrix Q
IQ
−1, the

measurement noise covariance matrix R
IQ
−1 and the a posteriori

state error covariance matrix P
IQ

−1|−1 must be provided.

At first, the state noise covariance matrix Q
IQ
−1 will be de-

fined. We assume, that each element of the state noise process

represented by the vector wIQ
n of size 2L+2×1 is statistically

independent random process modelled by the AWGN [3], [9],

[10]. Under the above assumption, the state noise covariance

matrix is a diagonal matrix of size 2L+ 2 × 2L + 2 defined

as

Q
IQ
−1 = E

{

wIQ
n wIQ,T

n

}

= diag
{

σ2
wφ

, σ2
wω

,σ2
hIQ

} (43)

where σ2
wφ

and σ2
wω

is an initial phase and frequency variance

and σ
2
hIQ is an initial variance of the channel taps defined by
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the vector of size 2L× 1 of the following form

σ
2
hIQ =

[

σ2
whℜ(0)

, . . . , σ2
whℜ(L−1)

,

σ2
whℑ(0)

, . . . , σ2
whℑ(L−1)

]T (44)

Under the assumption, that the measurement noise vector vIQ
n

is AWGN, the measurement noise covariance matrix is defined

by a diagonal matrix of size 2× 2 as

R
IQ
−1 = E

{

vIQ
n vIQ,T

n

}

= diag
{

σ2
v , σ2

v

}

(45)

Following the assumptions presented in [3] and [8] for the

channel estimation and the synchronization purposes using the

Kalman filtering, we propose to assume the a posteriori state

error covariance matrix in the initialization stage to be the

diagonal matrix of size 2L+ 2× 2L+ 2 described as

P
IQ

−1|−1 = E
{

εIQ−1|−1ε
IQ,T

−1|−1

}

= diag
{

σ2
εφ,−1|−1, σ2

εω ,−1|−1,σ
2
ǫh−1|−1

} (46)

where the channel estimation covariance error σ
2
ǫh−1|−1

is

defined by the following vector of size 2L× 1

σ
2
ǫh−1|−1

=
[

σ2
εhℜ,−1|−1

(0), . . . , σ2
εhℜ,−1|−1

(L− 1),

σ2
εhℑ,−1|−1

(0), . . . , σ2
εhℑ,−1|−1

(L− 1)
]T

(47)

IV. ALGORITHM SUMMARY

Proposed algorithm can be presented by the block diagram

depicted in Fig. 1. In order to summarize its main stages, it

can be divided into the initialization and the Kalman recursion

in the following way

• Initialization:

– A posteriori estimate of the process equation (2L+
2× 1)

x
IQ

−1|−1 = 02L+2×1 (48)

– A posteriori state error covariance (2L+2×2L+2)

P
IQ

−1|−1 = diag

{

σǫφ−1|−1
, σǫω−1|−1

, σ2
ǫ
h
IQ

−1|−1

}

(49)

– Measurement noise covariance (2 × 2)

R
IQ
−1 = diag

{

σ2
v , σ

2
v

}

(50)

– State noise covariance (2L+ 2× 2L+ 2)

Q
IQ
−1 = diag

{

σ2
wφ

, σ2
wω

, σ2
w

hIQ

}

(51)

• Kalman recursion for n = 0, 1, 2, . . .

– Time update step:

x
IQ

n|n−1 = AIQx
IQ

n−1|n−1 (52)

P
IQ

n|n−1 = AIQP
IQ

n−1|n−1A
IQ,T +Q

IQ
−1 (53)

– Kalman gain computation:

GIQ
n = P

IQ

n|n−1C
IQ

n|n−1×
(

C
IQ

n|n−1P
IQ

n|n−1C
IQ,T

n|n−1 +R
IQ
−1

)−1

(54)

– Measurement update step:

x
IQ

n|n = x
IQ

n|n−1 +GIQ
n

(

yIQ
n − y

IQ

n|n−1

)

(55)

P
IQ

n|n =
(

I−GIQ
n C

IQ

n|n−1

)

P
IQ

n|n−1 (56)

• Nonlinearity and linearization of the state–space rep-

resentation:

– Nonlinearity between the a posteriori estimate of the

state and measure: y
IQ

n|n−1 = cIQ
[

x
IQ

n|n−1,b
IQ
n

]

– Jacobian matrix: C
IQ

n|n−1 = CIQ
[

x
IQ

n|n−1,b
IQ
n

]

V. SIMULATION RESULTS

The proposed algorithm for joint channel and carrier es-

timation, further referenced as the Joint Extended Kalman

Filter (JEKF) is compared with the separate Kalman channel

estimator [3] concatenated with the extended Kalman carrier

recovery [9], which is referenced as the Separate Extended

Kalman Filter (SEKF).

The communication channel of length L is assumed to be

a single frame time invariant, generated from an uncorrelated

and zero mean stationary random process with Gaussian

distribution. The channel impulse response has normalized

energy, which is
∑L−1

l=0 |hl|
2 = 1 Additionally, the AWGN

is present in the received signal with signal to noise ratio

SNR = 80dB, except the simulation, in which a relation

between the MSE and the SNR is estimated.

In order to calculate the mean square error of the a posteriori

estimate of the measurement equation is defined as

yn|n = hT
n|nbn exp

{

jφn|n

}

(57)

Estimation of the MSE is performed using the Monte Carlo

(MC) simulations based on M = 1000 runs, and the estimate

is calculated as

MSE(n) =
1

M

M−1
∑

m=0

|e
(m)
n|n |

2 =
1

M

M−1
∑

m=0

|yn − y
(m)
n|n |

2 (58)

where the upper index (m) represents the number of the

MC run.

At first, simulations were focused on the initialization

behaviour of the algorithms for different values of the initial-

ization parameters R
IQ
−1, Q

IQ
−1, P

IQ

−1|−1 and its influence to the

speed of adaptation and the steady state mean square error of

the a posteriori estimate of the measurement yn|n for both the

JEKF and the SEKF with the same initialization parameters.

The channel length is assumed to be L = 8 and the residual

carrier frequency offset f0 = ω0/2π normalized to the symbol

frequency fs is equal to f0/fs = 0.01.

In Figure 2(a) an influence of the state noise covari-

ance matrix parameter is investigated for initial values

Q
IQ
−1 =

{

10−2I, 10−3I, 10−4I
}

with the fixed measure-

ment noise covariance R
IQ
−1 = 0.25I and the a posteriori

state error covariance P
IQ

−1|−1 = 10−3I. When the state

noise covariance matrix is Q
IQ
−1 = 10−2I, the JEKF reaches

better results compared with the SEKF in both the speed of
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adaptation and the steady state MSE. However, when the mea-

surement noise covariance matrix is Q
IQ
−1 =

{

10−3I, 10−4I
}

,

both algorithms behaves in a similar way.

In Figure 2(b) an influence of the measurement error co-

variance matrix P
IQ

−1|−1 is checked for the speed of adap-

tation and the steady state MSE is investigated. For sim-

ulation purposes, the measurement noise covariance matrix

is assumed R
IQ
−1 = 0.025I and the state noise covariance

matrix is Q
IQ
−1 = 10−2I. According to [3], this parameter

in the Kalman channel estimator determines the speed of

adaptation, however, for the assumed range of the parameter

P
IQ

−1|−1 =
{

10−1I, 10−2I, 10−3I
}

the speed of adaptation

does not change significantly and the steady state MSE esti-

mates remains at the similar level.

In Figure 3(a) an influence of the measurement noise

covariance matrix R−1 is investigated consecutively for

Q
IQ
−1 = 10−2I, P

IQ

−1|−1 = 10−2I and Q
IQ
−1 = 10−2,

P
IQ

−1|−1 = 10−3I. For the simulation purposes, the measure-

ment noise covariance R−1|−1 = {0.25I, 0.025I, 0.0025I}.

For the JEKF, decreasing the initial value of the measurement

noise covariance improved both the speed of adaptation and

the steady state mean square error. However, for the SEKF and

the same initial parameters, the speed of adaptation and the

steady state mean square error is increasing for decreasing the

initial value of measurement noise covariance matrix R
IQ
−1.

For further experiments, the initialization parameters are

chosen from the results depicted in Figs. 2(a), 2(b) and

3(a) for the best performance of the algorithms. Both of the

JEKF configurations have the same a posteriori estimation

error covariance matrix P
IQ

−1|−1 = 10−3I and measurement

noise covariance matrix R
IQ
−1 = 0.0025I, but the state noise

covariance for the JEKF I is Q
IQ
−1 = 10−2I, and for the

JEKF II is Q
IQ
−1 = 10−3I. In case of the SEKF, the state
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noise covariance is Q
IQ
−1 = 10−3I, the a posteriori estimation

error covariance P
IQ

−1|−1 = 10−3I and the measurement noise

covariance R
IQ
−1 = 0.025I.

At first, an influence of different values of the channel

length assumed to be L = {8, 16, 32} at the same normal-

ized carrier frequency offset f0/fs = 0.025 for a speed of

adaptation is investigated. From the simulation results depicted

in Fig. 3(b) it can be seen, that when both the channel and

the vector xIQ
n length is increasing, the speed of adaptation

degrades for both the JEKF I and the SEKF. However, the

JEKF I performs better than the SEKF for the same length.

Additionally, it can be noted, that the steady state MSE for

the JEKF I is lowering for higher length of the process vector

xIQ
n and the channel impulse response. On the other hand, the

steady state MSE of the SEKF is degrading when the channel

length and the dimension of the vector xIQ
n is increasing.

The steady state MSE = f(SNR) is investigated with more

details at the end of this chapter.

Next, the estimated MSE in the steady state as a function

of SNR is presented for the JEKF I, JEKF II and the SEKF.

The results of simulations are depicted in Fig. 4(a) for the

channel length L = 8 and the normalized carrier frequency

offset f0/fs = {0.0125, 0.025, 0.05}. It can be seen, that

the JEKF I and the JEKF II perform better than the SEKF

and the best results of the MSE are obtained for the JEKF I.

However, the advantage of two JEKF configurations over the

SEKF is gradually decreasing, when the value of the SNR is

getting smaller.

At the end, we investigated an influence of the channel

length to the estimated MSE in the steady state as a function of

the signal to noise ratio (SNR) for the JEKF I and the SEKF.

The channel length is assumed to be L = {8, 16, 32} and

the normalized carrier frequency offset f0/fs = 0.025. It can

be seen from the simulation results depicted in Fig. 4(b), that

in case of the JEKF I, the steady state MSE is decreasing

for higher length of the impulse response, i.e. for L = 8 at

SNR = 23dB the MSE is approximately at the same level as

for the channel length L = 16 at SNR = 21.5dB and for the

channel length L = 32 at SNR = 20dB. In case of the SEKF,

when the channel length increases from L = 8 to L = 16 and

then, to L = 32, the characteristics of the MSE = f(SNR)
degrades for about 2.5dB at each step.

VI. CONCLUSION

In this paper the joint channel and carrier estimation

technique based on the EKF is proposed. The algorithm is

compared with concatenated the KF channel [3] and the EKF

carrier estimator [9] in which the state–space models are

modified in order to incorporate both types of distortions. For

both algorithms the Monte Carlo simulations were performed

in order to compare the speed of adaptation and the steady

state MSE. The joint channel and carrier estimation using

the extended Kalman filter can provide better results than

the SEKF and it seems to be an interesting topic for further

studies.
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